Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Enzyme Replacement Therapy for Genetic Disorders Associated with Enzyme Deficiency

Author(s): Marialaura Marchetti, Serena Faggiano and Andrea Mozzarelli*

Volume 29, Issue 3, 2022

Published on: 26 May, 2021

Page: [489 - 525] Pages: 37

DOI: 10.2174/0929867328666210526144654

Price: $65

Abstract

Mutations in human genes might lead to the loss of functional proteins, causing diseases. Among these genetic disorders, a large class is associated with the deficiency in metabolic enzymes, resulting in both an increase in the concentration of substrates and a loss in the metabolites produced by the catalyzed reactions. The identification of therapeutic actions based on small molecules represents a challenge to medicinal chemists because the target is missing. Alternative approaches are biology-based, ranging from gene and stem cell therapy, CRISPR/Cas9 technology, distinct types of RNAs, and enzyme replacement therapy (ERT). This review will focus on the latter approach that since the 1990s has been successfully applied to cure many rare diseases, most of them being lysosomal storage diseases or metabolic diseases. So far, a dozen enzymes have been approved by FDA/EMA for lysosome storage disorders and only a few for metabolic diseases. Enzymes for replacement therapy are mainly produced in mammalian cells and some in plant cells and yeasts and are further processed to obtain active, highly bioavailable, less degradable products. Issues still under investigation for the increase in ERT efficacy are the optimization of the interaction of the enzymes with cell membrane and internalization, the reduction in immunogenicity, and the overcoming of blood-brain barrier limitations when neuronal cells need to be targeted. Overall, ERT has demonstrated its efficacy and safety in the treatment of many genetic rare diseases, both saving newborn lives and improving patients’ life quality, and represents a very successful example of targeted biologics.

Keywords: Enzyme deficiency, genetic disease, recombinant proteins, cell internalization, mannose 6-phosphate, lysosomal storage disorders, metabolic diseases, biologics

[1]
Piñero, J.; Ramírez-Anguita, J.M.; Saüch-Pitarch, J.; Ronzano, F.; Centeno, E.; Sanz, F.; Furlong, L.I. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res., 2020, 48(D1), D845-D855.
[PMID: 31680165]
[2]
Tambuyzer, E.; Vandendriessche, B.; Austin, C.P.; Brooks, P.J.; Larsson, K.; Miller Needleman, K.I.; Valentine, J.; Davies, K.; Groft, S.C.; Preti, R.; Oprea, T.I.; Prunotto, M. Therapies for rare diseases: therapeutic modalities, progress and challenges ahead. Nat. Rev. Drug Discov., 2020, 19(2), 93-111.
[http://dx.doi.org/10.1038/s41573-019-0049-9] [PMID: 31836861]
[3]
Baldo, B.A. Enzymes approved for human therapy: Indications, mechanisms and adverse effects. BioDrugs. Clin. Immunotherap. Biopharm. Gene Ther., 2015, 29(1), 31-55.
[4]
Tambuyzer, E. Rare diseases, orphan drugs and their regulation: Questions and misconceptions. Nat. Rev. Drug Discov., 2010, 9(12), 921-929.
[http://dx.doi.org/10.1038/nrd3275] [PMID: 21060315]
[5]
Tran, M.L.; Génisson, Y.; Ballereau, S.; Dehoux, C. Second-generation pharmacological chaperones: Beyond inhibitors. Molecules, 2020, 25(14)E3145
[http://dx.doi.org/10.3390/molecules25143145] [PMID: 32660097]
[6]
Han, T.U.; Sam, R.; Sidransky, E. Small molecule chaperones for the treatment of gaucher disease and gba1-associated parkinson disease. Front. Cell Dev. Biol., 2020, 8, 271.
[7]
Keeling, K.M.; Xue, X.; Gunn, G.; Bedwell, D.M. Therapeutics based on stop codon readthrough. Annu. Rev. Genomics Hum. Genet., 2014, 15, 371-394.
[http://dx.doi.org/10.1146/annurev-genom-091212-153527]
[8]
Biffi, A. Gene therapy for lysosomal storage disorders: A good start. Hum. Mol. Genet., 2016, 25(R1), R65-R75.
[http://dx.doi.org/10.1093/hmg/ddv457] [PMID: 26604151]
[9]
Cring, M.R.; Sheffield, V.C. Gene therapy and gene correction: targets, progress, and challenges for treating human diseases. Gene Ther., 2020.
[http://dx.doi.org/10.1038/s41434-020-00197-8] [PMID: 33037407]
[10]
Leal, A.F.; Espejo-Mojica, A.J.; Sánchez, O.F.; Ramírez, C.M.; Reyes, L.H.; Cruz, J.C.; Alméciga-Díaz, C.J. Lysosomal storage diseases: Current therapies and future alternatives. J. Mol. Med. (Berl.), 2020, 98(7), 931-946.
[http://dx.doi.org/10.1007/s00109-020-01935-6] [PMID: 32529345]
[11]
Yang, L.; Chen, J. A tale of two moieties: Rapidly evolving crispr/cas-based genome editing. Trends Biochem. Sci., 2020, 45(10), 874-888.
[http://dx.doi.org/10.1016/j.tibs.2020.06.003] [PMID: 32616331]
[12]
Labrou, N.E. Preface. Recent Pat. Biotechnol., 2019, 13(1), 2.
[http://dx.doi.org/10.2174/187220831301190201121944] [PMID: 30810100]
[13]
Troy, S.; Wasilewski, M.; Beusmans, J.; Godfrey, C.J. pharmacokinetic modeling of intrathecally administered recombinant human arylsulfatase a (tak-611) in children with metachromatic leukodystrophy. Clin. Pharmacol. Ther., 2020, 107(6), 1394-1404.
[http://dx.doi.org/10.1002/cpt.1752] [PMID: 31868225]
[14]
Martín-Banderas, L.; Holgado, M.A.; Durán-Lobato, M.; Infante, J.J.; Álvarez-Fuentes, J.; Fernández-Arévalo, M. Role of nanotechnology for enzyme replacement therapy in lysosomal diseases. A focus on gaucher’s disease. Curr. Med. Chem., 2016, 23(9), 929-952.
[http://dx.doi.org/10.2174/0929867323666160210130608] [PMID: 26860997]
[15]
Datta, S.; Rajnish, K.N.; George Priya Doss, C.; Melvin Samuel, S.; Selvarajan, E.; Zayed, H. Enzyme therapy: A forerunner in catalyzing a healthy society? Expert Opin. Biol. Ther., 2020, 20(10), 1151-1174.
[http://dx.doi.org/10.1080/14712598.2020.1787980] [PMID: 32597245]
[16]
Lachmann, R.H. Enzyme replacement therapy for lysosomal storage diseases. Curr. Opin. Pediatr., 2011, 23(6), 588-593.
[http://dx.doi.org/10.1097/MOP.0b013e32834c20d9] [PMID: 21946346]
[17]
Platt, F.M.; d’Azzo, A.; Davidson, B.L.; Neufeld, E.F.; Tifft, C.J. Lysosomal storage diseases. Nat. Rev. Dis. Primers, 2018, 4(1), 27.
[http://dx.doi.org/10.1038/s41572-018-0025-4] [PMID: 30275469]
[18]
Thomas, R.; Kermode, A.R. Enzyme enhancement therapeutics for lysosomal storage diseases: Current status and perspective. Mol. Genet. Metab., 2019, 126(2), 83-97.
[http://dx.doi.org/10.1016/j.ymgme.2018.11.011] [PMID: 30528228]
[19]
Deegan, P.B.; Cox, T.M. Imiglucerase in the treatment of Gaucher disease: A history and perspective. Drug Des. Devel. Ther., 2012, 6, 81-106.
[20]
Giraldo, P. Current and emerging pharmacotherapy for gaucher disease. Clin. Rev. Bone Miner. Metab., 2019, 17(3), 142-151.
[http://dx.doi.org/10.1007/s12018-019-09267-x]
[21]
Elstein, D.; Hollak, C.; Aerts, J.M.F.G.; van Weely, S.; Maas, M.; Cox, T.M.; Lachmann, R.H.; Hrebicek, M.; Platt, F.M.; Butters, T.D.; Dwek, R.A.; Zimran, A. Sustained therapeutic effects of oral miglustat (Zavesca, N-butyldeoxynojirimycin, OGT 918) in type I Gaucher disease. J. Inherit. Metab. Dis., 2004, 27(6), 757-766.
[http://dx.doi.org/10.1023/B:BOLI.0000045756.54006.17] [PMID: 15505381]
[22]
Cox, T.; Lachmann, R.; Hollak, C.; Aerts, J.; van Weely, S.; Hrebícek, M.; Platt, F.; Butters, T.; Dwek, R.; Moyses, C.; Gow, I.; Elstein, D.; Zimran, A. Novel oral treatment of Gaucher’s disease with N-butyldeoxynojirimycin (OGT 918) to decrease substrate biosynthesis. Lancet, 2000, 355(9214), 1481-1485.
[http://dx.doi.org/10.1016/S0140-6736(00)02161-9] [PMID: 10801168]
[23]
Lukina, E.; Watman, N.; Arreguin, E.A.; Dragosky, M.; Iastrebner, M.; Rosenbaum, H.; Phillips, M.; Pastores, G.M.; Kamath, R.S.; Rosenthal, D.I.; Kaper, M.; Singh, T.; Puga, A.C.; Peterschmitt, M.J. Improvement in hematological, visceral, and skeletal manifestations of Gaucher disease type 1 with oral eliglustat tartrate (Genz-112638) treatment: 2-year results of a phase 2 study. Blood, 2010, 116(20), 4095-4098.
[http://dx.doi.org/10.1182/blood-2010-06-293902] [PMID: 20713962]
[24]
Furbish, F.S.; Blair, H.E.; Shiloach, J.; Pentchev, P.G.; Brady, R.O. Enzyme replacement therapy in Gaucher’s disease: large-scale purification of glucocerebrosidase suitable for human administration. Proc. Natl. Acad. Sci. USA, 1977, 74(8), 3560-3563.
[http://dx.doi.org/10.1073/pnas.74.8.3560] [PMID: 269414]
[25]
Barton, N.W.; Furbish, F.S.; Murray, G.J.; Garfield, M.; Brady, R.O. Therapeutic response to intravenous infusions of glucocerebrosidase in a patient with Gaucher disease. Proc. Natl. Acad. Sci. USA, 1990, 87(5), 1913-1916.
[http://dx.doi.org/10.1073/pnas.87.5.1913] [PMID: 2308952]
[26]
Furbish, F.S.; Steer, C.J.; Krett, N.L.; Barranger, J.A. Uptake and distribution of placental glucocerebrosidase in rat hepatic cells and effects of sequential deglycosylation. Biochim. Biophys. Acta, 1981, 673(4), 425-434.
[http://dx.doi.org/10.1016/0304-4165(81)90474-8] [PMID: 6784774]
[27]
Reczek, D.; Schwake, M.; Schröder, J.; Hughes, H.; Blanz, J.; Jin, X.; Brondyk, W.; Van Patten, S.; Edmunds, T.; Saftig, P. LIMP-2 is a receptor for lysosomal mannose-6-phosphate-independent targeting of beta-glucocerebrosidase. Cell, 2007, 131(4), 770-783.
[http://dx.doi.org/10.1016/j.cell.2007.10.018] [PMID: 18022370]
[28]
Barton, N.W.; Brady, R.O.; Dambrosia, J.M.; Di Bisceglie, A.M.; Doppelt, S.H.; Hill, S.C.; Mankin, H.J.; Murray, G.J.; Parker, R.I.; Argoff, C.E. Replacement therapy for inherited enzyme deficiency--macrophage-targeted glucocerebrosidase for Gaucher’s disease. N. Engl. J. Med., 1991, 324(21), 1464-1470.
[http://dx.doi.org/10.1056/NEJM199105233242104] [PMID: 2023606]
[29]
Grabowski, G.A.; Barton, N.W.; Pastores, G.; Dambrosia, J.M.; Banerjee, T.K.; McKee, M.A.; Parker, C.; Schiffmann, R.; Hill, S.C.; Brady, R.O. Enzyme therapy in type 1 Gaucher disease: comparative efficacy of mannose-terminated glucocerebrosidase from natural and recombinant sources. Ann. Intern. Med., 1995, 122(1), 33-39.
[http://dx.doi.org/10.7326/0003-4819-122-1-199501010-00005] [PMID: 7985893]
[30]
Andersson, H.C.; Charrow, J.; Kaplan, P.; Mistry, P.; Pastores, G.M.; Prakash-Cheng, A.; Rosenbloom, B.E.; Scott, C.R.; Wappner, R.S.; Weinreb, N.J. Individualization of long-term enzyme replacement therapy for Gaucher disease. Genetics in medicine : Official journal of the American College of Medical Genetics,, 2005, 7(2), 105-110.
[31]
Pastores, G.M. Recombinant glucocerebrosidase (imiglucerase) as a therapy for Gaucher disease. BioDrugs : Clinical immunotherapeutics, biopharmaceuticals and gene therapy, 2010, 24(1), 41-47.
[32]
Hollak, C.E.; Aerts, J.M.; Goudsmit, R.; Phoa, S.S.; Ek, M.; van Weely, S.; von dem Borne, A.E.; van Oers, M.H. Individualised low-dose alglucerase therapy for type 1 Gaucher’s disease. Lancet, 1995, 345(8963), 1474-1478.
[http://dx.doi.org/10.1016/S0140-6736(95)91037-9] [PMID: 7769902]
[33]
Richards, S.M.; Olson, T.A.; McPherson, J.M. Antibody response in patients with Gaucher disease after repeated infusion with macrophage-targeted glucocerebrosidase. Blood, 1993, 82(5), 1402-1409.
[http://dx.doi.org/10.1182/blood.V82.5.1402.1402] [PMID: 8364193]
[34]
Van Patten, S.M.; Hughes, H.; Huff, M.R.; Piepenhagen, P.A.; Waire, J.; Qiu, H.; Ganesa, C.; Reczek, D.; Ward, P.V.; Kutzko, J.P.; Edmunds, T. Effect of mannose chain length on targeting of glucocerebrosidase for enzyme replacement therapy of Gaucher disease. Glycobiology, 2007, 17(5), 467-478.
[http://dx.doi.org/10.1093/glycob/cwm008] [PMID: 17251309]
[35]
Elstein, D.; Foldes, A.J.; Zahrieh, D.; Cohn, G.M.; Djordjevic, M.; Brutaru, C.; Zimran, A. Significant and continuous improvement in bone mineral density among type 1 Gaucher disease patients treated with velaglucerase alfa: 69-month experience, including dose reduction. Blood Cells Mol. Dis., 2011, 47(1), 56-61.
[http://dx.doi.org/10.1016/j.bcmd.2011.04.005] [PMID: 21536468]
[36]
Zimran, A.; Altarescu, G.; Philips, M.; Attias, D.; Jmoudiak, M.; Deeb, M.; Wang, N.; Bhirangi, K.; Cohn, G.M.; Elstein, D. Phase 1/2 and extension study of velaglucerase alfa replacement therapy in adults with type 1 Gaucher disease: 48-month experience. Blood, 2010, 115(23), 4651-4656.
[http://dx.doi.org/10.1182/blood-2010-02-268649] [PMID: 20299511]
[37]
Shaaltiel, Y.; Bartfeld, D.; Hashmueli, S.; Baum, G.; Brill-Almon, E.; Galili, G.; Dym, O.; Boldin-Adamsky, S.A.; Silman, I.; Sussman, J.L.; Futerman, A.H.; Aviezer, D. Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucher’s disease using a plant cell system. Plant Biotechnol. J., 2007, 5(5), 579-590.
[http://dx.doi.org/10.1111/j.1467-7652.2007.00263.x] [PMID: 17524049]
[38]
Zimran, A.; Brill-Almon, E.; Chertkoff, R.; Petakov, M.; Blanco-Favela, F.; Muñoz, E.T.; Solorio-Meza, S.E.; Amato, D.; Duran, G.; Giona, F.; Heitner, R.; Rosenbaum, H.; Giraldo, P.; Mehta, A.; Park, G.; Phillips, M.; Elstein, D.; Altarescu, G.; Szleifer, M.; Hashmueli, S.; Aviezer, D. Pivotal trial with plant cell-expressed recombinant glucocerebrosidase, taliglucerase alfa, a novel enzyme replacement therapy for Gaucher disease. Blood, 2011, 118(22), 5767-5773.
[http://dx.doi.org/10.1182/blood-2011-07-366955] [PMID: 21900191]
[39]
Zimran, A.; Wajnrajch, M.; Hernandez, B.; Pastores, G.M. Taliglucerase alfa: Safety and efficacy across 6 clinical studies in adults and children with Gaucher disease. Orphanet J. Rare Dis., 2018, 13(1), 36.
[http://dx.doi.org/10.1186/s13023-018-0776-8] [PMID: 29471850]
[40]
Kuter, D.J.; Wajnrajch, M.; Hernandez, B.; Wang, R.; Chertkoff, R.; Zimran, A. Open-label, expanded access study of taliglucerase alfa in patients with Gaucher disease requiring enzyme replacement therapy. Blood Cells Mol. Dis., 2020, 82102418
[http://dx.doi.org/10.1016/j.bcmd.2020.102418]
[41]
Lee, B.H.; Abdalla, A.F.; Choi, J.H.; Beshlawy, A.E.; Kim, G.H.; Heo, S.H.; Megahed, A.M.H.; Elsayed, M.A.L.; Barakat, T.E.M.; Eid, K.M.A.E.; El-Tagui, M.H.; Mahmoud, M.M.H.; Fateen, E.; Park, J.Y.; Yoo, H.W. A multicenter, open-label, phase III study of Abcertin in Gaucher disease. Medicine (Baltimore), 2017, 96(45)e8492
[http://dx.doi.org/10.1097/MD.0000000000008492] [PMID: 29137040]
[42]
Sun, Y.; Liou, B.; Chu, Z.; Fannin, V.; Blackwood, R.; Peng, Y.; Grabowski, G.A.; Davis, H.W.; Qi, X. Systemic enzyme delivery by blood-brain barrier-penetrating SapC-DOPS nanovesicles for treatment of neuronopathic Gaucher disease. EBioMedicine, 2020, 55102735
[43]
Ishii, S.; Chang, H-H.; Kawasaki, K.; Yasuda, K.; Wu, H-L.; Garman, S.C.; Fan, J.Q. Mutant α-galactosidase A enzymes identified in Fabry disease patients with residual enzyme activity: Biochemical characterization and restoration of normal intracellular processing by 1-deoxygalactonojirimycin. Biochem. J., 2007, 406(2), 285-295.
[http://dx.doi.org/10.1042/BJ20070479] [PMID: 17555407]
[44]
Kizhner, T.; Azulay, Y.; Hainrichson, M.; Tekoah, Y.; Arvatz, G.; Shulman, A.; Ruderfer, I.; Aviezer, D.; Shaaltiel, Y. Characterization of a chemically modified plant cell culture expressed human α-Galactosidase-A enzyme for treatment of Fabry disease. Mol. Genet. Metab., 2015, 114(2), 259-267.
[http://dx.doi.org/10.1016/j.ymgme.2014.08.002] [PMID: 25155442]
[45]
Arends, M.; Biegstraaten, M.; Hughes, D.A.; Mehta, A.; Elliott, P.M.; Oder, D.; Watkinson, O.T.; Vaz, F.M.; van Kuilenburg, A.B.P.; Wanner, C.; Hollak, C.E.M. Retrospective study of long-term outcomes of enzyme replacement therapy in Fabry disease: Analysis of prognostic factors. PLoS One, 2017, 12(8)e0182379
[http://dx.doi.org/10.1371/journal.pone.0182379] [PMID: 28763515]
[46]
Felis, A.; Whitlow, M.; Kraus, A.; Warnock, D.G.; Wallace, E. Current and investigational therapeutics for fabry disease. Kidney Int. Rep., 2019, 5(4), 407-413.
[http://dx.doi.org/10.1016/j.ekir.2019.11.013] [PMID: 32274449]
[47]
Germain, D.P.; Elliott, P.M.; Falissard, B.; Fomin, V.V.; Hilz, M.J.; Jovanovic, A.; Kantola, I.; Linhart, A.; Mignani, R.; Namdar, M.; Nowak, A.; Oliveira, J.P.; Pieroni, M.; Viana-Baptista, M.; Wanner, C.; Spada, M. The effect of enzyme replacement therapy on clinical outcomes in male patients with Fabry disease: A systematic literature review by a European panel of experts. Mol. Genet. Metab. Rep., 2019, 19100454
[http://dx.doi.org/10.1016/j.ymgmr.2019.100454]
[48]
Lukas, J.; Pockrandt, A-M.; Seemann, S.; Sharif, M.; Runge, F.; Pohlers, S.; Zheng, C.; Gläser, A.; Beller, M.; Rolfs, A.; Giese, A-K. Enzyme enhancers for the treatment of Fabry and Pompe disease. Mol. Ther., 2015, 23(3), 456-464.
[http://dx.doi.org/10.1038/mt.2014.224] [PMID: 25409744]
[49]
Svarstad, E.; Marti, H.P. The Changing Landscape of Fabry Disease Clinical journal of the american society of nephrology, 2020. .CJN.09480819,
[50]
Jung, S.C.; Han, I.P.; Limaye, A.; Xu, R.; Gelderman, M.P.; Zerfas, P.; Tirumalai, K.; Murray, G.J.; During, M.J.; Brady, R.O.; Qasba, P. Adeno-associated viral vector-mediated gene transfer results in long-term enzymatic and functional correction in multiple organs of Fabry mice. Proc. Natl. Acad. Sci. USA, 2001, 98(5), 2676-2681.
[http://dx.doi.org/10.1073/pnas.051634498] [PMID: 11226298]
[51]
Park, J.; Murray, G.J.; Limaye, A.; Quirk, J.M.; Gelderman, M.P.; Brady, R.O.; Qasba, P. Long-term correction of globotriaosylceramide storage in Fabry mice by recombinant adeno-associated virus-mediated gene transfer. Proc. Natl. Acad. Sci. USA, 2003, 100(6), 3450-3454.
[http://dx.doi.org/10.1073/pnas.0537900100] [PMID: 12624185]
[52]
Takenaka, T.; Murray, G.J.; Qin, G.; Quirk, J.M.; Ohshima, T.; Qasba, P.; Clark, K.; Kulkarni, A.B.; Brady, R.O.; Medin, J.A. Long-term enzyme correction and lipid reduction in multiple organs of primary and secondary transplanted Fabry mice receiving transduced bone marrow cells. Proc. Natl. Acad. Sci. USA, 2000, 97(13), 7515-7520.
[http://dx.doi.org/10.1073/pnas.120177997] [PMID: 10840053]
[53]
Zhu, X.; Yin, L.; Theisen, M.; Zhuo, J.; Siddiqui, S.; Levy, B.; Presnyak, V.; Frassetto, A.; Milton, J.; Salerno, T.; Benenato, K.E.; Milano, J.; Lynn, A.; Sabnis, S.; Burke, K.; Besin, G.; Lukacs, C.M.; Guey, L.T.; Finn, P.F.; Martini, P.G.V. Systemic mRNA therapy for the treatment of fabry disease: Preclinical studies in wild-type mice, fabry mouse model, and wild-type non-human primates. Am. J. Hum. Genet., 2019, 104(4), 625-637.
[http://dx.doi.org/10.1016/j.ajhg.2019.02.003] [PMID: 30879639]
[54]
Shin, S.H.; Murray, G.J.; Kluepfel-Stahl, S.; Cooney, A.M.; Quirk, J.M.; Schiffmann, R.; Brady, R.O.; Kaneski, C.R. Screening for pharmacological chaperones in Fabry disease. Biochem. Biophys. Res. Commun., 2007, 359(1), 168-173.
[http://dx.doi.org/10.1016/j.bbrc.2007.05.082] [PMID: 17532296]
[55]
Guérard, N.; Oder, D.; Nordbeck, P.; Zwingelstein, C.; Morand, O.; Welford, R.W.D.; Dingemanse, J.; Wanner, C. Lucerastat, an iminosugar for substrate reduction therapy: Tolerability, pharmacodynamics, and pharmacokinetics in patients with fabry disease on enzyme replacement. Clin. Pharmacol. Ther., 2018, 103(4), 703-711.
[http://dx.doi.org/10.1002/cpt.790] [PMID: 28699267]
[56]
Welford, R.W.D.; Mühlemann, A.; Garzotti, M.; Rickert, V.; Groenen, P.M.A.; Morand, O.; Üçeyler, N.; Probst, M.R. Glucosylceramide synthase inhibition with lucerastat lowers globotriaosylceramide and lysosome staining in cultured fibroblasts from Fabry patients with different mutation types. Hum. Mol. Genet., 2018, 27(19), 3392-3403.
[http://dx.doi.org/10.1093/hmg/ddy248] [PMID: 29982630]
[57]
Sunder-Plassmann, G.; Schiffmann, R.; Nicholls, K. Migalastat for the treatment of Fabry disease. Expert Opin. Orphan Drugs, 2018, 6(5), 301-309.
[http://dx.doi.org/10.1080/21678707.2018.1469978]
[58]
van der Veen, S.J.; Hollak, C.E.M.; van Kuilenburg, A.B.P.; Langeveld, M. Developments in the treatment of Fabry disease. J. Inherit. Metab. Dis., 2020, 43(5), 908-921.
[http://dx.doi.org/10.1002/jimd.12228] [PMID: 32083331]
[59]
Brady, R.O.; Murray, G.J.; Moore, D.F.; Schiffmann, R. Enzyme replacement therapy in Fabry disease. J. Inherit. Metab. Dis., 2001, 24(Suppl. 2), 18-24.
[http://dx.doi.org/10.1023/A:1012451320105]
[60]
Schiffmann, R.; Murray, G.J.; Treco, D.; Daniel, P.; Sellos-Moura, M.; Myers, M.; Quirk, J.M.; Zirzow, G.C.; Borowski, M.; Loveday, K.; Anderson, T.; Gillespie, F.; Oliver, K.L.; Jeffries, N.O.; Doo, E.; Liang, T.J.; Kreps, C.; Gunter, K.; Frei, K.; Crutchfield, K.; Selden, R.F.; Brady, R.O. Infusion of alpha-galactosidase A reduces tissue globotriaosylceramide storage in patients with Fabry disease. Proc. Natl. Acad. Sci. USA, 2000, 97(1), 365-370.
[http://dx.doi.org/10.1073/pnas.97.1.365] [PMID: 10618424]
[61]
Ruderfer, I.; Shulman, A.; Kizhner, T.; Azulay, Y.; Nataf, Y.; Tekoah, Y.; Shaaltiel, Y. Development and analytical characterization of pegunigalsidase alfa, a chemically cross-linked plant recombinant human α-galactosidase-a for treatment of fabry disease. Bioconjug. Chem., 2018, 29(5), 1630-1639.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00133] [PMID: 29698600]
[62]
Kytidou, K.; Beenakker, T.J.M.; Westerhof, L.B.; Hokke, C.H.; Moolenaar, G.F.; Goosen, N.; Mirzaian, M.; Ferraz, M.J.; de Geus, M.; Kallemeijn, W.W.; Overkleeft, H.S.; Boot, R.G.; Schots, A.; Bosch, D.; Aerts, J. Human alpha galactosidases transiently produced in nicotiana benthamiana leaves: New insights in substrate specificities with relevance for fabry disease. Front. Plant Sci., 2017, 8, 1026.
[63]
Nakamura, K.; Kawashima, S.; Tozawa, H.; Yamaoka, M.; Yamamoto, T.; Tanaka, N.; Yamamoto, R.; Okuyama, T.; Eto, Y. Pharmacokinetics and pharmacodynamics of JR-051, a biosimilar of agalsidase beta, in healthy adults and patients with Fabry disease: Phase I and II/III clinical studies. Mol. Genet. Metab., 2020, 130(3), 215-224.
[http://dx.doi.org/10.1016/j.ymgme.2020.04.003] [PMID: 32389574]
[64]
Brady, R.O.; Tallman, J.F.; Johnson, W.G.; Gal, A.E.; Leahy, W.R.; Quirk, J.M.; Dekaban, A.S. Replacement therapy for inherited enzyme deficiency. Use of purified ceramidetrihexosidase in Fabry’s disease. N. Engl. J. Med., 1973, 289(1), 9-14.
[http://dx.doi.org/10.1056/NEJM197307052890103] [PMID: 4196713]
[65]
Desnick, R.J.; Dean, K.J.; Grabowski, G.; Bishop, D.F.; Sweeley, C.C. Enzyme therapy in Fabry disease: differential in vivo plasma clearance and metabolic effectiveness of plasma and splenic alpha-galactosidase A isozymes. Proc. Natl. Acad. Sci. USA, 1979, 76(10), 5326-5330.
[http://dx.doi.org/10.1073/pnas.76.10.5326] [PMID: 228284]
[66]
Eng, C.M.; Guffon, N.; Wilcox, W.R.; Germain, D.P.; Lee, P.; Waldek, S.; Caplan, L.; Linthorst, G.E.; Desnick, R.J. Safety and efficacy of recombinant human alpha-galactosidase A replacement therapy in Fabry’s disease. N. Engl. J. Med., 2001, 345(1), 9-16.
[http://dx.doi.org/10.1056/NEJM200107053450102] [PMID: 11439963]
[67]
Schiffmann, R.; Goker-Alpan, O.; Holida, M.; Giraldo, P.; Barisoni, L.; Colvin, R.B.; Jennette, C.J.; Maegawa, G.; Boyadjiev, S.A.; Gonzalez, D.; Nicholls, K.; Tuffaha, A.; Atta, M.G.; Rup, B.; Charney, M.R.; Paz, A.; Szlaifer, M.; Alon, S.; Brill-Almon, E.; Chertkoff, R.; Hughes, D. Pegunigalsidase alfa, a novel PEGylated enzyme replacement therapy for Fabry disease, provides sustained plasma concentrations and favorable pharmacodynamics: A 1-year Phase 1/2 clinical trial. J. Inherit. Metab. Dis., 2019, 42(3), 534-544.
[http://dx.doi.org/10.1002/jimd.12080] [PMID: 30834538]
[68]
Park, J.H.; Park, H.H.; Choi, S.S.; Park, T.H. Stabilization of enzymes by the recombinant 30Kc19 protein. Process Biochem., 2012, 47(1), 164-169.
[http://dx.doi.org/10.1016/j.procbio.2011.10.022]
[69]
Lee, H.J.; Park, H.H.; Sohn, Y.; Ryu, J.; Park, J.H.; Rhee, W.J.; Park, T.H. α-Galactosidase delivery using 30Kc19-human serum albumin nanoparticles for effective treatment of Fabry disease. Appl. Microbiol. Biotechnol., 2016, 100(24), 10395-10402.
[http://dx.doi.org/10.1007/s00253-016-7689-z] [PMID: 27353764]
[70]
Kytidou, K.; Beekwilder, J.; Artola, M.; van Meel, E.; Wilbers, R.H.P.; Moolenaar, G.F.; Goosen, N.; Ferraz, M.J.; Katzy, R.; Voskamp, P.; Florea, B.I.; Hokke, C.H.; Overkleeft, H.S.; Schots, A.; Bosch, D.; Pannu, N.; Aerts, J.M.F.G. Nicotiana benthamiana α-galactosidase A1.1 can functionally complement human α-galactosidase A deficiency associated with Fabry disease. J. Biol. Chem., 2018, 293(26), 10042-10058.
[http://dx.doi.org/10.1074/jbc.RA118.001774] [PMID: 29674318]
[71]
van der Ploeg, A.T.; Reuser, A.J. Pompe’s disease. Lancet, 2008, 372(9646), 1342-1353.
[http://dx.doi.org/10.1016/S0140-6736(08)61555-X] [PMID: 18929906]
[72]
Kohler, L.; Puertollano, R.; Raben, N. Pompe disease: From basic science to therapy. Neurotherapeutics, 2018, 15(4), 928-942.
[http://dx.doi.org/10.1007/s13311-018-0655-y] [PMID: 30117059]
[73]
Prater, S.N.; Patel, T.T.; Buckley, A.F.; Mandel, H.; Vlodavski, E.; Banugaria, S.G.; Feeney, E.J.; Raben, N.; Kishnani, P.S. Skeletal muscle pathology of infantile Pompe disease during long-term enzyme replacement therapy. Orphanet J. Rare Dis., 2013, 8, 90.
[http://dx.doi.org/10.1186/1750-1172-8-90]
[74]
Schoser, B.; Stewart, A.; Kanters, S.; Hamed, A.; Jansen, J.; Chan, K.; Karamouzian, M.; Toscano, A. Survival and long-term outcomes in late-onset Pompe disease following alglucosidase alfa treatment: A systematic review and meta-analysis. J. Neurol., 2017, 264(4), 621-630.
[http://dx.doi.org/10.1007/s00415-016-8219-8] [PMID: 27372449]
[75]
Raben, N.; Danon, M.; Gilbert, A.L.; Dwivedi, S.; Collins, B.; Thurberg, B.L.; Mattaliano, R.J.; Nagaraju, K.; Plotz, P.H. Enzyme replacement therapy in the mouse model of Pompe disease. Mol. Genet. Metab., 2003, 80(1-2), 159-169.
[http://dx.doi.org/10.1016/j.ymgme.2003.08.022] [PMID: 14567965]
[76]
Xu, S.; Lun, Y.; Frascella, M.; Garcia, A.; Soska, R.; Nair, A.; Ponery, A.S.; Schilling, A.; Feng, J.; Tuske, S.; Valle, M.C.D.; Martina, J.A.; Ralston, E.; Gotschall, R.; Valenzano, K.J.; Puertollano, R.; Do, H.V.; Raben, N.; Khanna, R. Improved efficacy of a next-generation ERT in murine Pompe disease. JCI Insight, 2019, 4(5)125358
[http://dx.doi.org/10.1172/jci.insight.125358] [PMID: 30843882]
[77]
Khanna, R.; Flanagan, J.J.; Feng, J.; Soska, R.; Frascella, M.; Pellegrino, L.J.; Lun, Y.; Guillen, D.; Lockhart, D.J.; Valenzano, K.J. The pharmacological chaperone AT2220 increases recombinant human acid α-glucosidase uptake and glycogen reduction in a mouse model of Pompe disease. PLoS One, 2012, 7(7), e40776-e40776.
[http://dx.doi.org/10.1371/journal.pone.0040776] [PMID: 22815812]
[78]
Puzzo, F.; Colella, P.; Biferi, M.G.; Bali, D.; Paulk, N.K.; Vidal, P.; Collaud, F.; Simon-Sola, M.; Charles, S.; Hardet, R.; Leborgne, C.; Meliani, A.; Cohen-Tannoudji, M.; Astord, S.; Gjata, B.; Sellier, P.; van Wittenberghe, L.; Vignaud, A.; Boisgerault, F.; Barkats, M.; Laforet, P.; Kay, M.A.; Koeberl, D.D.; Ronzitti, G.; Mingozzi, F. Rescue of Pompe disease in mice by AAV-mediated liver delivery of secretable acid α-glucosidase. Sci. Transl. Med., 2017, 9(418)eaam6375
[http://dx.doi.org/10.1126/scitranslmed.aam6375] [PMID: 29187643]
[79]
Clayton, N.P.; Nelson, C.A.; Weeden, T.; Taylor, K.M.; Moreland, R.J.; Scheule, R.K.; Phillips, L.; Leger, A.J.; Cheng, S.H.; Wentworth, B.M. Antisense oligonucleotide-mediated suppression of muscle glycogen synthase 1 synthesis as an approach for substrate reduction therapy of pompe disease. Mol. Ther. Nucleic Acids, 2014, 3(10)e206
[http://dx.doi.org/10.1038/mtna.2014.57] [PMID: 25350581]
[80]
Van Hove, J.L.; Yang, H.W.; Wu, J.Y.; Brady, R.O.; Chen, Y.T. High-level production of recombinant human lysosomal acid alpha-glucosidase in Chinese hamster ovary cells which targets to heart muscle and corrects glycogen accumulation in fibroblasts from patients with Pompe disease. Proc. Natl. Acad. Sci. USA, 1996, 93(1), 65-70.
[http://dx.doi.org/10.1073/pnas.93.1.65] [PMID: 8552676]
[81]
Bijvoet, A.G.; Van Hirtum, H.; Kroos, M.A.; Van de Kamp, E.H.; Schoneveld, O.; Visser, P.; Brakenhoff, J.P.; Weggeman, M.; van Corven, E.J.; Van der Ploeg, A.T.; Reuser, A.J. Human acid alpha-glucosidase from rabbit milk has therapeutic effect in mice with glycogen storage disease type II. Hum. Mol. Genet., 1999, 8(12), 2145-2153.
[http://dx.doi.org/10.1093/hmg/8.12.2145] [PMID: 10545593]
[82]
Zhu, Y.; Jiang, J.L.; Gumlaw, N.K.; Zhang, J.; Bercury, S.D.; Ziegler, R.J.; Lee, K.; Kudo, M.; Canfield, W.M.; Edmunds, T.; Jiang, C.; Mattaliano, R.J.; Cheng, S.H. Glycoengineered acid alpha-glucosidase with improved efficacy at correcting the metabolic aberrations and motor function deficits in a mouse model of Pompe disease. Molecular therapy : The journal of the American Society of Gene Therapy, 2009, 17(6), 954-963.
[83]
Zhu, Y.; Li, X.; McVie-Wylie, A.; Jiang, C.; Thurberg, B.L.; Raben, N.; Mattaliano, R.J.; Cheng, S.H. Carbohydrate-remodelled acid alpha-glucosidase with higher affinity for the cation-independent mannose 6-phosphate receptor demonstrates improved delivery to muscles of Pompe mice. Biochem. J., 2005, 389(Pt 3), 619-628.
[http://dx.doi.org/10.1042/BJ20050364] [PMID: 15839836]
[84]
Maga, J.A.; Zhou, J.; Kambampati, R.; Peng, S.; Wang, X.; Bohnsack, R.N.; Thomm, A.; Golata, S.; Tom, P.; Dahms, N.M.; Byrne, B.J.; LeBowitz, J.H. Glycosylation-independent lysosomal targeting of acid α-glucosidase enhances muscle glycogen clearance in pompe mice. J. Biol. Chem., 2013, 288(3), 1428-1438.
[http://dx.doi.org/10.1074/jbc.M112.438663] [PMID: 23188827]
[85]
Pena, L.D.M.; Barohn, R.J.; Byrne, B.J.; Desnuelle, C.; Goker-Alpan, O.; Ladha, S.; Laforêt, P.; Mengel, K.E.; Pestronk, A.; Pouget, J.; Schoser, B.; Straub, V.; Trivedi, J.; Van Damme, P.; Vissing, J.; Young, P.; Kacena, K.; Shafi, R.; Thurberg, B.L.; Culm-Merdek, K.; van der Ploeg, A.T. Safety, tolerability, pharmacokinetics, pharmacodynamics, and exploratory efficacy of the novel enzyme replacement therapy avalglucosidase alfa (neoGAA) in treatment-naïve and alglucosidase alfa-treated patients with late-onset Pompe disease: A phase 1, open-label, multicenter, multinational, ascending dose study. Neuromuscul. Disord., 2019, 29(3), 167-186.
[http://dx.doi.org/10.1016/j.nmd.2018.12.004] [PMID: 30770310]
[86]
Tiels, P.; Baranova, E.; Piens, K.; De Visscher, C.; Pynaert, G.; Nerinckx, W.; Stout, J.; Fudalej, F.; Hulpiau, P.; Tännler, S.; Geysens, S.; Van Hecke, A.; Valevska, A.; Vervecken, W.; Remaut, H.; Callewaert, N. A bacterial glycosidase enables mannose-6-phosphate modification and improved cellular uptake of yeast-produced recombinant human lysosomal enzymes. Nat. Biotechnol., 2012, 30(12), 1225-1231.
[http://dx.doi.org/10.1038/nbt.2427] [PMID: 23159880]
[87]
Zhou, Z.; Austin, G.L.; Shaffer, R.; Armstrong, D.D.; Gentry, M.S. Antibody-mediated enzyme therapeutics and applications in glycogen storage diseases. Trends Mol. Med., 2019, 25(12), 1094-1109.
[http://dx.doi.org/10.1016/j.molmed.2019.08.005] [PMID: 31522955]
[88]
Yi, H.; Sun, T.; Armstrong, D.; Borneman, S.; Yang, C.; Austin, S.; Kishnani, P.S.; Sun, B. Antibody-mediated enzyme replacement therapy targeting both lysosomal and cytoplasmic glycogen in Pompe disease. J. Mol. Med. (Berl.), 2017, 95(5), 513-521.
[http://dx.doi.org/10.1007/s00109-017-1505-9] [PMID: 28154884]
[89]
Kishnani, P.; Lachmann, R.; Mozaffar, T.; Walters, C.; Case, L.; Appleby, M.; Libri, V.; Kak, M.; Wencel, M.; Landy, H. Safety and efficacy of VAL-1221, a novel fusion protein targeting cytoplasmic glycogen, in patients with late-onset Pompe disease. Mol. Genet. Metab., 2019, 126(2), S85-S86.
[http://dx.doi.org/10.1016/j.ymgme.2018.12.211]
[90]
Fecarotta, S.; Tarallo, A.; Damiano, C.; Minopoli, N.; Parenti, G. Pathogenesis of Mucopolysaccharidoses, an Update. Int. J. Mol. Sci., 2020, 21(7)E2515
[http://dx.doi.org/10.3390/ijms21072515] [PMID: 32260444]
[91]
Muenzer, J. Overview of the mucopolysaccharidoses. Rheumatology (Oxford, England), 2011, 50(Suppl. 5), v4-v12.
[http://dx.doi.org/10.1093/rheumatology/ker394]
[92]
Neufeld, E.F.; Muenzer, J. The online metabolic and molecular bases of inherited disease, 8; Scriver, C.; Beaudet, A.; Sly, W; Valle, D., Ed.; OMMBID, McGraw-Hill Medical: New York, NY, USA, 2001, pp. 3421-3452.
[93]
Giugliani, R.; Federhen, A.; Vairo, F.; Vanzella, C.; Pasqualim, G.; da Silva, L.M.; Giugliani, L.; de Boer, A.P.; de Souza, C.F.; Matte, U.; Baldo, G. Emerging drugs for the treatment of mucopolysaccharidoses. Expert Opin. Emerg. Drugs, 2016, 21(1), 9-26.
[http://dx.doi.org/10.1517/14728214.2016.1123690] [PMID: 26751109]
[94]
Parini, R.; Deodato, F. Intravenous enzyme replacement therapy in mucopolysaccharidoses: Clinical effectiveness and limitations. Int. J. Mol. Sci., 2020, 21(8)E2975
[http://dx.doi.org/10.3390/ijms21082975] [PMID: 32340185]
[95]
Davies, G.; Henrissat, B. Structures and mechanisms of glycosyl hydrolases. Structure (London, England : 1993),, 1995, 3(9), 853-859.
[96]
Hampe, C.S.; Eisengart, J.B.; Lund, T.C.; Orchard, P.J.; Swietlicka, M.; Wesley, J.; McIvor, R.S.; Mucopolysaccharidosis Type, I. Mucopolysaccharidosis type I: A review of the natural history and molecular pathology. Cells, 2020, 9(8)E1838
[http://dx.doi.org/10.3390/cells9081838] [PMID: 32764324]
[97]
Brooks, D.A. Alpha-L-iduronidase and enzyme replacement therapy for mucopolysaccharidosis I. Expert Opin. Biol. Ther., 2002, 2(8), 967-976.
[http://dx.doi.org/10.1517/14712598.2.8.967] [PMID: 12517274]
[98]
Jameson, E.; Jones, S.; Remmington, T. Enzyme replacement therapy with laronidase (Aldurazyme®) for treating mucopolysaccharidosis type I. Cochrane Database Syst. Rev., 2019, 6(6)CD009354
[http://dx.doi.org/10.1002/14651858.CD009354.pub5] [PMID: 31211405]
[99]
Wraith, E.J.; Hopwood, J.J.; Fuller, M.; Meikle, P.J.; Brooks, D.A. Laronidase treatment of mucopolysaccharidosis I. BioDrugs : Clinical immunotherapeutics, biopharmaceuticals and gene therapy 2005, 19(1), 1-7.
[100]
Tsukimura, T.; Tajima, Y.; Kawashima, I.; Fukushige, T.; Kanzaki, T.; Kanekura, T.; Ikekita, M.; Sugawara, K.; Suzuki, T.; Togawa, T.; Sakuraba, H. Uptake of a recombinant human alpha-L-iduronidase (laronidase) by cultured fibroblasts and osteoblasts. Biol. Pharm. Bull., 2008, 31(9), 1691-1695.
[http://dx.doi.org/10.1248/bpb.31.1691] [PMID: 18758061]
[101]
Wraith, J.E.; Clarke, L.A.; Beck, M.; Kolodny, E.H.; Pastores, G.M.; Muenzer, J.; Rapoport, D.M.; Berger, K.I.; Swiedler, S.J.; Kakkis, E.D.; Braakman, T.; Chadbourne, E.; Walton-Bowen, K.; Cox, G.F. Enzyme replacement therapy for mucopolysaccharidosis I: A randomized, double-blinded, placebo-controlled, multinational study of recombinant human alpha-L-iduronidase (laronidase). J. Pediatr., 2004, 144(5), 581-588.
[http://dx.doi.org/10.1016/j.jpeds.2004.01.046] [PMID: 15126990]
[102]
Boado, R.J.; Hui, E.K.; Lu, J.Z.; Pardridge, W.M. AGT-181: Axpression in CHO cells and pharmacokinetics, safety, and plasma iduronidase enzyme activity in Rhesus monkeys. J. Biotechnol., 2009, 144(2), 135-141.
[http://dx.doi.org/10.1016/j.jbiotec.2009.08.019] [PMID: 19735678]
[103]
Boado, R.J.; Pardridge, W.M. Brain and organ uptake in the rhesus monkey in vivo of recombinant iduronidase compared to an insulin receptor antibody-iduronidase fusion protein. Mol. Pharm., 2017, 14(4), 1271-1277.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b01166] [PMID: 28279069]
[104]
Taylor, M.; Khan, S.; Stapleton, M.; Wang, J.; Chen, J.; Wynn, R.; Yabe, H.; Chinen, Y.; Boelens, J.J.; Mason, R.W.; Kubaski, F.; Horovitz, D.D.G.; Barth, A.L.; Serafini, M.; Bernardo, M.E.; Kobayashi, H.; Orii, K.E.; Suzuki, Y.; Orii, T.; Tomatsu, S. Hematopoietic stem cell transplantation for mucopolysaccharidoses: Past, present, and future. Biology of blood and marrow transplantation. Journal of the American Society for Blood and Marrow Transplantation, 2019, 25(7), e226-e246.
[105]
Poletto, E.; Baldo, G.; Gomez-Ospina, N. Genome editing for mucopolysaccharidoses. Int. J. Mol. Sci., 2020, 21(2)E500
[http://dx.doi.org/10.3390/ijms21020500] [PMID: 31941077]
[106]
Kubaski, F.; de Oliveira Poswar, F.; Michelin-Tirelli, K.; Matte, U.D.S.; Horovitz, D.D.; Barth, A.L.; Baldo, G.; Vairo, F.; Giugliani, R. Mucopolysaccharidosis Type I.Diagnostics (Basel, Switzerland); , 2020; 10, . (3)
[107]
Wilson, P.J.; Morris, C.P.; Anson, D.S.; Occhiodoro, T.; Bielicki, J.; Clements, P.R.; Hopwood, J.J. Hunter syndrome: Isolation of an iduronate-2-sulfatase cDNA clone and analysis of patient DNA. Proc. Natl. Acad. Sci. USA, 1990, 87(21), 8531-8535.
[http://dx.doi.org/10.1073/pnas.87.21.8531] [PMID: 2122463]
[108]
Scarpa, M. Evaluation of idursulfase for the treatment of mucopolysaccharidosis II (Hunter syndrome). Expert Opin. Orphan Drugs, 2013, 1(1), 89-98.
[http://dx.doi.org/10.1517/21678707.2013.738182]
[109]
Jones, S.A.; Almássy, Z.; Beck, M.; Burt, K.; Clarke, J.T.; Giugliani, R.; Hendriksz, C.; Kroepfl, T.; Lavery, L.; Lin, S.P.; Malm, G.; Ramaswami, U.; Tincheva, R.; Wraith, J.E. Mortality and cause of death in mucopolysaccharidosis type II-a historical review based on data from the Hunter Outcome Survey (HOS). J. Inherit. Metab. Dis., 2009, 32(4), 534-543.
[http://dx.doi.org/10.1007/s10545-009-1119-7] [PMID: 19597960]
[110]
Bielicki, J.; Freeman, C.; Clements, P.R.; Hopwood, J.J. Human liver iduronate-2-sulphatase. Purification, characterization and catalytic properties. Biochem. J., 1990, 271(1), 75-86.
[http://dx.doi.org/10.1042/bj2710075] [PMID: 2222422]
[111]
Whiteman, D.A.; Kimura, A. Development of idursulfase therapy for mucopolysaccharidosis type II (Hunter syndrome): The past, the present and the future. Drug Des. Devel. Ther., 2017, 11, 2467-2480.
[112]
Muenzer, J.; Gucsavas-Calikoglu, M.; McCandless, S.E.; Schuetz, T.J.; Kimura, A. A phase I/II clinical trial of enzyme replacement therapy in mucopolysaccharidosis II (Hunter syndrome). Mol. Genet. Metab., 2007, 90(3), 329-337.
[http://dx.doi.org/10.1016/j.ymgme.2006.09.001] [PMID: 17185020]
[113]
Heartlein, M.; Kimura, A. Orphan drugs and rare diseases; Pryde, D.C; Palmer, M.J., Ed.; The Royal Society of Chemistry: London, UK, 2014, pp. 164-182.
[http://dx.doi.org/10.1039/9781782624202-00164]
[114]
Burton, B.K.; Whiteman, D.A. Incidence and timing of infusion-related reactions in patients with mucopolysaccharidosis type II (Hunter syndrome) on idursulfase therapy in the real-world setting: A perspective from the Hunter Outcome Survey (HOS). Mol. Genet. Metab., 2011, 103(2), 113-120.
[http://dx.doi.org/10.1016/j.ymgme.2011.02.018] [PMID: 21439875]
[115]
Giugliani, R.; Hwu, W.L.; Tylki-Szymanska, A.; Whiteman, D.A.; Pano, A. A multicenter, open-label study evaluating safety and clinical outcomes in children (1.4-7.5 years) with Hunter syndrome receiving idursulfase enzyme replacement therapy. Genetics in medicine : Official journal of the American College of Medical Genetics 2014, 16(6), 435-441.
[116]
Chung, Y.K.; Sohn, Y.B.; Sohn, J.M.; Lee, J.; Chang, M.S.; Kwun, Y.; Kim, C.H.; Lee, J.Y.; Yook, Y.J.; Ko, A.R.; Jin, D.K. A biochemical and physicochemical comparison of two recombinant enzymes used for enzyme replacement therapies of hunter syndrome. Glycoconj. J., 2014, 31(4), 309-315.
[http://dx.doi.org/10.1007/s10719-014-9523-0] [PMID: 24781369]
[117]
Prasad, V.K.; Kurtzberg, J. Transplant outcomes in mucopolysaccharidoses. Semin. Hematol., 2010, 47(1), 59-69.
[http://dx.doi.org/10.1053/j.seminhematol.2009.10.008] [PMID: 20109613]
[118]
Marucha, J.; Tylki-Szymańska, A.; Jakóbkiewicz-Banecka, J.; Piotrowska, E.; Kloska, A.; Czartoryska, B.; Węgrzyn, G. Improvement in the range of joint motion in seven patients with mucopolysaccharidosis type II during experimental gene expression-targeted isoflavone therapy (GET IT). Am. J. Med. Genet. A., 2011, 155A(9), 2257-2262.
[http://dx.doi.org/10.1002/ajmg.a.34146] [PMID: 21834048]
[119]
Sawamoto, K.; Alméciga-Díaz, C.J.; Mackenzie, W.G.; Mason, R.W.; Orii, T.; Tomatsu, S. Mucopolysaccharidoses Update (2 Volume Set); Tomatsu, S.; Lavery, C.; Giugliani, R.; Harmatz, P.; Scarpa, M.; Węgrzyn, G; Orii, T., Ed.; Nova Science Publishers: New York, NY, USA, 2018, pp. 235-271.
[120]
Lim, C.T.; Horwitz, A.L. Purification and properties of human N-acetylgalactosamine-6-sulfate sulfatase. Biochim. Biophys. Acta, 1981, 657(2), 344-355.
[http://dx.doi.org/10.1016/0005-2744(81)90320-X] [PMID: 7213753]
[121]
Masue, M.; Sukegawa, K.; Orii, T.; Hashimoto, T. N-acetylgalactosamine-6-sulfate sulfatase in human placenta: purification and characteristics. J. Biochem., 1991, 110(6), 965-970.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a123697] [PMID: 1794986]
[122]
Regier, D.S.; Tanpaiboon, P. Role of elosulfase alfa in mucopolysaccharidosis IVA. Appl. Clin. Genet., 2016, 9, 67-74.
[http://dx.doi.org/10.2147/TACG.S69080]
[123]
Sanford, M.; Lo, J.H. Elosulfase alfa: First global approval. Drugs, 2014, 74(6), 713-718.
[http://dx.doi.org/10.1007/s40265-014-0210-z] [PMID: 24700469]
[124]
Hendriksz, C.J.; Burton, B.; Fleming, T.R.; Harmatz, P.; Hughes, D.; Jones, S.A.; Lin, S.P.; Mengel, E.; Scarpa, M.; Valayannopoulos, V.; Giugliani, R.; Slasor, P.; Lounsbury, D.; Dummer, W. Efficacy and safety of enzyme replacement therapy with BMN 110 (elosulfase alfa) for Morquio A syndrome (mucopolysaccharidosis IVA): A phase 3 randomised placebo-controlled study. J. Inherit. Metab. Dis., 2014, 37(6), 979-990.
[http://dx.doi.org/10.1007/s10545-014-9715-6] [PMID: 24810369]
[125]
Dvorak-Ewell, M.; Wendt, D.; Hague, C.; Christianson, T.; Koppaka, V.; Crippen, D.; Kakkis, E.; Vellard, M. Enzyme replacement in a human model of mucopolysaccharidosis IVA in vitro and its biodistribution in the cartilage of wild type mice. PLoS One, 2010, 5(8)e12194
[http://dx.doi.org/10.1371/journal.pone.0012194] [PMID: 20808938]
[126]
Hendriksz, C.J. Elosulfase alfa (BMN 110) for the treatment of mucopolysaccharidosis IVA (Morquio A Syndrome). Expert Rev. Clin. Pharmacol., 2016, 9(12), 1521-1532.
[http://dx.doi.org/10.1080/17512433.2017.1260000] [PMID: 27855521]
[127]
Doherty, C.; Stapleton, M.; Piechnik, M.; Mason, R.W.; Mackenzie, W.G.; Yamaguchi, S.; Kobayashi, H.; Suzuki, Y.; Tomatsu, S. Effect of enzyme replacement therapy on the growth of patients with Morquio A. J. Hum. Genet., 2019, 64(7), 625-635.
[http://dx.doi.org/10.1038/s10038-019-0604-6] [PMID: 31019230]
[128]
Sawamoto, K.; Álvarez González, J.V.; Piechnik, M.; Otero, F.J.; Couce, M.L.; Suzuki, Y.; Tomatsu, S.; Mucopolysaccharidosis, I.V.A. Mucopolysaccharidosis IVA: Diagnosis, treatment, and management. Int. J. Mol. Sci., 2020, 21(4)E1517
[http://dx.doi.org/10.3390/ijms21041517] [PMID: 32102177]
[129]
Harmatz, P.; Shediac, R.; Mucopolysaccharidosis, V.I.; Mucopolysaccharidosis, V.I. Pathophysiology, diagnosis and treatment. Frontiers in bioscience (Landmark edition),, 2017, 22, 385-406.
[130]
Vairo, F.; Federhen, A.; Baldo, G.; Riegel, M.; Burin, M.; Leistner-Segal, S.; Giugliani, R. Diagnostic and treatment strategies in mucopolysaccharidosis VI. The application of clinical , 2015, 8, 245-255.
[131]
Valayannopoulos, V.; Nicely, H.; Harmatz, P.; Turbeville, S.; Mucopolysaccharidosis, V.I.; Mucopolysaccharidosis, V.I. Orphanet J. Rare Dis., 2010, 5(1), 5.
[http://dx.doi.org/10.1186/1750-1172-5-5] [PMID: 20385007]
[132]
Taylor, J.A.; Gibson, G.J.; Brooks, D.A.; Hopwood, J.J. Human N-acetylgalactosamine-4-sulphatase biosynthesis and maturation in normal, Maroteaux-Lamy and multiple-sulphatase-deficient fibroblasts. Biochem. J., 1990, 268(2), 379-386.
[http://dx.doi.org/10.1042/bj2680379] [PMID: 2114091]
[133]
Harmatz, P.; Whitley, C.B.; Waber, L.; Pais, R.; Steiner, R.; Plecko, B.; Kaplan, P.; Simon, J.; Butensky, E.; Hopwood, J.J. Enzyme replacement therapy in mucopolysaccharidosis VI (Maroteaux-Lamy syndrome). J. Pediatr., 2004, 144(5), 574-580.
[http://dx.doi.org/10.1016/j.jpeds.2004.03.018] [PMID: 15126989]
[134]
Hendriksz, C.J.; Giugliani, R.; Harmatz, P.; Lampe, C.; Martins, A.M.; Pastores, G.M.; Steiner, R.D.; Leão Teles, E.; Valayannopoulos, V. Design, baseline characteristics, and early findings of the MPS VI (mucopolysaccharidosis VI) Clinical Surveillance Program (CSP). J. Inherit. Metab. Dis., 2013, 36(2), 373-384.
[http://dx.doi.org/10.1007/s10545-011-9410-9] [PMID: 22127392]
[135]
Giugliani, R.; Herber, S.; Lapagesse, L.; de Pinto, C.; Baldo, G. herapy for mucopolysaccharidosis VI: (Maroteaux-Lamy syndrome) present status and prospects. Pediatr. Endocrinol. Rev., 2014, 12(Suppl. 1), 152-158.
[136]
Islam, M.R.; Tomatsu, S.; Shah, G.N.; Grubb, J.H.; Jain, S.; Sly, W.S. Active site residues of human beta-glucuronidase. Evidence for Glu(540) as the nucleophile and Glu(451) as the acid-base residue. J. Biol. Chem., 1999, 274(33), 23451-23455.
[http://dx.doi.org/10.1074/jbc.274.33.23451] [PMID: 10438523]
[137]
Nakamura, T.; Takagaki, K.; Majima, M.; Kimura, S.; Kubo, K.; Endoss, M. A new type of exo-beta-glucuronidase acting only on non-sulfated glycosaminoglycans. J. Biol. Chem., 1990, 265(10), 5390-5397.
[http://dx.doi.org/10.1016/S0021-9258(19)39371-8] [PMID: 2108135]
[138]
Tomatsu, S.; Montaño, A.M.; Dung, V.C.; Grubb, J.H.; Sly, W.S. Mutations and polymorphisms in GUSB gene in mucopolysaccharidosis VII (Sly Syndrome). Hum. Mutat., 2009, 30(4), 511-519.
[http://dx.doi.org/10.1002/humu.20828] [PMID: 19224584]
[139]
Zhou, J.; Lin, J.; Leung, W.T.; Wang, L. A basic understanding of mucopolysaccharidosis: Incidence, clinical features, diagnosis, and management. Intractable Rare Dis. Res., 2020, 9(1), 1-9.
[http://dx.doi.org/10.5582/irdr.2020.01011] [PMID: 32201668]
[140]
Hassan, M.I.; Waheed, A.; Grubb, J.H.; Klei, H.E.; Korolev, S.; Sly, W.S. High resolution crystal structure of human β-glucuronidase reveals structural basis of lysosome targeting. PLoS One, 2013, 8(11)e79687
[http://dx.doi.org/10.1371/journal.pone.0079687] [PMID: 24260279]
[141]
Jain, S.; Drendel, W.B.; Chen, Z.W.; Mathews, F.S.; Sly, W.S.; Grubb, J.H. Structure of human beta-glucuronidase reveals candidate lysosomal targeting and active-site motifs. Nat. Struct. Biol., 1996, 3(4), 375-381.
[http://dx.doi.org/10.1038/nsb0496-375] [PMID: 8599764]
[142]
Naz, H.; Islam, A.; Waheed, A.; Sly, W.S.; Ahmad, F.; Hassan, I. Human β-glucuronidase: structure, function, and application in enzyme replacement therapy. Rejuvenation Res., 2013, 16(5), 352-363.
[http://dx.doi.org/10.1089/rej.2013.1407] [PMID: 23777470]
[143]
Cadaoas, J.; Boyle, G.; Jungles, S.; Cullen, S.; Vellard, M.; Grubb, J.H.; Jurecka, A.; Sly, W.; Kakkis, E. Vestronidase alfa: Recombinant human β-glucuronidase as an enzyme replacement therapy for MPS VII. Mol. Genet. Metab., 2020, 130(1), 65-76.
[http://dx.doi.org/10.1016/j.ymgme.2020.02.009] [PMID: 32192868]
[144]
McCafferty, E.H.; Scott, L.J. Vestronidase Alfa: A Review in Mucopolysaccharidosis VII. BioDrugs : Clinical immunotherapeutics, biopharmaceuticals and gene therapy,, 2019, 33(2), 233-240.
[145]
Wang, R.Y.; da Silva Franco, J.F.; López-Valdez, J.; Martins, E.; Sutton, V.R.; Whitley, C.B.; Zhang, L.; Cimms, T.; Marsden, D.; Jurecka, A.; Harmatz, P. The long-term safety and efficacy of vestronidase alfa, rhGUS enzyme replacement therapy, in subjects with mucopolysaccharidosis VII. Mol. Genet. Metab., 2020, 129(3), 219-227.
[http://dx.doi.org/10.1016/j.ymgme.2020.01.003] [PMID: 32063397]
[146]
Grubb, J.H.; Vogler, C.; Levy, B.; Galvin, N.; Tan, Y.; Sly, W.S. Chemically modified beta-glucuronidase crosses blood-brain barrier and clears neuronal storage in murine mucopolysaccharidosis VII. Proc. Natl. Acad. Sci. USA, 2008, 105(7), 2616-2621.
[http://dx.doi.org/10.1073/pnas.0712147105] [PMID: 18268347]
[147]
Huynh, H.T.; Grubb, J.H.; Vogler, C.; Sly, W.S. Biochemical evidence for superior correction of neuronal storage by chemically modified enzyme in murine mucopolysaccharidosis VII. Proc. Natl. Acad. Sci. USA, 2012, 109(42), 17022-17027.
[http://dx.doi.org/10.1073/pnas.1214779109] [PMID: 23027951]
[148]
Ponder, K.P.; Haskins, M.E. Gene therapy for mucopolysaccharidosis. Expert Opin. Biol. Ther., 2007, 7(9), 1333-1345.
[http://dx.doi.org/10.1517/14712598.7.9.1333] [PMID: 17727324]
[149]
Aguisanda, F.; Thorne, N.; Zheng, W. Targeting wolman disease and cholesteryl ester storage disease: Disease pathogenesis and therapeutic development. Curr. Chem. Genomics Transl. Med., 2017, 11, 1-18.
[150]
Ameis, D.; Merkel, M.; Eckerskorn, C.; Greten, H. Purification, characterization and molecular cloning of human hepatic lysosomal acid lipase. Eur. J. Biochem., 1994, 219(3), 905-914.
[http://dx.doi.org/10.1111/j.1432-1033.1994.tb18572.x] [PMID: 8112342]
[151]
Li, F.; Zhang, H. Lysosomal acid lipase in lipid metabolism and beyond. Arterioscler. Thromb. Vasc. Biol., 2019, 39(5), 850-856.
[http://dx.doi.org/10.1161/ATVBAHA.119.312136] [PMID: 30866656]
[152]
Erwin, A.L. The role of sebelipase alfa in the treatment of lysosomal acid lipase deficiency. Therap. Adv. Gastroenterol., 2017, 10(7), 553-562.
[http://dx.doi.org/10.1177/1756283X17705775] [PMID: 28804516]
[153]
Pastores, G.M.; Hughes, D.A. Lysosomal acid lipase deficiency: Therapeutic options. Drug Des. Devel. Ther., 2020, 14, 591-601.
[154]
Shirley, M. Sebelipase alfa: first global approval. Drugs, 2015, 75(16), 1935-1940.
[http://dx.doi.org/10.1007/s40265-015-0479-6] [PMID: 26452566]
[155]
Balwani, M.; Breen, C.; Enns, G.M.; Deegan, P.B.; Honzík, T.; Jones, S.; Kane, J.P.; Malinova, V.; Sharma, R.; Stock, E.O.; Valayannopoulos, V.; Wraith, J.E.; Burg, J.; Eckert, S.; Schneider, E.; Quinn, A.G. Clinical effect and safety profile of recombinant human lysosomal acid lipase in patients with cholesteryl ester storage disease. Hepatology, 2013, 58(3), 950-957.
[http://dx.doi.org/10.1002/hep.26289] [PMID: 23348766]
[156]
Burton, B.K.; Balwani, M.; Feillet, F.; Barić, I.; Burrow, T.A.; Camarena Grande, C.; Coker, M.; Consuelo-Sánchez, A.; Deegan, P.; Di Rocco, M.; Enns, G.M.; Erbe, R.; Ezgu, F.; Ficicioglu, C.; Furuya, K.N.; Kane, J.; Laukaitis, C.; Mengel, E.; Neilan, E.G.; Nightingale, S.; Peters, H.; Scarpa, M.; Schwab, K.O.; Smolka, V.; Valayannopoulos, V.; Wood, M.; Goodman, Z.; Yang, Y.; Eckert, S.; Rojas-Caro, S.; Quinn, A.G. A phase 3 trial of sebelipase alfa in lysosomal acid lipase deficiency. N. Engl. J. Med., 2015, 373(11), 1010-1020.
[http://dx.doi.org/10.1056/NEJMoa1501365] [PMID: 26352813]
[157]
Jones, S.A.; Rojas-Caro, S.; Quinn, A.G.; Friedman, M.; Marulkar, S.; Ezgu, F.; Zaki, O.; Gargus, J.J.; Hughes, J.; Plantaz, D.; Vara, R.; Eckert, S.; Arnoux, J.B.; Brassier, A.; Le Quan Sang, K.H.; Valayannopoulos, V. Survival in infants treated with sebelipase Alfa for lysosomal acid lipase deficiency: An open-label, multicenter, dose-escalation study. Orphanet J. Rare Dis., 2017, 12(1), 25.
[http://dx.doi.org/10.1186/s13023-017-0587-3] [PMID: 28179030]
[158]
Öckerman, P.A. A generalised storage disorder resembling Hurler’s syndrome. Lancet, 1967, 290(7509), 239-241.
[http://dx.doi.org/10.1016/S0140-6736(67)92303-3]
[159]
Ceccarini, M.R.; Codini, M.; Conte, C.; Patria, F.; Cataldi, S.; Bertelli, M.; Albi, E.; Beccari, T. Alpha-mannosidosis: Therapeutic strategies. Int. J. Mol. Sci., 2018, 19(5)E1500
[http://dx.doi.org/10.3390/ijms19051500] [PMID: 29772816]
[160]
Malm, D.; Nilssen, Ø. Orphanet journal of rare diseases, Orphanet J. Rare Dis., 2008, 3, 21.
[161]
Nilssen, O.; Berg, T.; Rubenthiran, U.; Hansen, G.M.; Riise, H.M.F.; Tranebjaerg, L.; Malm, D.; Tollersrud, O.K. Alpha-mannosidosis - functional cloning of the alpha-mannosidase gene and identification of a mutation in affected siblings. Am. J. Hum. Genet., 1995, 57(4), 195-195.
[162]
Paciotti, S.; Codini, M.; Tasegian, A.; Ceccarini, M.R.; Cataldi, S.; Arcuri, C.; Fioretti, B.; Albi, E.; Beccari, T. Lysosomal alpha-mannosidase and alpha-mannosidosis. Frontiers in bioscience (Landmark edition), 2017, 22, 157-167.
[163]
Poupetová, H.; Ledvinová, J.; Berná, L.; Dvoráková, L.; Kozich, V.; Elleder, M. The birth prevalence of lysosomal storage disorders in the Czech Republic: Comparison with data in different populations. J. Inherit. Metab. Dis., 2010, 33(4), 387-396.
[http://dx.doi.org/10.1007/s10545-010-9093-7] [PMID: 20490927]
[164]
Berg, T.; Riise, H.M.; Hansen, G.M.; Malm, D.; Tranebjaerg, L.; Tollersrud, O.K.; Nilssen, O. Spectrum of mutations in alpha-mannosidosis. Am. J. Hum. Genet., 1999, 64(1), 77-88.
[http://dx.doi.org/10.1086/302183] [PMID: 9915946]
[165]
Borgwardt, L.; Stensland, H.M.F.R.; Olsen, K.J.; Wibrand, F.; Klenow, H.B.; Beck, M.; Amraoui, Y.; Arash, L.; Fogh, J.; Nilssen, Ø.; Dali, C.I.; Lund, A.M. Alpha-mannosidosis: correlation between phenotype, genotype and mutant MAN2B1 subcellular localisation. Orphanet J. Rare Dis., 2015, 10(1), 70.
[http://dx.doi.org/10.1186/s13023-015-0286-x] [PMID: 26048034]
[166]
Stinchi, S.; Lüllmann-Rauch, R.; Hartmann, D.; Coenen, R.; Beccari, T.; Orlacchio, A.; von Figura, K.; Saftig, P. Targeted disruption of the lysosomal alpha-mannosidase gene results in mice resembling a mild form of human alpha-mannosidosis. Hum. Mol. Genet., 1999, 8(8), 1365-1372.
[http://dx.doi.org/10.1093/hmg/8.8.1365] [PMID: 10400983]
[167]
Nilssen, O.; Berg, T.; Riise, H.M.; Ramachandran, U.; Evjen, G.; Hansen, G.M.; Malm, D.; Tranebjaerg, L.; Tollersrud, O.K. alpha-Mannosidosis: functional cloning of the lysosomal alpha-mannosidase cDNA and identification of a mutation in two affected siblings. Hum. Mol. Genet., 1997, 6(5), 717-726.
[http://dx.doi.org/10.1093/hmg/6.5.717] [PMID: 9158146]
[168]
Tollersrud, O.K.; Berg, T.; Healy, P.; Evjen, G.; Ramachandran, U.; Nilssen, O. Purification of bovine lysosomal alpha-mannosidase, characterization of its gene and determination of two mutations that cause alpha-mannosidosis. Eur. J. Biochem., 1997, 246(2), 410-419.
[http://dx.doi.org/10.1111/j.1432-1033.1997.00410.x] [PMID: 9208932]
[169]
Heikinheimo, P.; Helland, R.; Leiros, H.K.; Leiros, I.; Karlsen, S.; Evjen, G.; Ravelli, R.; Schoehn, G.; Ruigrok, R.; Tollersrud, O.K.; McSweeney, S.; Hough, E. The structure of bovine lysosomal alpha-mannosidase suggests a novel mechanism for low-pH activation. J. Mol. Biol., 2003, 327(3), 631-644.
[http://dx.doi.org/10.1016/S0022-2836(03)00172-4] [PMID: 12634058]
[170]
Riise Stensland, H.M.; Klenow, H.B.; Van Nguyen, L.; Hansen, G.M.; Malm, D.; Nilssen, Ø. Identification of 83 novel alpha-mannosidosis-associated sequence variants: functional analysis of MAN2B1 missense mutations. Hum. Mutat., 2012, 33(3), 511-520.
[http://dx.doi.org/10.1002/humu.22005] [PMID: 22161967]
[171]
Danielsen, E.R.; Lund, A.M.; Thomsen, C. Cerebral magnetic resonance spectroscopy demonstrates long-term effect of bone marrow transplantation in α-mannosidosis. JIMD Rep., 2013, 11, 49-52.
[http://dx.doi.org/10.1007/8904_2013_221]
[172]
Mynarek, M.; Tolar, J.; Albert, M.H.; Escolar, M.L.; Boelens, J.J.; Cowan, M.J.; Finnegan, N.; Glomstein, A.; Jacobsohn, D.A.; Kühl, J.S.; Yabe, H.; Kurtzberg, J.; Malm, D.; Orchard, P.J.; Klein, C.; Lücke, T.; Sykora, K.W. Allogeneic hematopoietic SCT for alpha-mannosidosis: An analysis of 17 patients. Bone Marrow Transplant., 2012, 47(3), 352-359.
[http://dx.doi.org/10.1038/bmt.2011.99] [PMID: 21552297]
[173]
Borgwardt, L.; Dali, C.I.; Fogh, J.; Månsson, J.E.; Olsen, K.J.; Beck, H.C.; Nielsen, K.G.; Nielsen, L.H.; Olsen, S.O.; Riise Stensland, H.M.; Nilssen, O.; Wibrand, F.; Thuesen, A.M.; Pearl, T.; Haugsted, U.; Saftig, P.; Blanz, J.; Jones, S.A.; Tylki-Szymanska, A.; Guffon-Fouiloux, N.; Beck, M.; Lund, A.M. Enzyme replacement therapy for alpha-mannosidosis: 12 months follow-up of a single centre, randomised, multiple dose study. J. Inherit. Metab. Dis., 2013, 36(6), 1015-1024.
[http://dx.doi.org/10.1007/s10545-013-9595-1] [PMID: 23494656]
[174]
Borgwardt, L.; Guffon, N.; Amraoui, Y.; Jones, S.A.; De Meirleir, L.; Lund, A.M.; Gil-Campos, M.; Van den Hout, J.M.P.; Tylki-Szymanska, A.; Geraci, S.; Ardigò, D.; Cattaneo, F.; Harmatz, P.; Phillips, D. Health related quality of life, disability, and pain in alpha mannosidosis:Long-term data of enzyme replacement therapy with velmanase alfa (human recombinant alpha mannosidase). J. Inborn Errors Metab. Screen., 2018, 6.
[175]
Lund, A.M.; Borgwardt, L.; Cattaneo, F.; Ardigò, D.; Geraci, S.; Gil-Campos, M.; De Meirleir, L.; Laroche, C.; Dolhem, P.; Cole, D.; Tylki-Szymanska, A.; Lopez-Rodriguez, M.; Guillén-Navarro, E.; Dali, C.I.; Héron, B.; Fogh, J.; Muschol, N.; Phillips, D.; Van den Hout, J.M.H.; Jones, S.A.; Amraoui, Y.; Harmatz, P.; Guffon, N. Comprehensive long-term efficacy and safety of recombinant human alpha-mannosidase (velmanase alfa) treatment in patients with alpha-mannosidosis. J. Inherit. Metab. Dis., 2018, 41(6), 1225-1233.
[http://dx.doi.org/10.1007/s10545-018-0175-2] [PMID: 29725868]
[176]
Roces, D.P.; Lüllmann-Rauch, R.; Peng, J.; Balducci, C.; Andersson, C.; Tollersrud, O.; Fogh, J.; Orlacchio, A.; Beccari, T.; Saftig, P.; von Figura, K. Efficacy of enzyme replacement therapy in alpha-mannosidosis mice: A preclinical animal study. Hum. Mol. Genet., 2004, 13(18), 1979-1988.
[http://dx.doi.org/10.1093/hmg/ddh220] [PMID: 15269179]
[177]
Blanz, J.; Stroobants, S.; Lüllmann-Rauch, R.; Morelle, W.; Lüdemann, M.; D’Hooge, R.; Reuterwall, H.; Michalski, J.C.; Fogh, J.; Andersson, C.; Saftig, P. Reversal of peripheral and central neural storage and ataxia after recombinant enzyme replacement therapy in alpha-mannosidosis mice. Hum. Mol. Genet., 2008, 17(22), 3437-3445.
[http://dx.doi.org/10.1093/hmg/ddn237] [PMID: 18713755]
[178]
Stroobants, S.; Damme, M.; Van der Jeugd, A.; Vermaercke, B.; Andersson, C.; Fogh, J.; Saftig, P.; Blanz, J.; D’Hooge, R. Long-term enzyme replacement therapy improves neurocognitive functioning and hippocampal synaptic plasticity in immune-tolerant alpha-mannosidosis mice. Neurobiol. Dis., 2017, 106, 255-268.
[http://dx.doi.org/10.1016/j.nbd.2017.07.013]
[179]
D’Azzo, A.; Hoogeveen, A.; Reuser, A.J.; Robinson, D.; Galjaard, H. Molecular defect in combined beta-galactosidase and neuraminidase deficiency in man. Proc. Natl. Acad. Sci. USA, 1982, 79(15), 4535-4539.
[http://dx.doi.org/10.1073/pnas.79.15.4535] [PMID: 6812049]
[180]
Galjart, N.J.; Gillemans, N.; Harris, A.; van der Horst, G.T.J.; Verheijen, F.W.; Galjaard, H.; D’Azzo, A. Expression of cDNA encoding the human “protective protein≓ associated with lysosomal β-galactosidase and neuraminidase: Homology to yeast proteases. Cell, 1988, 54(6), 755-764.
[http://dx.doi.org/10.1016/S0092-8674(88)90999-3] [PMID: 3136930]
[181]
Karimzadeh, P.; Naderi, S.; Modarresi, F.; Dastsooz, H.; Nemati, H.; Farokhashtiani, T.; Shamsian, B.S.; Inaloo, S.; Faghihi, M.A. Case reports of juvenile GM1 gangliosidosisis type II caused by mutation in GLB1 gene. BMC Med. Genet., 2017, 18(1), 73.
[http://dx.doi.org/10.1186/s12881-017-0417-4] [PMID: 28716012]
[182]
Brunetti-Pierri, N.; Scaglia, F. GM1 gangliosidosis: review of clinical, molecular, and therapeutic aspects. Mol. Genet. Metab., 2008, 94(4), 391-396.
[http://dx.doi.org/10.1016/j.ymgme.2008.04.012] [PMID: 18524657]
[183]
Chen, J.C.; Luu, A.R.; Wise, N.; Angelis, R.; Agrawal, V.; Mangini, L.; Vincelette, J.; Handyside, B.; Sterling, H.; Lo, M.J.; Wong, H.; Galicia, N.; Pacheco, G.; Van Vleet, J.; Giaramita, A.; Fong, S.; Roy, S.M.; Hague, C.; Lawrence, R.; Bullens, S.; Christianson, T.M.; d’Azzo, A.; Crawford, B.E.; Bunting, S.; LeBowitz, J.H.; Yogalingam, G. Intracerebroventricular enzyme replacement therapy with β-galactosidase reverses brain pathologies due to GM1 gangliosidosis in mice. J. Biol. Chem., 2020, 295(39), 13532-13555.
[http://dx.doi.org/10.1074/jbc.RA119.009811] [PMID: 31481471]
[184]
Deodato, F.; Procopio, E.; Rampazzo, A.; Taurisano, R.; Donati, M.A.; Dionisi-Vici, C.; Caciotti, A.; Morrone, A.; Scarpa, M. The treatment of juvenile/adult GM1-gangliosidosis with Miglustat may reverse disease progression. Metab. Brain Dis., 2017, 32(5), 1529-1536.
[http://dx.doi.org/10.1007/s11011-017-0044-y] [PMID: 28577204]
[185]
Elliot-Smith, E.; Speak, A.O.; Lloyd-Evans, E.; Smith, D.A.; van der Spoel, A.C.; Jeyakumar, M.; Butters, T.D.; Dwek, R.A.; d’Azzo, A.; Platt, F.M. Beneficial effects of substrate reduction therapy in a mouse model of GM1 gangliosidosis. Mol. Genet. Metab., 2008, 94(2), 204-211.
[http://dx.doi.org/10.1016/j.ymgme.2008.02.005] [PMID: 18387328]
[186]
Suzuki, Y.; Ichinomiya, S.; Kurosawa, M.; Matsuda, J.; Ogawa, S.; Iida, M.; Kubo, T.; Tabe, M.; Itoh, M.; Higaki, K.; Nanba, E.; Ohno, K. Therapeutic chaperone effect of N-octyl 4-epi-β-valienamine on murine G(M1)-gangliosidosis. Mol. Genet. Metab., 2012, 106(1), 92-98.
[http://dx.doi.org/10.1016/j.ymgme.2012.02.012] [PMID: 22436580]
[187]
Cesani, M.; Lorioli, L.; Grossi, S.; Amico, G.; Fumagalli, F.; Spiga, I.; Filocamo, M.; Biffi, A. Mutation update of ARSA and PSAP genes causing metachromatic leukodystrophy. Hum. Mutat., 2016, 37(1), 16-27.
[http://dx.doi.org/10.1002/humu.22919] [PMID: 26462614]
[188]
Guo, L.; Jin, B.; Zhang, Y.; Wang, J. Identification of a missense ARSA mutation in metachromatic leukodystrophy and its potential pathogenic mechanism. Mol. Genet. Genomic Med., 2020, 8(11)e1478
[http://dx.doi.org/10.1002/mgg3.1478] [PMID: 32875726]
[189]
Lukatela, G.; Krauss, N.; Theis, K.; Selmer, T.; Gieselmann, V.; von Figura, K.; Saenger, W. Crystal structure of human arylsulfatase A: The aldehyde function and the metal ion at the active site suggest a novel mechanism for sulfate ester hydrolysis. Biochemistry, 1998, 37(11), 3654-3664.
[http://dx.doi.org/10.1021/bi9714924] [PMID: 9521684]
[190]
Schmidt, B.; Selmer, T.; Ingendoh, A.; von Figura, K. A novel amino acid modification in sulfatases that is defective in multiple sulfatase deficiency. Cell, 1995, 82(2), 271-278.
[http://dx.doi.org/10.1016/0092-8674(95)90314-3] [PMID: 7628016]
[191]
Schlotawa, L.; Adang, L.A.; Radhakrishnan, K.; Ahrens-Nicklas, R.C. Multiple sulfatase deficiency: A disease comprising mucopolysaccharidosis, sphingolipidosis, and more caused by a defect in posttranslational modification. Int. J. Mol. Sci., 2020, 21(10)E3448
[http://dx.doi.org/10.3390/ijms21103448] [PMID: 32414121]
[192]
Chen, X.; Gill, D.; Shaw, P.; Ouvrier, R.; Troedson, C. Outcome of early juvenile onset metachromatic leukodystrophy after unrelated cord blood transplantation: A case series and review of the literature. J. Child Neurol., 2016, 31(3), 338-344.
[http://dx.doi.org/10.1177/0883073815595078] [PMID: 26187619]
[193]
Matzner, U.; Hartmann, D.; Lüllmann-Rauch, R.; Coenen, R.; Rothert, F.; Månsson, J.E.; Fredman, P.; D’Hooge, R.; De Deyn, P.P.; Gieselmann, V. Bone marrow stem cell-based gene transfer in a mouse model for metachromatic leukodystrophy: effects on visceral and nervous system disease manifestations. Gene Ther., 2002, 9(1), 53-63.
[http://dx.doi.org/10.1038/sj.gt.3301593] [PMID: 11850723]
[194]
Sessa, M.; Lorioli, L.; Fumagalli, F.; Acquati, S.; Redaelli, D.; Baldoli, C.; Canale, S.; Lopez, I.D.; Morena, F.; Calabria, A.; Fiori, R.; Silvani, P.; Rancoita, P.M.; Gabaldo, M.; Benedicenti, F.; Antonioli, G.; Assanelli, A.; Cicalese, M.P.; Del Carro, U.; Sora, M.G.; Martino, S.; Quattrini, A.; Montini, E.; Di Serio, C.; Ciceri, F.; Roncarolo, M.G.; Aiuti, A.; Naldini, L.; Biffi, A. Lentiviral haemopoietic stem-cell gene therapy in early-onset metachromatic leukodystrophy: An ad-hoc analysis of a non-randomised, open-label, phase 1/2 trial. Lancet, 2016, 388(10043), 476-487.
[http://dx.doi.org/10.1016/S0140-6736(16)30374-9] [PMID: 27289174]
[195]
Meneghini, V.; Lattanzi, A.; Tiradani, L.; Bravo, G.; Morena, F.; Sanvito, F.; Calabria, A.; Bringas, J.; Fisher-Perkins, J.M.; Dufour, J.P.; Baker, K.C.; Doglioni, C.; Montini, E.; Bunnell, B.A.; Bankiewicz, K.; Martino, S.; Naldini, L.; Gritti, A. Pervasive supply of therapeutic lysosomal enzymes in the CNS of normal and Krabbe-affected non-human primates by intracerebral lentiviral gene therapy. EMBO Mol. Med., 2016, 8(5), 489-510.
[http://dx.doi.org/10.15252/emmm.201505850] [PMID: 27025653]
[196]
Piguet, F.; Sondhi, D.; Piraud, M.; Fouquet, F.; Hackett, N.R.; Ahouansou, O.; Vanier, M.T.; Bieche, I.; Aubourg, P.; Crystal, R.G.; Cartier, N.; Sevin, C. Correction of brain oligodendrocytes by AAVrh.10 intracerebral gene therapy in metachromatic leukodystrophy mice. Hum. Gene Ther., 2012, 23(8), 903-914.
[http://dx.doi.org/10.1089/hum.2012.015] [PMID: 22642214]
[197]
Matzner, U.; Herbst, E.; Hedayati, K.K.; Lüllmann-Rauch, R.; Wessig, C.; Schröder, S.; Eistrup, C.; Möller, C.; Fogh, J.; Gieselmann, V. Enzyme replacement improves nervous system pathology and function in a mouse model for metachromatic leukodystrophy. Hum. Mol. Genet., 2005, 14(9), 1139-1152.
[http://dx.doi.org/10.1093/hmg/ddi126] [PMID: 15772092]
[198]
i Dali, C.; Lund, A.M. Annual clinical genetics meeting of the american college of medical genetics and genomics, Tampa, FL, USA 2009.
[199]
Schuster, T.; Mühlstein, A.; Yaghootfam, C.; Maksimenko, O.; Shipulo, E.; Gelperina, S.; Kreuter, J.; Gieselmann, V.; Matzner, U. Potential of surfactant-coated nanoparticles to improve brain delivery of arylsulfatase A. Journal of controlled release : Official journal of the Controlled Release Society, 2017, 253, 1-10.
[200]
Böckenhoff, A.; Cramer, S.; Wölte, P.; Knieling, S.; Wohlenberg, C.; Gieselmann, V.; Galla, H.J.; Matzner, U. Comparison of five peptide vectors for improved brain delivery of the lysosomal enzyme arylsulfatase A. J. Neurosci., 2014, 34(9), 3122-3129.
[http://dx.doi.org/10.1523/JNEUROSCI.4785-13.2014] [PMID: 24573272]
[201]
Wright, T.; Li, A.; Lotterhand, J.; Graham, A.R.; Huang, Y.; Avila, N.; Pan, J. Nonclinical comparability studies of recombinant human arylsulfatase A addressing manufacturing process changes. PLoS One, 2018, 13(4)e0195186
[http://dx.doi.org/10.1371/journal.pone.0195186] [PMID: 29672630]
[202]
McGovern, M.M.; Avetisyan, R.; Sanson, B.J.; Lidove, O. Disease manifestations and burden of illness in patients with acid sphingomyelinase deficiency (ASMD). Orphanet J. Rare Dis., 2017, 12(1), 41.
[http://dx.doi.org/10.1186/s13023-017-0572-x] [PMID: 28228103]
[203]
Schuchman, E.H. The pathogenesis and treatment of acid sphingomyelinase-deficient Niemann-Pick disease. J. Inherit. Metab. Dis., 2007, 30(5), 654-663.
[http://dx.doi.org/10.1007/s10545-007-0632-9] [PMID: 17632693]
[204]
Jenkins, R.W.; Canals, D.; Hannun, Y.A. Roles and regulation of secretory and lysosomal acid sphingomyelinase. Cell. Signal., 2009, 21(6), 836-846.
[http://dx.doi.org/10.1016/j.cellsig.2009.01.026] [PMID: 19385042]
[205]
Zeidan, Y.H.; Hannun, Y.A. The acid sphingomyelinase/ceramide pathway: biomedical significance and mechanisms of regulation. Curr. Mol. Med., 2010, 10(5), 454-466.
[http://dx.doi.org/10.2174/156652410791608225] [PMID: 20540705]
[206]
Thurberg, B.L.; Diaz, G.A.; Lachmann, R.H.; Schiano, T.; Wasserstein, M.P.; Ji, A.J.; Zaher, A.; Peterschmitt, M.J. Long-term efficacy of olipudase alfa in adults with acid sphingomyelinase deficiency (ASMD): Further clearance of hepatic sphingomyelin is associated with additional improvements in pro- and anti-atherogenic lipid profiles after 42 months of treatment. Mol. Genet. Metab., 2020, 131(1-2), 245-252.
[http://dx.doi.org/10.1016/j.ymgme.2020.06.010] [PMID: 32620536]
[207]
Horinouchi, K.; Erlich, S.; Perl, D.P.; Ferlinz, K.; Bisgaier, C.L.; Sandhoff, K.; Desnick, R.J.; Stewart, C.L.; Schuchman, E.H. Acid sphingomyelinase deficient mice: A model of types A and B Niemann-Pick disease. Nat. Genet., 1995, 10(3), 288-293.
[http://dx.doi.org/10.1038/ng0795-288] [PMID: 7670466]
[208]
Otterbach, B.; Stoffel, W. Acid sphingomyelinase-deficient mice mimic the neurovisceral form of human lysosomal storage disease (Niemann-Pick disease). Cell, 1995, 81(7), 1053-1061.
[http://dx.doi.org/10.1016/S0092-8674(05)80010-8] [PMID: 7600574]
[209]
Zhou, Y.F.; Metcalf, M.C.; Garman, S.C.; Edmunds, T.; Qiu, H.; Wei, R.R. Human acid sphingomyelinase structures provide insight to molecular basis of Niemann-Pick disease. Nat. Commun., 2016, 7(13082)
[http://dx.doi.org/10.1038/ncomms13082]
[210]
He, X.; Miranda, S.R.; Xiong, X.; Dagan, A.; Gatt, S.; Schuchman, E.H. Characterization of human acid sphingomyelinase purified from the media of overexpressing Chinese hamster ovary cells. Biochim. Biophys. Acta, 1999, 1432(2), 251-264.
[http://dx.doi.org/10.1016/S0167-4838(99)00069-2] [PMID: 10407147]
[211]
Miranda, S.R.; He, X.; Simonaro, C.M.; Gatt, S.; Dagan, A.; Desnick, R.J.; Schuchman, E.H. Infusion of recombinant human acid sphingomyelinase into niemann-pick disease mice leads to visceral, but not neurological, correction of the pathophysiology. FASEB J., 2000, 14(13), 1988-1995.
[http://dx.doi.org/10.1096/fj.00-0014com] [PMID: 11023983]
[212]
McGovern, M.M.; Wasserstein, M.P.; Kirmse, B.; Duvall, W.L.; Schiano, T.; Thurberg, B.L.; Richards, S.; Cox, G.F. Novel first-dose adverse drug reactions during a phase I trial of olipudase alfa (recombinant human acid sphingomyelinase) in adults with Niemann-Pick disease type B (acid sphingomyelinase deficiency). Genetics in medicine : Official journal of the American College of Medical Genetics, 2016, 18(1), 34-40.
[213]
Thurberg, B.L.; Wasserstein, M.P.; Jones, S.A.; Schiano, T.D.; Cox, G.F.; Puga, A.C. Clearance of hepatic sphingomyelin by olipudase alfa is associated with improvement in lipid profiles in acid sphingomyelinase deficiency. Am. J. Surg. Pathol., 2016, 40(9), 1232-1242.
[http://dx.doi.org/10.1097/PAS.0000000000000659] [PMID: 27340749]
[214]
Wasserstein, M.; Dionisi-Vici, C.; Giugliani, R.; Hwu, W.L.; Lidove, O.; Lukacs, Z.; Mengel, E.; Mistry, P.K.; Schuchman, E.H.; McGovern, M. Recommendations for clinical monitoring of patients with acid sphingomyelinase deficiency (ASMD). Mol. Genet. Metab., 2019, 126(2), 98-105.
[http://dx.doi.org/10.1016/j.ymgme.2018.11.014] [PMID: 30514648]
[215]
Wasserstein, M.P.; Diaz, G.A.; Lachmann, R.H.; Jouvin, M.H.; Nandy, I.; Ji, A.J.; Puga, A.C. olipudase alfa for treatment of acid sphingomyelinase deficiency (ASMD): Safety and efficacy in adults treated for 30 months. J. Inherit. Metab. Dis., 2018, 41(5), 829-838.
[http://dx.doi.org/10.1007/s10545-017-0123-6] [PMID: 29305734]
[216]
Muro, S.; Schuchman, E.H.; Muzykantov, V.R. Lysosomal enzyme delivery by ICAM-1-targeted nanocarriers bypassing glycosylation- and clathrin-dependent endocytosis. Molecular therapy : The journal of the American Society of Gene Therapy 2006, 13(1), 135-141.
[217]
Aldosari, M.H.; de Vries, R.P.; Rodriguez, L.R.; Hesen, N.A.; Beztsinna, N.; van Kuilenburg, A.B.P.; Hollak, C.E.M.; Schellekens, H.; Mastrobattista, E. iposometargeted recombinant human acid sphingomyelinase: Production, formulation, and in vitro evaluation. European journal of pharmaceutics and biopharmaceutics : Official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V, 2019, 137, 185-195.
[218]
Giblett, E.R.; Anderson, J.E.; Cohen, F.; Pollara, B.; Meuwissen, H.J. Adenosine-deaminase deficiency in two patients with severely impaired cellular immunity. Lancet, 1972, 2(7786), 1067-1069.
[http://dx.doi.org/10.1016/S0140-6736(72)92345-8] [PMID: 4117384]
[219]
Walter, J.E. Hematology, Immunology and Genetics (Third Edition); Ohls, R.K.; Maheshwari, A.; Christensen, R.D., Eds.; Elsevier: Philadelphia , 2019; pp. 173-193.
[220]
Ugochukwu, E.; Zhang, Y.; Hapka, E.; Yue, W.W.; Bray, J.E.; Muniz, J.; Burgess-Brown, N.; Chaikuad, A.; von Delft, F.; Bountra, C.; Arrowsmith, C.H.; Weigelt, J.; Edwards, A.; Kavanagh, K.L.; Oppermann, U. 2009. (SGC), S.G.C.
[221]
Maier, S.A.; Galellis, J.R.; McDermid, H.E. Phylogenetic analysis reveals a novel protein family closely related to adenosine deaminase. J. Mol. Evol., 2005, 61(6), 776-794.
[http://dx.doi.org/10.1007/s00239-005-0046-y] [PMID: 16245011]
[222]
Moens, L.; Hershfield, M.; Arts, K.; Aksentijevich, I.; Meyts, I. Human adenosine deaminase 2 deficiency: A multi-faceted inborn error of immunity. Immunol. Rev., 2019, 287(1), 62-72.
[http://dx.doi.org/10.1111/imr.12722] [PMID: 30565235]
[223]
Murakami, E.; Bao, H.; Mosley, R.T.; Du, J.; Sofia, M.J.; Furman, P.A. Adenosine deaminase-like protein 1 (ADAL1): Characterization and substrate specificity in the hydrolysis of N(6)- or O(6)-substituted purine or 2-aminopurine nucleoside monophosphates. J. Med. Chem., 2011, 54(16), 5902-5914.
[http://dx.doi.org/10.1021/jm200650j] [PMID: 21755941]
[224]
Zavialov, A.V.; Yu, X.; Spillmann, D.; Lauvau, G.; Zavialov, A.V. Structural basis for the growth factor activity of human adenosine deaminase ADA2. J. Biol. Chem., 2010, 285(16), 12367-12377.
[http://dx.doi.org/10.1074/jbc.M109.083527] [PMID: 20147294]
[225]
Aldrich, M.B.; Chen, W.; Blackburn, M.R.; Martinez-Valdez, H.; Datta, S.K.; Kellems, R.E. Impaired germinal center maturation in adenosine deaminase deficiency. J. Immunol., 2003, 171(10), 5562-5570.
[http://dx.doi.org/10.4049/jimmunol.171.10.5562] [PMID: 14607964]
[226]
Apasov, S.G.; Blackburn, M.R.; Kellems, R.E.; Smith, P.T.; Sitkovsky, M.V. Adenosine deaminase deficiency increases thymic apoptosis and causes defective T cell receptor signaling. J. Clin. Invest., 2001, 108(1), 131-141.
[http://dx.doi.org/10.1172/JCI200110360] [PMID: 11435465]
[227]
Benveniste, P.; Zhu, W.; Cohen, A. Interference with thymocyte differentiation by an inhibitor of S-adenosylhomocysteine hydrolase. J. Immunol., 1995, 155(2), 536-544.
[PMID: 7608534]
[228]
Gangi-Peterson, L.; Sorscher, D.H.; Reynolds, J.W.; Kepler, T.B.; Mitchell, B.S. Nucleotide pool imbalance and adenosine deaminase deficiency induce alterations of N-region insertions during V(D)J recombination. J. Clin. Invest., 1999, 103(6), 833-841.
[http://dx.doi.org/10.1172/JCI4320] [PMID: 10079104]
[229]
Blackburn, M.R.; Kellems, R.E. Adenosine deaminase deficiency: metabolic basis of immune deficiency and pulmonary inflammation. Adv. Immunol., 2005, 86, 1-41.
[http://dx.doi.org/10.1016/S0065-2776(04)86001-2]
[230]
Bradford, K.L.; Moretti, F.A.; Carbonaro-Sarracino, D.A.; Gaspar, H.B.; Kohn, D.B. Adenosine Deaminase (ADA)-Deficient Severe Combined Immune Deficiency (SCID): Molecular pathogenesis and clinical manifestations. J. Clin. Immunol., 2017, 37(7), 626-637.
[http://dx.doi.org/10.1007/s10875-017-0433-3] [PMID: 28842866]
[231]
Grunebaum, E.; Cutz, E.; Roifman, C.M. Pulmonary alveolar proteinosis in patients with adenosine deaminase deficiency. J. Allergy Clin. Immunol., 2012, 129(6), 1588-1593.
[http://dx.doi.org/10.1016/j.jaci.2012.02.003] [PMID: 22409989]
[232]
Whitmore, K.V.; Gaspar, H.B. Adenosine deaminase deficiency - more than just an immunodeficiency. Front. Immunol., 2016, 7(314), 314.
[http://dx.doi.org/10.3389/fimmu.2016.00314] [PMID: 27579027]
[233]
Polmar, S.H.; Stern, R.C.; Schwartz, A.L.; Wetzler, E.M.; Chase, P.A.; Hirschhorn, R. Enzyme replacement therapy for adenosine deaminase deficiency and severe combined immunodeficiency. N. Engl. J. Med., 1976, 295(24), 1337-1343.
[http://dx.doi.org/10.1056/NEJM197612092952402] [PMID: 980079]
[234]
Kelly, M.A.; Vestling, M.M.; Murphy, C.M.; Hua, S.; Sumpter, T.; Fenselau, C. Primary structure of bovine adenosine deaminase. J. Pharm. Biomed. Anal., 1996, 14(11), 1513-1519.
[http://dx.doi.org/10.1016/0731-7085(96)01845-6] [PMID: 8877857]
[235]
Davis, S.; Abuchowski, A.; Park, Y.K.; Davis, F.F. Alteration of the circulating life and antigenic properties of bovine adenosine deaminase in mice by attachment of polyethylene glycol. Clin. Exp. Immunol., 1981, 46(3), 649-652.
[PMID: 7337981]
[236]
Fishburn, C.S. The pharmacology of PEGylation: balancing PD with PK to generate novel therapeutics. J. Pharm. Sci., 2008, 97(10), 4167-4183.
[http://dx.doi.org/10.1002/jps.21278] [PMID: 18200508]
[237]
Booth, C.; Gaspar, H.B. Pegademase bovine (PEG-ADA) for the treatment of infants and children with severe combined immunodeficiency (SCID). Biologics : Targets & therapy,, 2009, 3, 349-358.
[238]
Murguia-Favela, L.; Min, W.; Loves, R.; Leon-Ponte, M.; Grunebaum, E. Comparison of elapegademase and pegademase in ADA-deficient patients and mice. Clin. Exp. Immunol., 2020, 200(2), 176-184.
[http://dx.doi.org/10.1111/cei.13420] [PMID: 31989577]
[239]
Chan, B.; Wara, D.; Bastian, J.; Hershfield, M.S.; Bohnsack, J.; Azen, C.G.; Parkman, R.; Weinberg, K.; Kohn, D.B. Long-term efficacy of enzyme replacement therapy for adenosine deaminase (ADA)-deficient severe combined immunodeficiency (SCID). Clin. Immunol., 2005, 117(2), 133-143.
[http://dx.doi.org/10.1016/j.clim.2005.07.006] [PMID: 16112907]
[240]
Hershfield, M.S. PEG-ADA replacement therapy for adenosine deaminase deficiency: an update after 8.5 years. Clin. Immunol. Immunopathol., 1995, 76(3 Pt 2), S228-S232.
[http://dx.doi.org/10.1016/S0090-1229(95)90306-2] [PMID: 7554473]
[241]
Hershfield, M.S.; Buckley, R.H.; Greenberg, M.L.; Melton, A.L.; Schiff, R.; Hatem, C.; Kurtzberg, J.; Markert, M.L.; Kobayashi, R.H.; Kobayashi, A.L. Treatment of adenosine deaminase deficiency with polyethylene glycol-modified adenosine deaminase. N. Engl. J. Med., 1987, 316(10), 589-596.
[http://dx.doi.org/10.1056/NEJM198703053161005] [PMID: 3807953]
[242]
Hershfield, M.S.; Chaffee, S.; Sorensen, R.U. Enzyme replacement therapy with polyethylene glycol-adenosine deaminase in adenosine deaminase deficiency: Overview and case reports of three patients, including two now receiving gene therapy. Pediatr. Res., 1993, 33(1)(Suppl.), S42-S47.
[http://dx.doi.org/10.1203/00006450-199333011-00009] [PMID: 8433874]
[243]
Lainka, E.; Hershfield, M.S.; Santisteban, I.; Bali, P.; Seibt, A.; Neubert, J.; Friedrich, W.; Niehues, T. polyethylene glycol-conjugated adenosine deaminase (ADA) therapy provides temporary immune reconstitution to a child with delayed-onset ADA deficiency. Clin. Diagn. Lab. Immunol., 2005, 12(7), 861-866.
[http://dx.doi.org/10.1128/CDLI.12.7.861-866.2005] [PMID: 16002636]
[244]
Tartibi, H.M.; Hershfield, M.S.; Bahna, S.L.A. 24-Year enzyme replacement therapy in an adenosine-deaminase-deficient patient. Pediatrics, 2016, 137(1)
[http://dx.doi.org/10.1542/peds.2015-2169] [PMID: 26684479]
[245]
Chaffee, S.; Mary, A.; Stiehm, E.R.; Girault, D.; Fischer, A.; Hershfield, M.S. IgG antibody response to polyethylene glycol-modified adenosine deaminase in patients with adenosine deaminase deficiency. J. Clin. Invest., 1992, 89(5), 1643-1651.
[http://dx.doi.org/10.1172/JCI115761] [PMID: 1569204]
[246]
Kohn, D.B.; Gaspar, H.B. How we manage adenosine deaminase-deficient severe combined immune deficiency (ADA SCID). J. Clin. Immunol., 2017, 37(4), 351-356.
[http://dx.doi.org/10.1007/s10875-017-0373-y] [PMID: 28194615]
[247]
Hassan, A.; Booth, C.; Brightwell, A.; Allwood, Z.; Veys, P.; Rao, K.; Hönig, M.; Friedrich, W.; Gennery, A.; Slatter, M.; Bredius, R.; Finocchi, A.; Cancrini, C.; Aiuti, A.; Porta, F.; Lanfranchi, A.; Ridella, M.; Steward, C.; Filipovich, A.; Marsh, R.; Bordon, V.; Al-Muhsen, S.; Al-Mousa, H.; Alsum, Z.; Al-Dhekri, H.; Al Ghonaium, A.; Speckmann, C.; Fischer, A.; Mahlaoui, N.; Nichols, K.E.; Grunebaum, E.; Al Zahrani, D.; Roifman, C.M.; Boelens, J.; Davies, E.G.; Cavazzana-Calvo, M.; Notarangelo, L.; Gaspar, H.B. Outcome of hematopoietic stem cell transplantation for adenosine deaminase-deficient severe combined immunodeficiency. Blood, 2012, 120(17), 3615-3624.
[http://dx.doi.org/10.1182/blood-2011-12-396879] [PMID: 22791287]
[248]
Blaese, R.M.; Culver, K.W.; Miller, A.D.; Carter, C.S.; Fleisher, T.; Clerici, M.; Shearer, G.; Chang, L.; Chiang, Y.; Tolstoshev, P.; Greenblatt, J.J.; Rosenberg, S.A.; Klein, H.; Berger, M.; Mullen, C.A.; Ramsey, W.J.; Muul, L.; Morgan, R.A.; Anderson, W.F. T lymphocyte-directed gene therapy for ADA- SCID: Initial trial results after 4 years. Science, 1995, 270(5235), 475-480.
[http://dx.doi.org/10.1126/science.270.5235.475] [PMID: 7570001]
[249]
Aiuti, A.; Roncarolo, M.G.; Naldini, L. Gene therapy for ADA-SCID, the first marketing approval of an ex vivo gene therapy in Europe: Paving the road for the next generation of advanced therapy medicinal products. EMBO Mol. Med., 2017, 9(6), 737-740.
[http://dx.doi.org/10.15252/emmm.201707573] [PMID: 28396566]
[250]
Cicalese, M.P.; Ferrua, F.; Castagnaro, L.; Pajno, R.; Barzaghi, F.; Giannelli, S.; Dionisio, F.; Brigida, I.; Bonopane, M.; Casiraghi, M.; Tabucchi, A.; Carlucci, F.; Grunebaum, E.; Adeli, M.; Bredius, R.G.; Puck, J.M.; Stepensky, P.; Tezcan, I.; Rolfe, K.; De Boever, E.; Reinhardt, R.R.; Appleby, J.; Ciceri, F.; Roncarolo, M.G.; Aiuti, A. Update on the safety and efficacy of retroviral gene therapy for immunodeficiency due to adenosine deaminase deficiency. Blood, 2016, 128(1), 45-54.
[http://dx.doi.org/10.1182/blood-2016-01-688226] [PMID: 27129325]
[251]
Cicalese, M.P.; Ferrua, F.; Castagnaro, L.; Rolfe, K.; De Boever, E.; Reinhardt, R.R.; Appleby, J.; Roncarolo, M.G.; Aiuti, A. Gene therapy for adenosine deaminase deficiency: A comprehensive evaluation of short- and medium-term safety. Molecular therapy : The journal of the American Society of Gene Therapy, 2018, 26(3), 917-931.
[252]
Ferrua, F.; Aiuti, A. Twenty-five years of gene therapy for ADA-SCID: From bubble babies to an approved drug. Hum. Gene Ther., 2017, 28(11), 972-981.
[http://dx.doi.org/10.1089/hum.2017.175] [PMID: 28847159]
[253]
Kelley, W.N.; Rosenbloom, F.M.; Henderson, J.F.; Seegmiller, J.E. A specific enzyme defect in gout associated with overproduction of uric acid. Proc. Natl. Acad. Sci. USA, 1967, 57(6), 1735-1739.
[http://dx.doi.org/10.1073/pnas.57.6.1735] [PMID: 4291947]
[254]
Lesch, M.; Nyhan, W.L. A familial disorder of uric acid metabolism and central nervous system function. Am. J. Med., 1964, 36(4), 561-570.
[http://dx.doi.org/10.1016/0002-9343(64)90104-4] [PMID: 14142409]
[255]
Nyhan, W.L.; Pesek, J.; Sweetman, L.; Carpenter, D.G.; Carter, C.H. Genetics of an x-linked disorder of uric acid metabolism and cerebral function. Pediatr. Res., 1967, 1(1), 5-13.
[http://dx.doi.org/10.1203/00006450-196701000-00001]
[256]
Seegmiller, J.E.; Rosenbloom, F.M.; Kelley, W.N. Enzyme defect associated with a sex-linked human neurological disorder and excessive purine synthesis. Science, 1967, 155(3770), 1682-1684.
[http://dx.doi.org/10.1126/science.155.3770.1682] [PMID: 6020292]
[257]
Balendiran, G.K.; Molina, J.A.; Xu, Y.; Torres-Martinez, J.; Stevens, R.; Focia, P.J.; Eakin, A.E.; Sacchettini, J.C.; Craig, S.P. III Ternary complex structure of human HGPRTase, PRPP, Mg2+, and the inhibitor HPP reveals the involvement of the flexible loop in substrate binding. Protein Sci., 1999, 8(5), 1023-1031.
[http://dx.doi.org/10.1110/ps.8.5.1023] [PMID: 10338013]
[258]
Keough, D.T.; Brereton, I.M.; de Jersey, J.; Guddat, L.W. The crystal structure of free human hypoxanthine-guanine phosphoribosyltransferase reveals extensive conformational plasticity throughout the catalytic cycle. J. Mol. Biol., 2005, 351(1), 170-181.
[http://dx.doi.org/10.1016/j.jmb.2005.05.061] [PMID: 15990111]
[259]
Nyhan, W.L. The recognition of Lesch-Nyhan syndrome as an inborn error of purine metabolism. J. Inherit. Metab. Dis., 1997, 20(2), 171-178.
[http://dx.doi.org/10.1023/A:1005348504512] [PMID: 9211189]
[260]
Fu, R.; Chen, C-J.; Jinnah, H.A. Genotypic and phenotypic spectrum in attenuated variants of Lesch-Nyhan disease. Mol. Genet. Metab., 2014, 112(4), 280-285.
[http://dx.doi.org/10.1016/j.ymgme.2014.05.012] [PMID: 24930028]
[261]
Jinnah, H.A.; Ceballos-Picot, I.; Torres, R.J.; Visser, J.E.; Schretlen, D.J.; Verdu, A.; Laróvere, L.E.; Chen, C-J.; Cossu, A.; Wu, C-H.; Sampat, R.; Chang, S-J.; de Kremer, R.D.; Nyhan, W.; Harris, J.C.; Reich, S.G.; Puig, J.G. Attenuated variants of Lesch-Nyhan disease. Brain, 2010, 133(Pt 3), 671-689.
[http://dx.doi.org/10.1093/brain/awq013] [PMID: 20176575]
[262]
Benke, P.J.; Herrick, N.; Hebert, A. Hypoxanthine-guanine phosphoribosyltransferase variant associated with accelerated purine synthesis. J. Clin. Invest., 1973, 52(9), 2234-2240.
[http://dx.doi.org/10.1172/JCI107409] [PMID: 4353774]
[263]
Fu, R.; Jinnah, H.A. Genotype-phenotype correlations in Lesch-Nyhan disease: Moving beyond the gene. J. Biol. Chem., 2012, 287(5), 2997-3008.
[http://dx.doi.org/10.1074/jbc.M111.317701] [PMID: 22157001]
[264]
Ceballos-Picot, I.; Mockel, L.; Potier, M-C.; Dauphinot, L.; Shirley, T.L.; Torero-Ibad, R.; Fuchs, J.; Jinnah, H.A. Hypoxanthine-guanine phosphoribosyl transferase regulates early developmental programming of dopamine neurons: Implications for Lesch-Nyhan disease pathogenesis. Hum. Mol. Genet., 2009, 18(13), 2317-2327.
[http://dx.doi.org/10.1093/hmg/ddp164] [PMID: 19342420]
[265]
Guibinga, G-H.; Hsu, S.; Friedmann, T. Deficiency of the housekeeping gene hypoxanthine-guanine phosphoribosyltransferase (HPRT) dysregulates neurogenesis. Mol. Ther., 2010, 18(1), 54-62.
[http://dx.doi.org/10.1038/mt.2009.178] [PMID: 19672249]
[266]
Torres, R.J.; Puig, J.G. Hypoxanthine-guanine phosophoribosyltransferase (HPRT) deficiency: Lesch-Nyhan syndrome. Orphanet J. Rare Dis., 2007, 2(1), 48.
[http://dx.doi.org/10.1186/1750-1172-2-48] [PMID: 18067674]
[267]
Bell, S.; Kolobova, I.; Crapper, L.; Ernst, C. Lesch-Nyhan syndrome: Models, theories, and therapies. Mol. Syndromol., 2016, 7(6), 302-311.
[http://dx.doi.org/10.1159/000449296] [PMID: 27920633]
[268]
Meek, S.; Thomson, A.J.; Sutherland, L.; Sharp, M.G.F.; Thomson, J.; Bishop, V.; Meddle, S.L.; Gloaguen, Y.; Weidt, S.; Singh-Dolt, K.; Buehr, M.; Brown, H.K.; Gill, A.C.; Burdon, T. Reduced levels of dopamine and altered metabolism in brains of HPRT knock-out rats: A new rodent model of Lesch-Nyhan Disease. Sci. Rep., 2016, 6(1), 25592.
[http://dx.doi.org/10.1038/srep25592] [PMID: 27185277]
[269]
Zennaro, C.; Tonon, F.; Zarattini, P.; Clai, M.; Corbelli, A.; Carraro, M.; Marchetti, M.; Ronda, L.; Paredi, G.; Rastaldi, M.P.; Percudani, R. The renal phenotype of allopurinol-treated HPRT-deficient mouse. PLoS One, 2017, 12(3)e0173512
[http://dx.doi.org/10.1371/journal.pone.0173512] [PMID: 28282408]
[270]
Zhang, Y.; Li, Q.; Wang, F.; Xing, C. A zebrafish (danio rerio) model for high-throughput screening food and drugs with uric acid-lowering activity. Biochem. Biophys. Res. Commun., 2019, 508(2), 494-498.
[http://dx.doi.org/10.1016/j.bbrc.2018.11.050] [PMID: 30503500]
[271]
De Gregorio, L.; Jinnah, H.A.; Harris, J.C.; Nyhan, W.L.; Schretlen, D.J.; Trombley, L.M.; O’Neill, J.P. Lesch-Nyhan disease in a female with a clinically normal monozygotic twin. Mol. Genet. Metab., 2005, 85(1), 70-77.
[http://dx.doi.org/10.1016/j.ymgme.2004.11.009] [PMID: 15862283]
[272]
Endres, W.; Helmig, M.; Shin, Y.S.; Albert, E.; Wank, R.; Ibel, H.; Weiss, M.; Hadorn, H.B.; Hass, R. Bone marrow transplantation in Lesch-Nyhan disease. J. Inherit. Metab. Dis., 1991, 14(2), 270-271.
[http://dx.doi.org/10.1007/BF01800605] [PMID: 1886412]
[273]
Nyhan, W.L.; Parkman, R.; Page, T.; Gruber, H.E.; Pyati, J.; Jolly, D.; Friedmann, T. Bone marrow transplantation in Lesch-Nyhan disease. Advances in experimental medicine and biology,, 1986, 195(Pt A), 167-170.
[http://dx.doi.org/10.1007/978-1-4684-5104-7_26]
[274]
Watts, R.W.; McKeran, R.O.; Brown, E.; Andrews, T.M.; Griffiths, M.I. Clinical and biochemical studies on treatment of Lesch-Nyhan syndrome. Arch. Dis. Child., 1974, 49(9), 693-702.
[http://dx.doi.org/10.1136/adc.49.9.693] [PMID: 4472817]
[275]
Torres, R.J. Current understanding of Lesch-Nyhan disease and potential therapeutic targets. Expert Opin. Orphan Drugs, 2019, 7(7-8), 349-361.
[http://dx.doi.org/10.1080/21678707.2019.1652597]
[276]
Li, S.; Yang, H.; Guo, Y.; Wei, F.; Yang, X.; Li, D.; Li, M.; Xu, W.; Li, W.; Sun, L.; Gao, Y.; Wang, Y. Comparative efficacy and safety of urate-lowering therapy for the treatment of hyperuricemia: A systematic review and network meta-analysis. Sci. Rep., 2016, 6(1), 33082.
[http://dx.doi.org/10.1038/srep33082] [PMID: 27605442]
[277]
Conley, T.G.; Priest, D.G. Thermodynamics and stoicheiometry of the binding of substrate analogues to uricase. Biochem. J., 1980, 187(3), 727-732.
[http://dx.doi.org/10.1042/bj1870727] [PMID: 6821367]
[278]
Hershfield, M.S.; Roberts, L.J., II; Ganson, N.J.; Kelly, S.J.; Santisteban, I.; Scarlett, E.; Jaggers, D.; Sundy, J.S. Treating gout with pegloticase, a PEGylated urate oxidase, provides insight into the importance of uric acid as an antioxidant in vivo. Proc. Natl. Acad. Sci. USA, 2010, 107(32), 14351-14356.
[http://dx.doi.org/10.1073/pnas.1001072107] [PMID: 20660758]
[279]
Owens, R.E.; Swanson, H.; Twilla, J.D. Hemolytic anemia induced by pegloticase infusion in a patient with G6PD deficiency. J. Clin. Rheumatol., 2016, 22(2), 97-98.
[http://dx.doi.org/10.1097/RHU.0000000000000370] [PMID: 26906307]
[280]
Bomalaski, J.S.; Holtsberg, F.W.; Ensor, C.M.; Clark, M.A. Uricase formulated with polyethylene glycol (uricase-PEG 20): biochemical rationale and preclinical studies. J. Rheumatol., 2002, 29(9), 1942-1949.
[PMID: 12233890]
[281]
Brogard, J.M.; Coumaros, D.; Franckhauser, J.; Stahl, A.; Stahl, J. Enzymatic uricolysis: A study of the effect of a fungal urate-oxydase. Rev. Eur. Etud. Clin. Biol., 1972, 17(9), 890-895.
[PMID: 4631795]
[282]
Pui, C.H.; Relling, M.V.; Lascombes, F.; Harrison, P.L.; Struxiano, A.; Mondesir, J.M.; Ribeiro, R.C.; Sandlund, J.T.; Rivera, G.K.; Evans, W.E.; Mahmoud, H.H. Urate oxidase in prevention and treatment of hyperuricemia associated with lymphoid malignancies. Leukemia, 1997, 11(11), 1813-1816.
[http://dx.doi.org/10.1038/sj.leu.2400850] [PMID: 9369411]
[283]
Alakel, N.; Middeke, J.M.; Schetelig, J.; Bornhäuser, M. Prevention and treatment of tumor lysis syndrome, and the efficacy and role of rasburicase. OncoTargets Ther., 2017, 10, 597-605.
[http://dx.doi.org/10.2147/OTT.S103864]
[284]
Roche, A.; Pérez-Dueñas, B.; Camacho, J.A.; Torres, R.J.; Puig, J.G.; García-Cazorla, A.; Artuch, R. Efficacy of rasburicase in hyperuricemia secondary to Lesch-Nyhan syndrome. Am. J. Kidney Dis., 2009, 53(4), 677-680.
[http://dx.doi.org/10.1053/j.ajkd.2008.09.011] [PMID: 18992978]
[285]
Thumfart, J.; Weschke, B.; Ringe, H.; Weinhold, N.; Müller, D. Acute renal failure unmasking Lesch-Nyhan disease in a patient with tuberous sclerosis complex. Eur. J. Paediatr. Neurol., 2016, 20(4), 649-651.
[http://dx.doi.org/10.1016/j.ejpn.2016.04.014] [PMID: 27185581]
[286]
Bayol, A.; Capdevielle, J.; Malazzi, P.; Buzy, A.; Claude Bonnet, M.; Colloc’h, N.; Mornon, J-P.; Loyaux, D.; Ferrara, P. Modification of a reactive cysteine explains differences between rasburicase and Uricozyme, a natural Aspergillus flavus uricase. Biotechnol. Appl. Biochem., 2002, 36(1), 21-31.
[http://dx.doi.org/10.1042/BA20010083] [PMID: 12149119]
[287]
Pui, C.H.; Mahmoud, H.H.; Wiley, J.M.; Woods, G.M.; Leverger, G.; Camitta, B.; Hastings, C.; Blaney, S.M.; Relling, M.V.; Reaman, G.H. Recombinant urate oxidase for the prophylaxis or treatment of hyperuricemia in patients With leukemia or lymphoma. J. Clin. Oncol., 2001, 19(3), 697-704.
[http://dx.doi.org/10.1200/JCO.2001.19.3.697] [PMID: 11157020]
[288]
Richette, P.; Brière, C.; Hoenen-Clavert, V.; Loeuille, D.; Bardin, T. Rasburicase for tophaceous gout not treatable with allopurinol: An exploratory study. J. Rheumatol., 2007, 34(10), 2093-2098.
[PMID: 17896799]
[289]
Moia, R.; Boggio, E.; Gigliotti, L.; Crisà, E.; De Paoli, L.; Margiotta Casaluci, G.; Rolla, R.; Patriarca, A.; Gaidano, G.; Dianzani, U.; Bruna, R. Anti-rasburicase antibodies induce clinical refractoriness by inhibiting the enzyme catalytic activity. Hematol. Oncol., 2020, 38(2), 204-206.
[http://dx.doi.org/10.1002/hon.2700] [PMID: 31985842]
[290]
Feng, X.; Dong, K.; Pham, D.; Pence, S.; Inciardi, J.; Bhutada, N.S. Efficacy and cost of single-dose rasburicase in prevention and treatment of adult tumour lysis syndrome: A meta-analysis. J. Clin. Pharm. Ther., 2013, 38(4), 301-308.
[http://dx.doi.org/10.1111/jcpt.12061] [PMID: 23550846]
[291]
Cammalleri, L.; Malaguarnera, M. Rasburicase represents a new tool for hyperuricemia in tumor lysis syndrome and in gout. Int. J. Med. Sci., 2007, 4(2), 83-93.
[http://dx.doi.org/10.7150/ijms.4.83] [PMID: 17396159]
[292]
de Bont, J.M.; Pieters, R. Management of hyperuricemia with rasburicase review. Nucleosides Nucleotides Nucleic Acids, 2004, 23(8-9), 1431-1440.
[http://dx.doi.org/10.1081/NCN-200027656] [PMID: 15571272]
[293]
Dinnel, J.; Moore, B.L.; Skiver, B.M.; Bose, P. Rasburicase in the management of tumor lysis: An evidence-based review of its place in therapy. Core Evid., 2015, 10, 23-38.
[294]
Navolanic, P.M.; Pui, C.H.; Larson, R.A.; Bishop, M.R.; Pearce, T.E.; Cairo, M.S.; Goldman, S.C.; Jeha, S.C.; Shanholtz, C.B.; Leonard, J.P.; McCubrey, J.A. Elitek-rasburicase: An effective means to prevent and treat hyperuricemia associated with tumor lysis syndrome, a Meeting Report, Dallas, Texas, January 2002. Leukemia, 2003, 17(3), 499-514.
[http://dx.doi.org/10.1038/sj.leu.2402847] [PMID: 12646938]
[295]
Oldfield, V.; Perry, C.M. Rasburicase: A review of its use in the management of anticancer therapy-induced hyperuricaemia. Drugs, 2006, 66(4), 529-545.
[http://dx.doi.org/10.2165/00003495-200666040-00008] [PMID: 16597166]
[296]
Pui, C-H. Rasburicase: A potent uricolytic agent. Expert Opin. Pharmacother., 2002, 3(4), 433-442.
[http://dx.doi.org/10.1517/14656566.3.4.433] [PMID: 11934348]
[297]
Ueng, S. Rasburicase (Elitek): A novel agent for tumor lysis syndrome. Proc. Bayl. Univ. Med. Cent., 2005, 18(3), 275-279.
[http://dx.doi.org/10.1080/08998280.2005.11928082] [PMID: 16200184]
[298]
Sherman, M.R.; Saifer, M.G.P.; Perez-Ruiz, F. PEG-uricase in the management of treatment-resistant gout and hyperuricemia. Adv. Drug Deliv. Rev., 2008, 60(1), 59-68.
[http://dx.doi.org/10.1016/j.addr.2007.06.011] [PMID: 17826865]
[299]
Lipsky, P.E.; Calabrese, L.H.; Kavanaugh, A.; Sundy, J.S.; Wright, D.; Wolfson, M.; Becker, M.A. Pegloticase immunogenicity: The relationship between efficacy and antibody development in patients treated for refractory chronic gout. Arthritis Res. Ther., 2014, 16(2), R60.
[http://dx.doi.org/10.1186/ar4497] [PMID: 24588936]
[300]
Sundy, J.S.; Becker, M.A.; Baraf, H.S.B.; Barkhuizen, A.; Moreland, L.W.; Huang, W.; Waltrip, R.W., II; Maroli, A.N.; Horowitz, Z.; Investigators, P.P.S. Reduction of plasma urate levels following treatment with multiple doses of pegloticase (polyethylene glycol-conjugated uricase) in patients with treatment-failure gout: Results of a phase II randomized study. Arthritis Rheum., 2008, 58(9), 2882-2891.
[http://dx.doi.org/10.1002/art.23810] [PMID: 18759308]
[301]
Calabrese, L.H.; Kavanaugh, A.; Yeo, A.E.; Lipsky, P.E. Frequency, distribution and immunologic nature of infusion reactions in subjects receiving pegloticase for chronic refractory gout. Arthritis Res. Ther., 2017, 19(1), 191.
[http://dx.doi.org/10.1186/s13075-017-1396-8] [PMID: 28818095]
[302]
Ea, H.K.; Richette, P. Critical appraisal of the role of pegloticase in the management of gout. Open Access Rheumatol. Research and reviews, 2012, 4, 63-70.
[http://dx.doi.org/10.2147/OARRR.S17431]
[303]
Guttmann, A.; Krasnokutsky, S.; Pillinger, M.H.; Berhanu, A. Pegloticase in gout treatment - safety issues, latest evidence and clinical considerations. Ther. Adv. Drug Saf., 2017, 8(12), 379-388.
[http://dx.doi.org/10.1177/2042098617727714] [PMID: 29204266]
[304]
Reinders, M.K.; Jansen, T.L. New advances in the treatment of gout: review of pegloticase. Ther. Clin. Risk Manag., 2010, 6, 543-550.
[http://dx.doi.org/10.2147/TCRM.S6043]
[305]
Schlesinger, N.; Lipsky, P.E. Pegloticase treatment of chronic refractory gout: Update on efficacy and safety. Semin. Arthritis Rheum., 2020, 50(3S)(Suppl.), S31-S38.
[http://dx.doi.org/10.1016/j.semarthrit.2020.04.011] [PMID: 32620200]
[306]
Ramazzina, I.; Folli, C.; Secchi, A.; Berni, R.; Percudani, R. Completing the uric acid degradation pathway through phylogenetic comparison of whole genomes. Nat. Chem. Biol., 2006, 2(3), 144-148.
[http://dx.doi.org/10.1038/nchembio768] [PMID: 16462750]
[307]
Stevenson, W.S.; Hyland, C.D.; Zhang, J-G.; Morgan, P.O.; Willson, T.A.; Gill, A.; Hilton, A.A.; Viney, E.M.; Bahlo, M.; Masters, S.L.; Hennebry, S.; Richardson, S.J.; Nicola, N.A.; Metcalf, D.; Hilton, D.J.; Roberts, A.W.; Alexander, W.S. Deficiency of 5-hydroxyisourate hydrolase causes hepatomegaly and hepatocellular carcinoma in mice. Proc. Natl. Acad. Sci. USA, 2010, 107(38), 16625-16630.
[http://dx.doi.org/10.1073/pnas.1010390107] [PMID: 20823251]
[308]
Oh, J.; Liuzzi, A.; Ronda, L.; Marchetti, M.; Corsini, R.; Folli, C.; Bettati, S.; Rhee, S.; Percudani, R. Diatom allantoin synthase provides structural insights into natural fusion protein therapeutics. ACS Chem. Biol., 2018, 13(8), 2237-2246.
[http://dx.doi.org/10.1021/acschembio.8b00404] [PMID: 29874034]
[309]
Ronda, L.; Marchetti, M.; Piano, R.; Liuzzi, A.; Corsini, R.; Percudani, R.; Bettati, S. A trivalent enzymatic system for uricolytic therapy of HPRT deficiency and Lesch-Nyhan disease. Pharm. Res., 2017, 34(7), 1477-1490.
[http://dx.doi.org/10.1007/s11095-017-2167-6] [PMID: 28508122]
[310]
Hydery, T.; Coppenrath, V.A. A comprehensive review of pegvaliase, an enzyme substitution therapy for the treatment of phenylketonuria. Drug Target Insights, 2019, 13
[http://dx.doi.org/10.1177/1177392819857089]
[311]
Mahan, K.C.; Gandhi, M.A.; Anand, S. Pegvaliase: A novel treatment option for adults with phenylketonuria. Curr. Med. Res. Opin., 2019, 35(4), 647-651.
[http://dx.doi.org/10.1080/03007995.2018.1528215] [PMID: 30247930]
[312]
Bélanger-Quintana, A.; Burlina, A.; Harding, C.O.; Muntau, A.C. Up to date knowledge on different treatment strategies for phenylketonuria. Mol. Genet. Metab., 2011, 104(Suppl. 0), S19-S25.
[http://dx.doi.org/10.1016/j.ymgme.2011.08.009]
[313]
Bell, S.M.; Wendt, D.J.; Zhang, Y.; Taylor, T.W.; Long, S.; Tsuruda, L.; Zhao, B.; Laipis, P.; Fitzpatrick, P.A. Formulation and PEGylation optimization of the therapeutic PEGylated phenylalanine ammonia lyase for the treatment of phenylketonuria. PLoS One, 2017, 12(3)e0173269
[http://dx.doi.org/10.1371/journal.pone.0173269] [PMID: 28282402]
[314]
Jingzhong, L.; Hua, X.; Wei, H.; Zhangling, Z.; Jin, Z.; Qingyuan, L. Cloning and expression of phenylalanine ammonia lyase cDNA in Escherichia coli. Chin. J. Biotechnol., 1998, 14(4), 227-232.
[PMID: 10503639]
[315]
Sarkissian, C.N.; Shao, Z.; Blain, F.; Peevers, R.; Su, H.; Heft, R.; Chang, T.M.; Scriver, C.R. A different approach to treatment of phenylketonuria: phenylalanine degradation with recombinant phenylalanine ammonia lyase. Proc. Natl. Acad. Sci. USA, 1999, 96(5), 2339-2344.
[http://dx.doi.org/10.1073/pnas.96.5.2339] [PMID: 10051643]
[316]
Schulz, W.; Eiben, H.G.; Hahlbrock, K. Expression in escherichia coli of catalytically active phenylalanine ammonia-lyase from parsley. FEBS Lett., 1989, 258(2), 335-338.
[http://dx.doi.org/10.1016/0014-5793(89)81687-4] [PMID: 2689222]
[317]
Castañeda, M.T.; Adachi, O.; Hours, R.A. Reduction of L-phenylalanine in protein hydrolysates using L-phenylalanine ammonia-lyase from Rhodosporidium toruloides. J. Ind. Microbiol. Biotechnol., 2015, 42(10), 1299-1307.
[http://dx.doi.org/10.1007/s10295-015-1664-z] [PMID: 26243390]
[318]
Sacharow, S.; Papaleo, C.; Almeida, K.; Goodlett, B.; Kritzer, A.; Levy, H.; Martell, L.; Wessel, A.; Viau, K. First 1.5 years of pegvaliase clinic: Experiences and outcomes. Mol. Genet. Metab. Rep., 2020, 24.
[319]
Thomas, J.; Levy, H.; Amato, S.; Vockley, J.; Zori, R.; Dimmock, D.; Harding, C.O.; Bilder, D.A.; Weng, H.H.; Olbertz, J.; Merilainen, M.; Jiang, J.; Larimore, K.; Gupta, S.; Gu, Z.; Northrup, H. Pegvaliase for the treatment of phenylketonuria: Results of a long-term phase 3 clinical trial program (PRISM). Mol. Genet. Metab., 2018, 124(1), 27-38.
[http://dx.doi.org/10.1016/j.ymgme.2018.03.006] [PMID: 29653686]
[320]
Gupta, S.; Lau, K.; Harding, C.O.; Shepherd, G.; Boyer, R.; Atkinson, J.P.; Knight, V.; Olbertz, J.; Larimore, K.; Gu, Z.; Li, M.; Rosen, O.; Zoog, S.J.; Weng, H.H.; Schweighardt, B. Association of immune response with efficacy and safety outcomes in adults with phenylketonuria administered pegvaliase in phase 3 clinical trials. EBioMedicine, 2018, 37, 366-373.
[http://dx.doi.org/10.1016/j.ebiom.2018.10.038]
[321]
Longo, N.; Dimmock, D.; Levy, H.; Viau, K.; Bausell, H.; Bilder, D.A.; Burton, B.; Gross, C.; Northrup, H.; Rohr, F.; Sacharow, S.; Sanchez-Valle, A.; Stuy, M.; Thomas, J.; Vockley, J.; Zori, R.; Harding, C.O. Evidence- and consensus- based recommendations for the use of pegvaliase in adults with phenylketonuria. Genetics in medicine : Official journal of the American College of Medical Genetics, 2019, 21(8), 1851-1867.
[322]
Mays, Z.J.S.; Mohan, K.; Trivedi, V.D.; Chappell, T.C.; Nair, N.U. Directed evolution of Anabaena variabilis phenylalanine ammonia-lyase (PAL) identifies mutants with enhanced activities. Chem. Commun. (Camb.), 2020, 56(39), 5255-5258.
[http://dx.doi.org/10.1039/D0CC00783H] [PMID: 32270162]
[323]
Pereira de Sousa, I.; Gourmel, C.; Berkovska, O.; Burger, M.; Leroux, J.C. A microparticulate based formulation to protect therapeutic enzymes from proteolytic digestion: Phenylalanine ammonia lyase as case study. Sci. Rep., 2020, 10(1), 3651.
[http://dx.doi.org/10.1038/s41598-020-60463-y] [PMID: 32107425]
[324]
Richards, D.Y.; Winn, S.R.; Dudley, S.; Nygaard, S.; Mighell, T.L.; Grompe, M.; Harding, C.O. AAV-Mediated CRISPR/Cas9 gene editing in murine phenylketonuria. Mol. Ther. Methods Clin. Dev., 2020, 17, 234-245.
[325]
Bowden, S.A.; Foster, B.L. Profile of asfotase alfa in the treatment of hypophosphatasia: Design, development, and place in therapy. Drug Des. Devel. Ther., 2018, 12, 3147-3161.
[http://dx.doi.org/10.2147/DDDT.S154922]
[326]
Orimo, H. Pathophysiology of hypophosphatasia and the potential role of asfotase alfa. Ther. Clin. Risk Manag., 2016, 12, 777-786.
[http://dx.doi.org/10.2147/TCRM.S87956]
[327]
Scott, L.J. Asfotase alfa in perinatal/infantile-onset and juvenile-onset hypophosphatasia: A guide to its use in the USA. BioDrugs : Clinical immunotherapeutics, biopharmaceuticals and gene therapy, 2016, 30(1), 41-48.
[328]
Whyte, M.P. Commentary. Clin. Chem., 2018, 64(4), 643-644.
[http://dx.doi.org/10.1373/clinchem.2017.280784] [PMID: 29592907]
[329]
Whyte, M.P.; Greenberg, C.R.; Salman, N.J.; Bober, M.B.; McAlister, W.H.; Wenkert, D.; Van Sickle, B.J.; Simmons, J.H.; Edgar, T.S.; Bauer, M.L.; Hamdan, M.A.; Bishop, N.; Lutz, R.E.; McGinn, M.; Craig, S.; Moore, J.N.; Taylor, J.W.; Cleveland, R.H.; Cranley, W.R.; Lim, R.; Thacher, T.D.; Mayhew, J.E.; Downs, M.; Millán, J.L.; Skrinar, A.M.; Crine, P.; Landy, H. Enzyme-replacement therapy in life-threatening hypophosphatasia. N. Engl. J. Med., 2012, 366(10), 904-913.
[http://dx.doi.org/10.1056/NEJMoa1106173] [PMID: 22397652]
[330]
Mornet, E.; Stura, E.; Lia-Baldini, A.S.; Stigbrand, T.; Ménez, A.; Le Du, M.H. Structural evidence for a functional role of human tissue nonspecific alkaline phosphatase in bone mineralization. J. Biol. Chem., 2001, 276(33), 31171-31178.
[http://dx.doi.org/10.1074/jbc.M102788200] [PMID: 11395499]
[331]
Ikeue, R.; Nakamura-Takahashi, A.; Nitahara-Kasahara, Y.; Watanabe, A.; Muramatsu, T.; Sato, T.; Okada, T. Bone-Targeted Alkaline Phosphatase Treatment of Mandibular Bone and Teeth in Lethal Hypophosphatasia via an scAAV8 Vector. Molecular therapy. Methods and clinical developmen, 2018, 10, 361-370.
[http://dx.doi.org/10.1016/j.omtm.2018.08.004]
[332]
Fedde, K.N.; Blair, L.; Silverstein, J.; Coburn, S.P.; Ryan, L.M.; Weinstein, R.S.; Waymire, K.; Narisawa, S.; Millán, J.L.; MacGregor, G.R.; Whyte, M.P. Alkaline phosphatase knock-out mice recapitulate the metabolic and skeletal defects of infantile hypophosphatasia. Journal of bone and mineral research : The official journal of the American Society for Bone and Mineral Research,, 1999, 14(12), 2015-2026.
[333]
Narisawa, S.; Fröhlander, N.; Millán, J.L. Inactivation of two mouse alkaline phosphatase genes and establishment of a model of infantile hypophosphatasia. Dev. Dyn., 1997, 208(3), 432-446.
[http://dx.doi.org/10.1002/(SICI)1097-0177(199703)208:3<432:AID-AJA13>3.0.CO;2-1] [PMID: 9056646]
[334]
Waymire, K.G.; Mahuren, J.D.; Jaje, J.M.; Guilarte, T.R.; Coburn, S.P.; MacGregor, G.R. Mice lacking tissue non-specific alkaline phosphatase die from seizures due to defective metabolism of vitamin B-6. Nat. Genet., 1995, 11(1), 45-51.
[http://dx.doi.org/10.1038/ng0995-45] [PMID: 7550313]
[335]
Millán, J.L.; Narisawa, S.; Lemire, I.; Loisel, T.P.; Boileau, G.; Leonard, P.; Gramatikova, S.; Terkeltaub, R.; Camacho, N.P.; McKee, M.D.; Crine, P.; Whyte, M.P. Enzyme replacement therapy for murine hypophosphatasia. Journal of bone and mineral research : The official journal of the American Society for Bone and Mineral Research, 2008, 26(3), 777-787.
[336]
Whyte, M.P.; Simmons, J.H.; Moseley, S.; Fujita, K.P.; Bishop, N.; Salman, N.J.; Taylor, J.; Phillips, D.; McGinn, M.; McAlister, W.H. Asfotase alfa for infants and young children with hypophosphatasia: 7 year outcomes of a single-arm, open-label, phase 2 extension trial. Lancet Diabetes Endocrinol., 2019, 7(2), 93-105.
[http://dx.doi.org/10.1016/S2213-8587(18)30307-3] [PMID: 30558909]
[337]
Nishioka, T.; Tomatsu, S.; Gutierrez, M.A.; Miyamoto, K.; Trandafirescu, G.G.; Lopez, P.L.; Grubb, J.H.; Kanai, R.; Kobayashi, H.; Yamaguchi, S.; Gottesman, G.S.; Cahill, R.; Noguchi, A.; Sly, W.S. Enhancement of drug delivery to bone: Characterization of human tissue-nonspecific alkaline phosphatase tagged with an acidic oligopeptide. Mol. Genet. Metab., 2006, 88(3), 244-255.
[http://dx.doi.org/10.1016/j.ymgme.2006.02.012] [PMID: 16616566]
[338]
Hofmann, C.E.; Harmatz, P.; Vockley, J.; Högler, W.; Nakayama, H.; Bishop, N.; Martos-Moreno, G.Á.; Moseley, S.; Fujita, K.P.; Liese, J.; Rockman-Greenberg, C. Efficacy and safety of asfotase alfa in infants and young children with hypophosphatasia: A phase 2 open-label study. J. Clin. Endocrinol. Metab., 2019, 104(7), 2735-2747.
[http://dx.doi.org/10.1210/jc.2018-02335] [PMID: 30811537]
[339]
Nishizawa, H.; Sato, Y.; Ishikawa, M.; Arakawa, Y.; Iijima, M.; Akiyama, T.; Takano, K.; Watanabe, A.; Kosho, T. Marked motor function improvement in a 32-year-old woman with childhood-onset hypophosphatasia by asfotase alfa therapy: Evaluation based on standardized testing batteries used in Duchenne muscular dystrophy clinical trials. Mol. Genet. Metab. Rep., 2020, 25.
[340]
Whyte, M.P. Hypophosphatasia - aetiology, nosology, pathogenesis, diagnosis and treatment. Nat. Rev. Endocrinol., 2016, 12(4), 233-246.
[http://dx.doi.org/10.1038/nrendo.2016.14] [PMID: 26893260]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy