Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Pyrogallol Induces Antimicrobial Effect and Cell Membrane Disruption on Methicillin-Resistant Staphylococcus aureus (MRSA)

Author(s): Yik-Ling Chew*, Chairunnisa Arasi and Joo-Kheng Goh

Volume 18, Issue 1, 2022

Published on: 20 August, 2021

Article ID: e260821193606 Pages: 9

DOI: 10.2174/1573407217666210526121512

Price: $65

conference banner
Abstract

Background: Pyrogallol is present naturally in numerous plants. It is also an important functional group in many polyphenol compounds.

Objectives: The antibacterial activity, efficacy, and mechanism of pyrogallol towards MRSA strains were evaluated.

Methods: Microbroth dilution method was used to determine the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC). Time-kill kinetic assay was adopted to determine the killing pattern of pyrogallol towards MRSA. The antibacterial mechanism was determined using Scanning Electron Microscopy (SEM), Fourier Transform-Infrared (FT-IR) spectroscopy and crystal violet assay.

Results: Pyrogallol exhibited strong antibacterial activity against MRSA with MIC and MBC 15.6 μg/mL. Pyrogallol could inhibit the exponential growth of MRSA and kill the bacterial cells at higher concentrations. Pyrogallol was found targeting the cell membrane fatty acids, proteins/peptides, polysaccharides/carbohydrates and peptidoglycan of cell walls in the antibacterial mechanism. This has been confirmed through SEM, FT-IR spectroscopy and crystal violet assay.

Conclusion: Overall, the findings suggest that pyrogallol has the potential to be used as antibiotics which are used to treat multidrug-resistant bacteria.

Keywords: Pyrogallol, methicillin-resistant Staphylococcus aureus, antibacterial, mechanism, cell membrane, peptidoglycan.

Graphical Abstract

[1]
Gordon, R.J.; Lowy, F.D. Pathogenesis of methicillin-resistant Staphylococcus aureus infection. Clin. Infect. Dis., 2008, 46(Supplement_5), S350-S359.
[http://dx.doi.org/10.1086/533591] [PMID: 18462090]
[2]
Murphy, E.; Spencer, S.J.; Young, D.; Jones, B.; Blyth, M.J. MRSA colonisation and subsequent risk of infection despite effective eradication in orthopaedic elective surgery. J. Bone Joint Surg. Br., 2011, 93(4), 548-551.
[http://dx.doi.org/10.1302/0301-620X.93B4.24969] [PMID: 21464498]
[3]
Chew, Y.L.; Mahadi, A.M.; Wong, K.M.; Goh, J.K. Anti-methicillin-resistance Staphylococcus aureus (MRSA) compounds from Bauhinia kockiana Korth. And their mechanism of antibacterial activity. BMC Complement. Altern. Med., 2018, 18(1), 70.
[http://dx.doi.org/10.1186/s12906-018-2137-5] [PMID: 29463252]
[4]
Jaganath, D.; Jorakate, P.; Makprasert, S.; Sangwichian, O.; Akarachotpong, T.; Thamthitiwat, S.; Khemla, S.; DeFries, T.; Baggett, H.C.; Whistler, T.; Gregory, C.J.; Rhodes, J. Staphylococcus aureus bacteremia incidence and methicillin resistance in Rural Thailand, 2006-2014. Am. J. Trop. Med. Hyg., 2018, 99(1), 155-163.
[http://dx.doi.org/10.4269/ajtmh.17-0631] [PMID: 29761760]
[5]
Sit, P.S.; Teh, C.S.J.; Idris, N.; Sam, I-C.; Syed Omar, S.F.; Sulaiman, H.; Thong, K.L.; Kamarulzaman, A.; Ponnampalavanar, S. Prevalence of methicillin-resistant Staphylococcus aureus (MRSA) infection and the molecular characteristics of MRSA bacteraemia over a two-year period in a tertiary teaching hospital in Malaysia. BMC Infect. Dis., 2017, 17(1), 274.
[http://dx.doi.org/10.1186/s12879-017-2384-y] [PMID: 28407796]
[6]
Abidin, N.Z.M.Z; Voon, L.C.V.; Wong, Z.Y.; Zakaria, M.; Lim, M.; Rosli, N.K.; Elhariri, S. MRSA infection in general surgical wards in a Malaysian Tertiary Hospital: A retrospective study. Ann. Surg., 2020, 1(2), 1008.
[http://dx.doi.org/10.4103/0256-4947.67077] [PMID: 20697171]
[7]
Saleha, A.; Zunita, Z. Methicillin resistant Staphylococcus aureus (MRSA): An emerging veterinary and zoonotic pathogen of public health concern and some studies in Malaysia. J. Anim. Vet. Adv., 2010, 9(7), 1094-1098.
[http://dx.doi.org/10.3923/javaa.2010.1094.1098]
[8]
Garoy, E.Y.; Gebreab, Y.B.; Achila, O.O.; Tekeste, D.G.; Kesete, R.; Ghirmay, R.; Kiflay, R.; Tesfu, T. Methicillin-Resistant Staphylococcus aureus (MRSA): Prevalence and antimicrobial sensitivity pattern among patients-a multicenter study in Asmara, Eritrea. Can. J. Infect. Dis. Med. Microb., 2019, 2019, 8321834.
[http://dx.doi.org/10.1155/2019/8321834] [PMID: 30881532]
[9]
Saleha, A.; Shamzarina, M.; Fauziah, O.; Zunita, Z. Methicillin-resistant Staphylococcus aureus (MRSA) isolated from pet animals and pet and non-pet owners. J. Vet. Malays., 2006, 18, 13-16.
[10]
Walsh, C. Where will new antibiotics come from? Nat. Rev. Microbiol., 2003, 1(1), 65-70.
[http://dx.doi.org/10.1038/nrmicro727] [PMID: 15040181]
[11]
Yoneyama, H.; Katsumata, R. Antibiotic resistance in bacteria and its future for novel antibiotic development. Biosci. Biotechnol. Biochem., 2006, 70(5), 1060-1075.
[http://dx.doi.org/10.1271/bbb.70.1060] [PMID: 16717405]
[12]
Kırmusaoğlu, S.; Gareayaghi, N.; Kocazeybek, B.S. Introductory chapter: The action mechanisms of antibiotics and antibiotic resistance.Antimicrobials, antibiotic resistance, antibiofilm strategies and activity methods; IntechOpen, 2019.
[13]
Taguri, T.; Tanaka, T.; Kouno, I. Antibacterial spectrum of plant polyphenols and extracts depending upon hydroxyphenyl structure. Biol. Pharm. Bull., 2006, 29(11), 2226-2235.
[http://dx.doi.org/10.1248/bpb.29.2226] [PMID: 17077519]
[14]
Mitsuhashi, S.; Saito, A.; Nakajima, N.; Shima, H.; Ubukata, M. Pyrogallol structure in polyphenols is involved in apoptosis-induction on HEK293T and K562 cells. Molecules, 2008, 13(12), 2998-3006.
[http://dx.doi.org/10.3390/molecules13122998] [PMID: 19052524]
[15]
Monobe, M.; Ema, K.; Tokuda, Y.; Maeda-Yamamoto, M. Enhancement of phagocytic activity of macrophage-like cells by pyrogallol-type green tea polyphenols through caspase signaling pathways. Cytotechnology, 2010, 62(3), 201-203.
[http://dx.doi.org/10.1007/s10616-010-9280-2] [PMID: 20502963]
[16]
Lima, V.N.; Oliveira-Tintino, C.D.; Santos, E.S.; Morais, L.P.; Tintino, S.R.; Freitas, T.S.; Geraldo, Y.S.; Pereira, R.L.; Cruz, R.P.; Menezes, I.R.; Coutinho, H.D. Antimicrobial and enhancement of the antibiotic activity by phenolic compounds: Gallic acid, caffeic acid and pyrogallol. Microb. Pathog., 2016, 99, 56-61.
[http://dx.doi.org/10.1016/j.micpath.2016.08.004] [PMID: 27497894]
[17]
Kubo, I.; Fujita, K.; Nihei, K. Molecular design of multifunctional antibacterial agents against methicillin resistant Staphylococcus aureus (MRSA). Bioorg. Med. Chem., 2003, 11(19), 4255-4262.
[http://dx.doi.org/10.1016/S0968-0896(03)00433-4] [PMID: 12951156]
[18]
Kang, S.; Li, Z.; Yin, Z.; Jia, R.; Song, X.; Li, L.; Chen, Z.; Peng, L.; Qu, J.; Hu, Z.; Lai, X.; Wang, G.; Liang, X.; He, C.; Yin, L. The antibacterial mechanism of berberine against Actinobacillus pleuropneumoniae. Nat. Prod. Res., 2015, 29(23), 2203-2206.
[http://dx.doi.org/10.1080/14786419.2014.1001388] [PMID: 25613587]
[19]
Booyens, J.; Thantsha, M.S. Fourier transform infra-red spectroscopy and flow cytometric assessment of the antibacterial mechanism of action of aqueous extract of garlic (Allium sativum) against selected probiotic Bifidobacterium strains. BMC Complement. Altern. Med., 2014, 14(1), 289.
[http://dx.doi.org/10.1186/1472-6882-14-289] [PMID: 25099661]
[20]
Devi, K.P.; Nisha, S.A.; Sakthivel, R.; Pandian, S.K. Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J. Ethnopharmacol., 2010, 130(1), 107-115.
[http://dx.doi.org/10.1016/j.jep.2010.04.025] [PMID: 20435121]
[21]
Tantala, J.; Thumanu, K.; Rachtanapun, C. An assessment of antibacterial mode of action of chitosan on Listeria innocua cells using real-time HATR-FTIR spectroscopy. Int. J. Biol. Macromol., 2019, 135, 386-393.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.05.032] [PMID: 31071397]
[22]
Erukhimovitch, V.; Pavlov, V.; Talyshinsky, M.; Souprun, Y.; Huleihel, M. FTIR microscopy as a method for identification of bacterial and fungal infections. J. Pharm. Biomed. Anal., 2005, 37(5), 1105-1108.
[http://dx.doi.org/10.1016/j.jpba.2004.08.010] [PMID: 15862692]
[23]
Alvarez-Ordóñez, A.; Halisch, J.; Prieto, M. Changes in fourier transform infrared spectra of Salmonella enterica serovars Typhimurium and Enteritidis after adaptation to stressful growth conditions. Int. J. Food Microbiol., 2010, 142(1-2), 97-105.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2010.06.008] [PMID: 20633942]
[24]
Jiang, W.; Saxena, A.; Song, B.; Ward, B.B.; Beveridge, T.J.; Myneni, S.C. Elucidation of functional groups on gram-positive and gram-negative bacterial surfaces using infrared spectroscopy. Langmuir, 2004, 20(26), 11433-11442.
[http://dx.doi.org/10.1021/la049043+] [PMID: 15595767]
[25]
Sauvage, E.; Terrak, M. Glycosyltransferases and transpeptidases/penicillin-binding proteins: Valuable targets for new antibacterials. Antibiotics (Basel), 2016, 5(1), 12.
[http://dx.doi.org/10.3390/antibiotics5010012] [PMID: 27025527]
[26]
Lim, J.Y.; Kim, C-M.; Rhee, J.H.; Kim, Y.R. Effects of pyrogallol on growth and cytotoxicity of wild-type and katG mutant strains of Vibrio vulnificus. PLoS One, 2016, 11(12), e0167699.
[http://dx.doi.org/10.1371/journal.pone.0167699] [PMID: 27936080]
[27]
Baruah, K.; Duy Phong, H.P.; Norouzitallab, P.; Defoirdt, T.; Bossier, P. The gnotobiotic brine shrimp (Artemia franciscana) model system reveals that the phenolic compound pyrogallol protects against infection through its prooxidant activity. Free Radic. Biol. Med., 2015, 89, 593-601.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.10.397] [PMID: 26459033]
[28]
Touriño, S.; Lizárraga, D.; Carreras, A.; Matito Sánchez, C.; Ugartondo, V.; Mitjans, M.; Centelles, J.J.; Vinardell, M.P.; Juliá, L.; Cascante, M. Antioxidant/prooxidant effects of bioactive polyphenolics. EJEAFChe, 2008, 7(8), 3348-3352.
[29]
Xu, C.; Liu, S.; Liu, Z.; Song, F.; Liu, S. Superoxide generated by pyrogallol reduces highly water-soluble tetrazolium salt to produce a soluble formazan: A simple assay for measuring superoxide anion radical scavenging activities of biological and abiological samples. Anal. Chim. Acta, 2013, 793, 53-60.
[http://dx.doi.org/10.1016/j.aca.2013.07.027] [PMID: 23953206]
[30]
Bernal, P.; Lemaire, S.; Pinho, M.G.; Mobashery, S.; Hinds, J.; Taylor, P.W. Insertion of epicatechin gallate into the cytoplasmic membrane of methicillin-resistant Staphylococcus aureus disrupts penicillin-binding protein (PBP) 2a-mediated β-lactam resistance by delocalizing PBP2. J. Biol. Chem., 2010, 285(31), 24055-24065.
[http://dx.doi.org/10.1074/jbc.M110.114793] [PMID: 20516078]
[31]
Simões, M.; Bennett, R.N.; Rosa, E.A. Understanding antimicrobial activities of phytochemicals against multidrug resistant bacteria and biofilms. Nat. Prod. Rep., 2009, 26(6), 746-757.
[http://dx.doi.org/10.1039/b821648g] [PMID: 19471683]
[32]
Aiyegoro, O.; Okoh, A. Use of bioactive plant products in combination with standard antibiotics: implications in antimicrobial chemotherapy. J. Med. Plants Res., 2009, 3(13), 1147-1152.
[33]
Li, G.; Xu, Y.; Wang, X.; Zhang, B.; Shi, C.; Zhang, W.; Xia, X. Tannin-rich fraction from pomegranate rind damages membrane of Listeria monocytogenes. Foodborne Pathog. Dis., 2014, 11(4), 313-319.
[http://dx.doi.org/10.1089/fpd.2013.1675] [PMID: 24447173]
[34]
Smith, A.H.; Zoetendal, E.; Mackie, R.I. Bacterial mechanisms to overcome inhibitory effects of dietary tannins. Microb. Ecol., 2005, 50(2), 197-205.
[http://dx.doi.org/10.1007/s00248-004-0180-x] [PMID: 16222487]
[35]
Chedea, V. S.; Braicu, C.; Chirilă, F.; Ogola, H. J. O.; Pelmuş, R. Ş.; Călin, L. G.; Socaciu, C. Antioxidant/prooxidant and antibacterial/probacterial effects of a grape seed extract in complex with lipoxygenase. BioMed Res. Int., 2014, 2014, 313684.
[36]
Caturla, N.; Vera-Samper, E.; Villalaín, J.; Mateo, C.R.; Micol, V. The relationship between the antioxidant and the antibacterial properties of galloylated catechins and the structure of phospholipid model membranes. Free Radic. Biol. Med., 2003, 34(6), 648-662.
[http://dx.doi.org/10.1016/S0891-5849(02)01366-7] [PMID: 12633742]
[37]
Gee, J.M.; Valderas, M.W.; Kovach, M.E.; Grippe, V.K.; Robertson, G.T.; Ng, W-L.; Richardson, J.M.; Winkler, M.E.; Roop, R.M., II The Brucella abortus Cu,Zn superoxide dismutase is required for optimal resistance to oxidative killing by murine macrophages and wild-type virulence in experimentally infected mice. Infect. Immun., 2005, 73(5), 2873-2880.
[http://dx.doi.org/10.1128/IAI.73.5.2873-2880.2005] [PMID: 15845493]
[38]
Upadhyay, G.; Gupta, S.P.; Prakash, O.; Singh, M.P. Pyrogallol- mediated toxicity and natural antioxidants: Triumphs and pitfalls of preclinical findings and their translational limitations. Chem. Biol. Interact., 2010, 183(3), 333-340.
[http://dx.doi.org/10.1016/j.cbi.2009.11.028] [PMID: 19948158]
[39]
Epand, R.M.; Walker, C.; Epand, R.F.; Magarvey, N.A. Molecular mechanisms of membrane targeting antibiotics. Biochim. Biophys. Acta, 2016, 1858(5), 980-987.
[http://dx.doi.org/10.1016/j.bbamem.2015.10.018] [PMID: 26514603]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy