Review Article

使用α-1抗胰蛋白酶的增强治疗:生产,配方和交付的现在和未来

卷 29, 期 3, 2022

发表于: 27 December, 2021

页: [385 - 410] 页: 26

弟呕挨: 10.2174/0929867328666210525161942

价格: $65

摘要

α1-抗胰蛋白酶是30多年前市场上推出的首批蛋白质疗法之一,迄今为止,它仅用于治疗称为α-1抗胰蛋白酶缺乏症的遗传病的严重形式。唯一批准的制剂来自等离子体,这带来了与其供应有限和高处理成本相关的潜在问题。此外,使用α-1抗胰蛋白酶的增强治疗仍然仅限于静脉输注,这对患者来说是一种繁琐的方案。在这里,我们回顾了最近关于其未来可能发展的文献,重点是i)血浆衍生蛋白的重组替代品,ii)新制剂和iii)新型给药途径。α-1抗胰蛋白酶的监管问题和仍然不清楚的非规范功能,可能与仅在血浆衍生蛋白中发现的糖基化模式有关,阻碍了新产品的引入。然而,除了治疗α-1抗胰蛋白酶缺乏症之外,潜在的新治疗适应症可能会为新的来源和新配方开辟道路。

关键词: α-抗胰蛋白酶,α-蛋白酶抑制剂,中性粒细胞弹性蛋白酶,增强疗法,蛋白质治疗制剂,肺部药物递送。

[1]
Janciauskiene, S.M.; Bals, R.; Koczulla, R.; Vogelmeier, C.; Köhnlein, T.; Welte, T. The discovery of α1-antitrypsin and its role in health and disease. Respir. Med., 2011, 105(8), 1129-1139.
[http://dx.doi.org/10.1016/j.rmed.2011.02.002] [PMID: 21367592]
[2]
Winkler, I.G.; Hendy, J.; Coughlin, P.; Horvath, A.; Lévesque, J.P. Serine protease inhibitors serpina1 and serpina3 are down-regulated in bone marrow during hematopoietic progenitor mobilization. J. Exp. Med., 2005, 201(7), 1077-1088.
[http://dx.doi.org/10.1084/jem.20042299] [PMID: 15795238]
[3]
Pham, C.T. Neutrophil serine proteases: specific regulators of inflammation. Nat. Rev. Immunol., 2006, 6(7), 541-550.
[http://dx.doi.org/10.1038/nri1841] [PMID: 16799473]
[4]
Janciauskiene, S.; Wrenger, S.; Immenschuh, S.; Olejnicka, B.; Greulich, T.; Welte, T.; Chorostowska-Wynimko, J. The multifaceted effects of alpha1-antitrypsin on neutrophil functions. Front. Pharmacol., 2018, 9, 341.
[http://dx.doi.org/10.3389/fphar.2018.00341] [PMID: 29719508]
[5]
Afonina, I.S.; Müller, C.; Martin, S.J.; Beyaert, R. Proteolytic processing of interleukin-1 family cytokines: variations on a common theme. Immunity, 2015, 42(6), 991-1004.
[http://dx.doi.org/10.1016/j.immuni.2015.06.003] [PMID: 26084020]
[6]
Lockett, A.D.; Kimani, S.; Ddungu, G.; Wrenger, S.; Tuder, R.M.; Janciauskiene, S.M.; Petrache, I. α1-Antitrypsin modulates lung endothelial cell inflammatory responses to TNF-α. Am. J. Respir. Cell Mol. Biol., 2013, 49(1), 143-150.
[http://dx.doi.org/10.1165/rcmb.2012-0515OC] [PMID: 23526215]
[7]
Sohrab, S.; Petrusca, D.N.; Lockett, A.D.; Schweitzer, K.S.; Rush, N.I.; Gu, Y.; Kamocki, K.; Garrison, J.; Petrache, I. Mechanism of alpha-1 antitrypsin endocytosis by lung endothelium. FASEB J., 2009, 23(9), 3149-3158.
[http://dx.doi.org/10.1096/fj.09-129304] [PMID: 19423638]
[8]
Janciauskiene, S.; Larsson, S.; Larsson, P.; Virtala, R.; Jansson, L.; Stevens, T. Inhibition of lipopolysaccharide-mediated human monocyte activation, in vitro, by alpha1-antitrypsin. Biochem. Biophys. Res. Commun., 2004, 321(3), 592-600.
[http://dx.doi.org/10.1016/j.bbrc.2004.06.123] [PMID: 15358147]
[9]
Petrache, I.; Fijalkowska, I.; Medler, T.R.; Skirball, J.; Cruz, P.; Zhen, L.; Petrache, H.I.; Flotte, T.R.; Tuder, R.M. alpha-1 antitrypsin inhibits caspase-3 activity, preventing lung endothelial cell apoptosis. Am. J. Pathol., 2006, 169(4), 1155-1166.
[http://dx.doi.org/10.2353/ajpath.2006.060058] [PMID: 17003475]
[10]
Bucurenci, N.; Blake, D.R.; Chidwick, K.; Winyard, P.G. Inhibition of neutrophil superoxide production by human plasma alpha 1-antitrypsin. FEBS Lett., 1992, 300(1), 21-24.
[http://dx.doi.org/10.1016/0014-5793(92)80156-B] [PMID: 1312485]
[11]
Schwarz, N.; Tumpara, S.; Wrenger, S.; Ercetin, E.; Hamacher, J.; Welte, T.; Janciauskiene, S. Alpha1-antitrypsin protects lung cancer cells from staurosporine-induced apoptosis: the role of bacterial lipopolysaccharide. Sci. Rep., 2020, 10(1), 9563.
[http://dx.doi.org/10.1038/s41598-020-66825-w] [PMID: 32533048]
[12]
Nita, I.; Hollander, C.; Westin, U.; Janciauskiene, S.M. Prolastin, a pharmaceutical preparation of purified human alpha1-antitrypsin, blocks endotoxin-mediated cytokine release. Respir. Res., 2005, 6, 12.
[http://dx.doi.org/10.1186/1465-9921-6-12] [PMID: 15683545]
[13]
Lior, Y.; Zaretsky, M.; Ochayon, D.E.; Lotysh, D.; Baranovski, B.M.; Schuster, R.; Guttman, O.; Aharoni, A.; Lewis, E.C. Point mutation of a non-elastase-binding site in human α1-antitrypsin alters its anti-inflammatory properties. Front. Immunol., 2018, 9, 759.
[http://dx.doi.org/10.3389/fimmu.2018.00759] [PMID: 29780379]
[14]
Chandrasekhar, K.; Ke, H.; Wang, N.; Goodwin, T.; Gierasch, L.M.; Gershenson, A.; Hebert, D.N. Cellular folding pathway of a metastable serpin. Proc. Natl. Acad. Sci. USA, 2016, 113(23), 6484-6489.
[http://dx.doi.org/10.1073/pnas.1603386113] [PMID: 27222580]
[15]
Huntington, J.A.; Read, R.J.; Carrell, R.W. Structure of a serpin-protease complex shows inhibition by deformation. Nature, 2000, 407(6806), 923-926.
[http://dx.doi.org/10.1038/35038119] [PMID: 11057674]
[16]
Whisstock, J.C.; Bottomley, S.P. Molecular gymnastics: serpin structure, folding and misfolding. Curr. Opin. Struct. Biol., 2006, 16(6), 761-768.
[http://dx.doi.org/10.1016/j.sbi.2006.10.005] [PMID: 17079131]
[17]
Tsutsui, Y.; Dela Cruz, R.; Wintrode, P.L. Folding mechanism of the metastable serpin α1-antitrypsin. Proc. Natl. Acad. Sci. USA, 2012, 109(12), 4467-4472.
[http://dx.doi.org/10.1073/pnas.1109125109] [PMID: 22392975]
[18]
Kolarich, D.; Weber, A.; Turecek, P.L.; Schwarz, H.P.; Altmann, F. Comprehensive glyco-proteomic analysis of human alpha1-antitrypsin and its charge isoforms. Proteomics, 2006, 6(11), 3369-3380.
[http://dx.doi.org/10.1002/pmic.200500751] [PMID: 16622833]
[19]
McCarthy, C.; Saldova, R.; Wormald, M.R.; Rudd, P.M.; McElvaney, N.G.; Reeves, E.P. The role and importance of glycosylation of acute phase proteins with focus on alpha-1 antitrypsin in acute and chronic inflammatory conditions. J. Proteome Res., 2014, 13(7), 3131-3143.
[http://dx.doi.org/10.1021/pr500146y] [PMID: 24892502]
[20]
Yin, H.; An, M.; So, P.K.; Wong, M.Y.; Lubman, D.M.; Yao, Z. The analysis of alpha-1-antitrypsin glycosylation with direct LC-MS/MS. Electrophoresis, 2018, 39(18), 2351-2361.
[http://dx.doi.org/10.1002/elps.201700426] [PMID: 29405331]
[21]
Hennen, E.; Czopka, T.; Faissner, A. Structurally distinct LewisX glycans distinguish subpopulations of neural stem/progenitor cells. J. Biol. Chem., 2011, 286(18), 16321-16331.
[http://dx.doi.org/10.1074/jbc.M110.201095] [PMID: 21385876]
[22]
Chiu, M.H.; Tamura, T.; Wadhwa, M.S.; Rice, K.G. in vivo targeting function of N-linked oligosaccharides with terminating galactose and N-acetylgalactosamine residues. J. Biol. Chem., 1994, 269(23), 16195-16202.
[http://dx.doi.org/10.1016/S0021-9258(17)33992-3] [PMID: 8206921]
[23]
Chung, H.S.; Kim, J.S.; Lee, S.M.; Park, S.J. Additional N-glycosylation in the N-terminal region of recombinant human alpha-1 antitrypsin enhances the circulatory half-life in Sprague-Dawley rats. Glycoconj. J., 2016, 33(2), 201-208.
[http://dx.doi.org/10.1007/s10719-016-9657-3] [PMID: 26947874]
[24]
Lomas, D.A.; Parfrey, H. Alpha1-antitrypsin deficiency. 4: molecular pathophysiology. Thorax, 2004, 59(6), 529-535.
[http://dx.doi.org/10.1136/thx.2003.006528] [PMID: 15170041]
[25]
Sarkar, A.; Wintrode, P.L. Effects of glycosylation on the stability and flexibility of a metastable protein: the human serpin α(1)-antitrypsin. Int. J. Mass Spectrom., 2011, 302(1-3), 69-75.
[http://dx.doi.org/10.1016/j.ijms.2010.08.003] [PMID: 21765645]
[26]
Kwon, K.S.; Yu, M.H. Effect of glycosylation on the stability of alpha1-antitrypsin toward urea denaturation and thermal deactivation. Biochim. Biophys. Acta, 1997, 1335(3), 265-272.
[http://dx.doi.org/10.1016/S0304-4165(96)00143-2] [PMID: 9202189]
[27]
Stoller, J.K.; Aboussouan, L.S. A review of α1-antitrypsin deficiency. Am. J. Respir. Crit. Care Med., 2012, 185(3), 246-259.
[http://dx.doi.org/10.1164/rccm.201108-1428CI] [PMID: 21960536]
[28]
Hazari, Y.M.; Bashir, A.; Habib, M.; Bashir, S.; Habib, H.; Qasim, M.A.; Shah, N.N.; Haq, E.; Teckman, J.; Fazili, K.M. Alpha-1-antitrypsin deficiency: genetic variations, clinical manifestations and therapeutic interventions. Mutat. Res., 2017, 773, 14-25.
[http://dx.doi.org/10.1016/j.mrrev.2017.03.001] [PMID: 28927525]
[29]
Dunlea, D.M.; Fee, L.T.; McEnery, T.; McElvaney, N.G.; Reeves, E.P. The impact of alpha-1 antitrypsin augmentation therapy on neutrophil-driven respiratory disease in deficient individuals. J. Inflamm. Res., 2018, 11, 123-134.
[http://dx.doi.org/10.2147/JIR.S156405] [PMID: 29618937]
[30]
Hoenderdos, K.; Condliffe, A. The neutrophil in chronic obstructive pulmonary disease. Am. J. Respir. Cell Mol. Biol., 2013, 48(5), 531-539.
[http://dx.doi.org/10.1165/rcmb.2012-0492TR] [PMID: 23328639]
[31]
de Serres, F.; Blanco, I. Role of alpha-1 antitrypsin in human health and disease. J. Intern. Med., 2014, 276(4), 311-335.
[http://dx.doi.org/10.1111/joim.12239] [PMID: 24661570]
[32]
Greene, C.M.; Marciniak, S.J.; Teckman, J.; Ferrarotti, I.; Brantly, M.L.; Lomas, D.A.; Stoller, J.K.; McElvaney, N.G. α1-Antitrypsin deficiency. Nat. Rev. Dis. Primers, 2016, 2, 16051.
[http://dx.doi.org/10.1038/nrdp.2016.51] [PMID: 27465791]
[33]
Fairbanks, K.D.; Tavill, A.S. Liver disease in alpha 1-antitrypsin deficiency: a review. Am. J. Gastroenterol., 2008, 103(8), 2136-2141.
[http://dx.doi.org/10.1111/j.1572-0241.2008.01955.x] [PMID: 18796107]
[34]
Tubío-Pérez, R.A.; Torres-Durán, M.; Fernández-Villar, A.; Ruano-Raviña, A. Alpha-1 antitrypsin deficiency and risk of lung cancer: a systematic review. Transl. Oncol., 2021, 14(1)100914
[http://dx.doi.org/10.1016/j.tranon.2020.100914] [PMID: 33142121]
[35]
Huang, X.; Zheng, Y.; Zhang, F.; Wei, Z.; Wang, Y.; Carrell, R.W.; Read, R.J.; Chen, G.Q.; Zhou, A. Molecular mechanism of Z α1-antitrypsin deficiency. J. Biol. Chem., 2016, 291(30), 15674-15686.
[http://dx.doi.org/10.1074/jbc.M116.727826] [PMID: 27246852]
[36]
Lomas, D.A.; Evans, D.L.; Finch, J.T.; Carrell, R.W. The mechanism of Z alpha 1-antitrypsin accumulation in the liver. Nature, 1992, 357(6379), 605-607.
[http://dx.doi.org/10.1038/357605a0] [PMID: 1608473]
[37]
Elliott, P.R.; Stein, P.E.; Bilton, D.; Carrell, R.W.; Lomas, D.A. Structural explanation for the deficiency of S alpha 1-antitrypsin. Nat. Struct. Biol., 1996, 3(11), 910-911.
[http://dx.doi.org/10.1038/nsb1196-910] [PMID: 8901864]
[38]
Renoux, C.; Odou, M.F.; Tosato, G.; Teoli, J.; Abbou, N.; Lombard, C.; Zerimech, F.; Porchet, N.; Chapuis Cellier, C.; Balduyck, M.; Joly, P. Description of 22 new alpha-1 antitrypsin genetic variants. Orphanet J. Rare Dis., 2018, 13(1), 161.
[http://dx.doi.org/10.1186/s13023-018-0897-0] [PMID: 30223862]
[39]
Hernández-Pérez, J.M.; Ramos-Díaz, R.; Pérez, J.A. Identification of a new defective SERPINA1 allele (PI*Zla palma) encoding an alpha-1-antitrypsin with altered glycosylation pattern. Respir. Med., 2017, 131, 114-117.
[http://dx.doi.org/10.1016/j.rmed.2017.08.015] [PMID: 28947017]
[40]
McCarthy, C.; Saldova, R.; O’Brien, M.E.; Bergin, D.A.; Carroll, T.P.; Keenan, J.; Meleady, P.; Henry, M.; Clynes, M.; Rudd, P.M.; Reeves, E.P.; McElvaney, N.G. Increased outer arm and core fucose residues on the N-glycans of mutated alpha-1 antitrypsin protein from alpha-1 antitrypsin deficient individuals. J. Proteome Res., 2014, 13(2), 596-605.
[http://dx.doi.org/10.1021/pr400752t] [PMID: 24328305]
[41]
Gadek, J.E.; Klein, H.G.; Holland, P.V.; Crystal, R.G. Replacement therapy of alpha 1-antitrypsin deficiency. Reversal of protease-antiprotease imbalance within the alveolar structures of PiZ subjects. J. Clin. Invest., 1981, 68(5), 1158-1165.
[http://dx.doi.org/10.1172/JCI110360] [PMID: 7028785]
[42]
Teschler, H. Long-term experience in the treatment of alpha1-antitrypsin deficiency: 25 years of augmentation therapy. Eur. Respir. Rev., 2015, 24(135), 46-51.
[http://dx.doi.org/10.1183/09059180.10010714] [PMID: 25726554]
[43]
Chapman, K.R.; Stockley, R.A.; Dawkins, C.; Wilkes, M.M.; Navickis, R.J. Augmentation therapy for alpha1 antitrypsin deficiency: a meta-analysis. COPD, 2009, 6(3), 177-184.
[http://dx.doi.org/10.1080/15412550902905961] [PMID: 19811373]
[44]
Chapman, K.R.; Burdon, J.G.; Piitulainen, E.; Sandhaus, R.A.; Seersholm, N.; Stocks, J.M.; Stoel, B.C.; Huang, L.; Yao, Z.; Edelman, J.M.; McElvaney, N.G.; Group, R.T.S. RAPID Trial Study Group. Intravenous augmentation treatment and lung density in severe α1 antitrypsin deficiency (RAPID): A randomised, double-blind, placebo-controlled trial. Lancet, 2015, 386(9991), 360-368.
[http://dx.doi.org/10.1016/S0140-6736(15)60860-1] [PMID: 26026936]
[45]
McElvaney, N.G.; Burdon, J.; Holmes, M.; Glanville, A.; Wark, P.A.; Thompson, P.J.; Hernandez, P.; Chlumsky, J.; Teschler, H.; Ficker, J.H.; Seersholm, N.; Altraja, A.; Mäkitaro, R.; Chorostowska-Wynimko, J.; Sanak, M.; Stoicescu, P.I.; Piitulainen, E.; Vit, O.; Wencker, M.; Tortorici, M.A.; Fries, M.; Edelman, J.M.; Chapman, K.R.; Group, R.E.T. RAPID Extension Trial Group. Long-term efficacy and safety of α1 proteinase inhibitor treatment for emphysema caused by severe α1 antitrypsin deficiency: an open-label extension trial (RAPID-OLE). Lancet Respir. Med., 2017, 5(1), 51-60.
[http://dx.doi.org/10.1016/S2213-2600(16)30430-1] [PMID: 27916480]
[46]
Ma, S.; Lin, Y.Y.; Cantor, J.O.; Chapman, K.R.; Sandhaus, R.A.; Fries, M.; Edelman, J.M.; McElvaney, G.; Turino, G.M. The effect of alpha-1 proteinase inhibitor on biomarkers of elastin degradation in alpha-1 antitrypsin deficiency: an analysis of the RAPID/RAPID extension trials. Chronic Obstr. Pulm. Dis. (Miami), 2016, 4(1), 34-44.
[http://dx.doi.org/10.15326/jcopdf.4.1.2016.0156] [PMID: 28848909]
[47]
Smith, D.J.; Ellis, P.R.; Turner, A.M. Exacerbations of Lung Disease in Alpha-1 Antitrypsin Deficiency. Chronic Obstr. Pulm. Dis. (Miami), 2020, 8(1), 162-176.
[http://dx.doi.org/10.15326/jcopdf.2020.0173] [PMID: 33238089]
[48]
Wanner, A. Alpha-1 antitrypsin as a therapeutic agent for conditions not associated with alpha-1 antitrypsin deficiency.Alpha-1 Antitrypsin; Wanner, A.; Sandhaus, R., Eds.; Humana Press: Cham, 2016, pp. 141-155.
[http://dx.doi.org/10.1007/978-3-319-23449-6_8]
[49]
Kim, M.; Cai, Q.; Oh, Y. Therapeutic potential of alpha-1 antitrypsin in human disease. Ann. Pediatr. Endocrinol. Metab., 2018, 23(3), 131-135.
[http://dx.doi.org/10.6065/apem.2018.23.3.131] [PMID: 30286568]
[50]
Wanner, A. COPD: new lessons from alpha1-antitrypsin deficiency? Chest, 2009, 135(5), 1342-1344.
[http://dx.doi.org/10.1378/chest.08-2341] [PMID: 19420201]
[51]
Lo Bello, F.; Hansbro, P.M.; Donovan, C.; Coppolino, I.; Mumby, S.; Adcock, I.M.; Caramori, G. New drugs under development for COPD. Expert Opin. Emerg. Drugs, 2020, 25(4), 419-431.
[http://dx.doi.org/10.1080/14728214.2020.1819982] [PMID: 32882146]
[52]
McElvaney, N.G. Alpha-1 antitrypsin therapy in cystic fibrosis and the lung disease associated with alpha-1 antitrypsin deficiency. Ann. Am. Thorac. Soc., 2016, 13(Suppl. 2), S191-S196.
[http://dx.doi.org/10.1513/annalsats.201504-245kv] [PMID: 27115956]
[53]
Gaggar, A.; Chen, J.; Chmiel, J.F.; Dorkin, H.L.; Flume, P.A.; Griffin, R.; Nichols, D.; Donaldson, S.H. Inhaled alpha1-proteinase inhibitor therapy in patients with cystic fibrosis. J. Cyst. Fibros., 2016, 15(2), 227-233.
[http://dx.doi.org/10.1016/j.jcf.2015.07.009] [PMID: 26321218]
[54]
Berger, M.; Liu, M.; Uknis, M.E.; Koulmanda, M. Alpha-1-antitrypsin in cell and organ transplantation. Am. J. Transplant., 2018, 18(7), 1589-1595.
[http://dx.doi.org/10.1111/ajt.14756] [PMID: 29607607]
[55]
Tawara, I.; Sun, Y.; Lewis, E.C.; Toubai, T.; Evers, R.; Nieves, E.; Azam, T.; Dinarello, C.A.; Reddy, P. Alpha-1-antitrypsin monotherapy reduces graft-versus-host disease after experimental allogeneic bone marrow transplantation. Proc. Natl. Acad. Sci. USA, 2012, 109(2), 564-569.
[http://dx.doi.org/10.1073/pnas.1117665109] [PMID: 22203983]
[56]
Magenau, J.M.; Goldstein, S.C.; Peltier, D.; Soiffer, R.J.; Braun, T.; Pawarode, A.; Riwes, M.M.; Kennel, M.; Antin, J.H.; Cutler, C.S.; Ho, V.T.; Alyea, E.P., III; Parkin, B.L.; Yanik, G.A.; Choi, S.W.; Lewis, E.C.; Dinarello, C.A.; Koreth, J.; Reddy, P. α1-Antitrypsin infusion for treatment of steroid-resistant acute graft-versus-host disease. Blood, 2018, 131(12), 1372-1379.
[http://dx.doi.org/10.1182/blood-2017-11-815746] [PMID: 29437593]
[57]
Giannoni, L.; Morin, F.; Robin, M.; Peyneau, M.; Schlageter, M.H.; Desmier, D.; Pagliuca, S.; Sutra Del Galy, A.; Sicre de Fontbrune, F.; Xhaard, A.; Dhedin, N.; Moins-Teisserenc, H.; Peffault de Latour, R.; Socie, G.; Michonneau, D. Human-Derived alpha1-Antitrypsin is Still Efficacious in Heavily Pretreated Patients with Steroid-Resistant Gastrointestinal Graft-versus-Host Disease. Biol. Blood Marrow Transplant., 2020, 26(9), 1620-1626.
[http://dx.doi.org/10.1016/j.bbmt.2020.05.014] [PMID: 32454215]
[58]
Koulmanda, M.; Bhasin, M.; Fan, Z.; Hanidziar, D.; Goel, N.; Putheti, P.; Movahedi, B.; Libermann, T.A.; Strom, T.B. Alpha 1-antitrypsin reduces inflammation and enhances mouse pancreatic islet transplant survival. Proc. Natl. Acad. Sci. USA, 2012, 109(38), 15443-15448.
[http://dx.doi.org/10.1073/pnas.1018366109] [PMID: 22949661]
[59]
Wang, J.; Sun, Z.; Gou, W.; Adams, D.B.; Cui, W.; Morgan, K.A.; Strange, C.; Wang, H. α-1 antitrypsin enhances islet engraftment by suppression of instant blood-mediated inflammatory reaction. Diabetes, 2017, 66(4), 970-980.
[http://dx.doi.org/10.2337/db16-1036] [PMID: 28069642]
[60]
Lin, H.; Chen, M.; Tian, F.; Tikkanen, J.; Ding, L.; Andrew Cheung, H.Y.; Nakajima, D.; Wang, Z.; Mariscal, A.; Hwang, D.; Cypel, M.; Keshavjee, S.; Liu, M. alpha1-Anti-trypsin improves function of porcine donor lungs during ex-vivo lung perfusion. J. Heart Lung Transplant., 2018, 37(5), 656-666.
[http://dx.doi.org/10.1016/j.healun.2017.09.019] [PMID: 29153638]
[61]
Emtiazjoo, A.M.; Hu, H.; Lu, L.; Brantly, M.L. Alpha-1 antitrypsin attenuates acute lung allograft injury in a rat lung transplant model. Transplant. Direct, 2019, 5(6)e458
[http://dx.doi.org/10.1097/TXD.0000000000000898] [PMID: 31723592]
[62]
Koulmanda, M.; Bhasin, M.; Hoffman, L.; Fan, Z.; Qipo, A.; Shi, H.; Bonner-Weir, S.; Putheti, P.; Degauque, N.; Libermann, T.A.; Auchincloss, H., Jr; Flier, J.S.; Strom, T.B. Curative and beta cell regenerative effects of alpha1-antitrypsin treatment in autoimmune diabetic NOD mice. Proc. Natl. Acad. Sci. USA, 2008, 105(42), 16242-16247.
[http://dx.doi.org/10.1073/pnas.0808031105] [PMID: 18852471]
[63]
Weir, G.C.; Ehlers, M.R.; Harris, K.M.; Kanaparthi, S.; Long, A.; Phippard, D.; Weiner, L.J.; Jepson, B.; McNamara, J.G.; Koulmanda, M.; Strom, T.B.; Team, I.R.S. ITN RETAIN Study Team. Alpha-1 antitrypsin treatment of new-onset type 1 diabetes: An open-label, phase I clinical trial (RETAIN) to assess safety and pharmacokinetics. Pediatr. Diabetes, 2018, 19(5), 945-954.
[http://dx.doi.org/10.1111/pedi.12660] [PMID: 29473705]
[64]
Potilinski, M.C.; Ortíz, G.A.; Salica, J.P.; López, E.S.; Fernández Acquier, M.; Chuluyan, E.; Gallo, J.E. Elucidating the mechanism of action of alpha-1-antitrypsin using retinal pigment epithelium cells exposed to high glucose. Potential use in diabetic retinopathy. PLoS One, 2020, 15(2)e0228895
[http://dx.doi.org/10.1371/journal.pone.0228895] [PMID: 32032388]
[65]
Ortiz, G.; Lopez, E.S.; Salica, J.P.; Potilinski, C.; Fernández Acquier, M.; Chuluyan, E.; Gallo, J.E. Alpha-1-antitrypsin ameliorates inflammation and neurodegeneration in the diabetic mouse retina. Exp. Eye Res., 2018, 174, 29-39.
[http://dx.doi.org/10.1016/j.exer.2018.05.013] [PMID: 29778740]
[66]
Ortiz, G.; Salica, J.P.; Chuluyan, E.H.; Gallo, J.E. Diabetic retinopathy: could the alpha-1 antitrypsin be a therapeutic option? Biol. Res., 2014, 47, 58.
[http://dx.doi.org/10.1186/0717-6287-47-58] [PMID: 25723058]
[67]
Song, S. Alpha-1 antitrypsin therapy for autoimmune disorders. Chronic Obstr. Pulm. Dis. (Miami), 2018, 5(4), 289-301.
[http://dx.doi.org/10.15326/jcopdf.5.4.2018.0131] [PMID: 30723786]
[68]
Jeong, K.H.; Lim, J.H.; Lee, K.H.; Kim, M.J.; Jung, H.Y.; Choi, J.Y.; Cho, J.H.; Park, S.H.; Kim, Y.L.; Kim, C.D. Protective effect of alpha 1-antitrypsin on renal ischemia-reperfusion injury. Transplant. Proc., 2019, 51(8), 2814-2822.
[http://dx.doi.org/10.1016/j.transproceed.2019.04.084] [PMID: 31439327]
[69]
Toldo, S.; Seropian, I.M.; Mezzaroma, E.; Van Tassell, B.W.; Salloum, F.N.; Lewis, E.C.; Voelkel, N.; Dinarello, C.A.; Abbate, A. Alpha-1 antitrypsin inhibits caspase-1 and protects from acute myocardial ischemia-reperfusion injury. J. Mol. Cell. Cardiol., 2011, 51(2), 244-251.
[http://dx.doi.org/10.1016/j.yjmcc.2011.05.003] [PMID: 21600901]
[70]
Abouzaki, N.A.; Christopher, S.; Trankle, C.; Van Tassell, B.W.; Carbone, S.; Mauro, A.G.; Buckley, L.; Toldo, S.; Abbate, A. Inhibiting the inflammatory injury after myocardial ischemia reperfusion with plasma-derived alpha-1 antitrypsin: a post Hoc analysis of the VCU-α1RT study. J. Cardiovasc. Pharmacol., 2018, 71(6), 375-379.
[http://dx.doi.org/10.1097/FJC.0000000000000583] [PMID: 29634656]
[71]
Heurich, A.; Hofmann-Winkler, H.; Gierer, S.; Liepold, T.; Jahn, O.; Pöhlmann, S. TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J. Virol., 2014, 88(2), 1293-1307.
[http://dx.doi.org/10.1128/JVI.02202-13] [PMID: 24227843]
[72]
Oguntuyo, K. Y.; Stevens, C. S.; Siddiquey, M. N.; Schilke, R. M.; Woolard, M. D.; Zhang, H.; Acklin, J. A.; Ikegame, S.; Hung, C. T.; Lim, J. K.; Cross, R. W.; Geisbert, T. W.; Ivanov, S. S.; Kamil, J. P.; Lee, B. In plain sight: The role of alpha-1-antitrypsin in COVID-19 pathogenesis and therapeutics. BioRxiv, 2020, preprint, 2020.08.14.248880.,
[http://dx.doi.org/10.1101/2020.08.14.248880] [PMID: 32817940]
[73]
McElvaney, O.J.; McEvoy, N.L.; McElvaney, O.F.; Carroll, T.P.; Murphy, M.P.; Dunlea, D.M.; Ní Choileáin, O.; Clarke, J.; O’Connor, E.; Hogan, G.; Ryan, D.; Sulaiman, I.; Gunaratnam, C.; Branagan, P.; O’Brien, M.E.; Morgan, R.K.; Costello, R.W.; Hurley, K.; Walsh, S.; de Barra, E.; McNally, C.; McConkey, S.; Boland, F.; Galvin, S.; Kiernan, F.; O’Rourke, J.; Dwyer, R.; Power, M.; Geoghegan, P.; Larkin, C.; O’Leary, R.A.; Freeman, J.; Gaffney, A.; Marsh, B.; Curley, G.F.; McElvaney, N.G. Characterization of the inflammatory response to severe COVID-19 Illness. Am. J. Respir. Crit. Care Med., 2020, 202(6), 812-821.
[http://dx.doi.org/10.1164/rccm.202005-1583OC] [PMID: 32584597]
[74]
Azouz, N. P.; Klingler, A. M.; Callahan, V.; Akhrymuk, I. V.; Elez, K.; Raich, L.; Henry, B. M.; Benoit, J. L.; Benoit, S. W.; Noe, F.; Kehn-Hall, K.; Rothenberg, M. E. Alpha 1 antitrypsin is an inhibitor of the SARS-CoV-2-priming protease TMPRSS2. BioRxiv., 2020, 2020.05.04.077826.,
[http://dx.doi.org/10.1101/2020.05.04.077826 ] [PMID: 33052338]
[75]
Bai, X.; Hippensteel, J.; Leavitt, A.; Maloney, J.P.; Beckham, D.; Garcia, C.; Li, Q.; Freed, B.M.; Ordway, D.; Sandhaus, R.A.; Chan, E.D. Hypothesis: Alpha-1-antitrypsin is a promising treatment option for COVID-19. Med. Hypotheses, 2021, 146110394
[http://dx.doi.org/10.1016/j.mehy.2020.110394] [PMID: 33239231]
[76]
Duthie, E.S.; Lorenz, L. Protease inhibitors. 1. Assay and nature of serum antiprotease. Biochem. J., 1949, 44(2), 167-173.
[http://dx.doi.org/10.1042/bj0440167] [PMID: 16748493]
[77]
Viglio, S.; Iadarola, P.; D’Amato, M.; Stolk, J. Methods of purification and application procedures of alpha1 antitrypsin: a long-lasting history. Molecules, 2020, 25(17)E4014
[http://dx.doi.org/10.3390/molecules25174014] [PMID: 32887469]
[78]
Zheng, B.N.; Ding, C.H.; Chen, S.J.; Zhu, K.; Shao, J.; Feng, J.; Xu, W.P.; Cai, L.Y.; Zhu, C.P.; Duan, W.; Ding, J.; Zhang, X.; Luo, C.; Xie, W.F. Targeting PRMT5 activity inhibits the malignancy of hepatocellular carcinoma by promoting the transcription of HNF4α. Theranostics, 2019, 9(9), 2606-2617.
[http://dx.doi.org/10.7150/thno.32344] [PMID: 31131056]
[79]
Huangfu, C.; Zhang, J.; Ma, Y.; Jia, J.; Lv, M.; Zhao, X.; Zhang, J. New process for purifying high purity α1-antitrypsin from Cohn Fraction IV by chromatography: a promising method for the better utilization of plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1046, 156-164.
[http://dx.doi.org/10.1016/j.jchromb.2017.01.044] [PMID: 28183045]
[80]
Kee, S.; Weber, D.; Popp, B.; Nowak, T.; Schafer, W.; Groner, A.; Roth, N.J. Pathogen safety and characterisation of a highly purified human alpha1-proteinase inhibitor preparation. Biologicals, 2017, 47, 25-32.
[http://dx.doi.org/10.1016/j.biologicals.2017.03.003] [PMID: 28377078]
[81]
Matthiessen, H.P.; Willemse, J.; Weber, A.; Turecek, P.L.; Deiteren, K.; Hendriks, D.; Ehrlich, H.J.; Schwarz, H.P. Ethanol dependence of alpha 1-antitrypsin C-terminal Lys truncation mediated by basic carboxypeptidases. Transfusion, 2008, 48(2), 314-320.
[http://dx.doi.org/10.1111/j.1537-2995.2007.01525.x] [PMID: 18028276]
[82]
Boerema, D.J.; An, B.; Gandhi, R.P.; Papineau, R.; Regnier, E.; Wilder, A.; Molitor, A.; Tang, A.P.; Kee, S.M. Biochemical comparison of four commercially available human alpha1-proteinase inhibitors for treatment of alpha1-antitrypsin deficiency. Biologicals, 2017, 50, 63-72.
[http://dx.doi.org/10.1016/j.biologicals.2017.08.010] [PMID: 28882403]
[83]
Ruhaak, L.R.; Koeleman, C.A.; Uh, H.W.; Stam, J.C.; van Heemst, D.; Maier, A.B.; Houwing-Duistermaat, J.J.; Hensbergen, P.J.; Slagboom, P.E.; Deelder, A.M.; Wuhrer, M. Targeted biomarker discovery by high throughput glycosylation profiling of human plasma alpha1-antitrypsin and immunoglobulin A. PLoS One, 2013, 8(9)e73082
[http://dx.doi.org/10.1371/journal.pone.0073082] [PMID: 24039863]
[84]
Karnaukhova, E.; Ophir, Y.; Golding, B. Recombinant human alpha-1 proteinase inhibitor: towards therapeutic use. Amino Acids, 2006, 30(4), 317-332.
[http://dx.doi.org/10.1007/s00726-005-0324-4] [PMID: 16773239]
[85]
Lusch, A.; Kaup, M.; Marx, U.; Tauber, R.; Blanchard, V.; Berger, M. Development and analysis of alpha 1-antitrypsin neoglycoproteins: the impact of additional N-glycosylation sites on serum half-life. Mol. Pharm., 2013, 10(7), 2616-2629.
[http://dx.doi.org/10.1021/mp400043r] [PMID: 23668542]
[86]
Cantin, A.M.; Woods, D.E.; Cloutier, D.; Dufour, E.K.; Leduc, R. Polyethylene glycol conjugation at Cys232 prolongs the half-life of alpha1 proteinase inhibitor. Am. J. Respir. Cell Mol. Biol., 2002, 27(6), 659-665.
[http://dx.doi.org/10.1165/rcmb.4866] [PMID: 12444025]
[88]
EMA, Guideline on similar biological medicinal products containing biotechnology-derived proteins as active substance: quality issues.Available at: , https://www.ema. europa.eu/en/similar-biological-medicinal-products-containing-biotechnology-derived-proteins-active-substance# document-]history--- revision-1-(current-version)-section (accessed on 25th December 2021)
[89]
EMA Guideline on similar biological medicinal products containing biotechnology-derived proteins as active substance: non-clinical and clinical issues., https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-similar-biological-medicinal-products-containing-biotechnology-derived-proteins-active_en-2.pdf(accessed on 25th December 2021)
[93]
Wang, J.; Chow, S.C. On the regulatory approval pathway of biosimilar products. Pharmaceuticals (Basel), 2012, 5(4), 353-368.
[http://dx.doi.org/10.3390/ph5040353] [PMID: 24281406]
[94]
Minghetti, P.; Rocco, P.; Cilurzo, F.; Vecchio, L.D.; Locatelli, F. The regulatory framework of biosimilars in the European Union. Drug Discov. Today, 2012, 17(1-2), 63-70.
[http://dx.doi.org/10.1016/j.drudis.2011.08.001] [PMID: 21856438]
[95]
Daller, J. Biosimilars: a consideration of the regulations in the United States and European union. Regul. Toxicol. Pharmacol., 2016, 76, 199-208.
[http://dx.doi.org/10.1016/j.yrtph.2015.12.013] [PMID: 26732800]
[96]
McNulty, M.J.; Silberstein, D.Z.; Kuhn, B.T.; Padgett, H.S.; Nandi, S.; McDonald, K.A.; Cross, C.E. Alpha-1 antitrypsin deficiency and recombinant protein sources with focus on plant sources: updates, challenges and perspectives. Free Radic. Biol. Med., 2020, 163, 10-30.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.11.030] [PMID: 33279618]
[97]
Huang, C.J.; Lin, H.; Yang, X. Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. J. Ind. Microbiol. Biotechnol., 2012, 39(3), 383-399.
[http://dx.doi.org/10.1007/s10295-011-1082-9] [PMID: 22252444]
[98]
Valderrama-Rincon, J.D.; Fisher, A.C.; Merritt, J.H.; Fan, Y.Y.; Reading, C.A.; Chhiba, K.; Heiss, C.; Azadi, P.; Aebi, M.; DeLisa, M.P. An engineered eukaryotic protein glycosylation pathway in Escherichia coli. Nat. Chem. Biol., 2012, 8(5), 434-436.
[http://dx.doi.org/10.1038/nchembio.921] [PMID: 22446837]
[99]
Mueller, P.; Gauttam, R.; Raab, N.; Handrick, R.; Wahl, C.; Leptihn, S.; Zorn, M.; Kussmaul, M.; Scheffold, M.; Eikmanns, B.; Elling, L.; Gaisser, S. High level in vivo mucin-type glycosylation in Escherichia coli. Microb. Cell Fact., 2018, 17(1), 168.
[http://dx.doi.org/10.1186/s12934-018-1013-9] [PMID: 30367634]
[100]
Agarwal, S.; Jha, S.; Sanyal, I.; Amla, D.V. Expression and purification of recombinant human alpha1-proteinase inhibitor and its single amino acid substituted variants in Escherichia coli for enhanced stability and biological activity. J. Biotechnol., 2010, 147(1), 64-72.
[http://dx.doi.org/10.1016/j.jbiotec.2010.03.008] [PMID: 20346993]
[101]
Johansen, H.; Sutiphong, J.; Sathe, G.; Jacobs, P.; Cravador, A.; Bollen, A.; Rosenberg, M.; Shatzman, A. High-level production of fully active human alpha 1-antitrypsin in Escherichia coli. Mol. Biol. Med., 1987, 4(5), 291-305.
[PMID: 2826966]
[102]
Straus, S.D.; Fells, G.A.; Wewers, M.D.; Courtney, M.; Tessier, L.H.; Tolstoshev, P.; Lecocq, J.P.; Crystal, R.G. Evaluation of recombinant DNA-directed E.coli produced alpha 1-antitrypsin as an anti-neutrophil elastase for potential use as replacement therapy of alpha 1-antitrypsin deficiency. Biochem. Biophys. Res. Commun., 1985, 130(3), 1177-1184.
[http://dx.doi.org/10.1016/0006-291X(85)91739-5] [PMID: 3896239]
[103]
Courtney, M.; Buchwalder, A.; Tessier, L.H.; Jaye, M.; Benavente, A.; Balland, A.; Kohli, V.; Lathe, R.; Tolstoshev, P.; Lecocq, J.P. High-level production of biologically active human alpha 1-antitrypsin in Escherichia coli. Proc. Natl. Acad. Sci. USA, 1984, 81(3), 669-673.
[http://dx.doi.org/10.1073/pnas.81.3.669] [PMID: 6322161]
[104]
Krishnan, B.; Hedstrom, L.; Hebert, D.N.; Gierasch, L.M.; Gershenson, A. Expression and purification of active recombinant human alpha-1 antitrypsin (AAT) from Escherichia coli. Methods Mol. Biol., 2017, 1639, 195-209.
[http://dx.doi.org/10.1007/978-1-4939-7163-3_19] [PMID: 28752459]
[105]
Vieira Gomes, A.M.; Souza Carmo, T.; Silva Carvalho, L.; Mendonça Bahia, F.; Parachin, N.S. Comparison of yeasts as hosts for recombinant protein production. Microorganisms, 2018, 6(2)E38
[http://dx.doi.org/10.3390/microorganisms6020038] [PMID: 29710826]
[106]
Moir, D.T.; Dumais, D.R. Glycosylation and secretion of human alpha-1-antitrypsin by yeast. Gene, 1987, 56(2-3), 209-217.
[http://dx.doi.org/10.1016/0378-1119(87)90138-7] [PMID: 3315863]
[107]
Kang, H.A.; Nam, S.W.; Kwon, K.S.; Chung, B.H.; Yu, M.H. High-level secretion of human alpha 1-antitrypsin from Saccharomyces cerevisiae using inulinase signal sequence. J. Biotechnol., 1996, 48(1-2), 15-24.
[http://dx.doi.org/10.1016/0168-1656(96)01391-0] [PMID: 8818270]
[108]
Tamer, I.M.; Chisti, Y. Production and recovery of recombinant protease inhibitor α1-antitrypsin. Enzyme Microb. Technol., 2001, 29(10), 611-620.
[http://dx.doi.org/10.1016/S0141-0229(01)00444-6]
[109]
Casolaro, M.A.; Fells, G.; Wewers, M.; Pierce, J.E.; Ogushi, F.; Hubbard, R.; Sellers, S.; Forstrom, J.; Lyons, D.; Kawasaki, G. Augmentation of lung antineutrophil elastase capacity with recombinant human alpha-1-antitrypsin. J Appl Physiol (1985), 1987, 63(5), 2015-2023.,
[http://dx.doi.org/10.1152/jappl.1987.63.5.2015] [PMID: 3500941]
[110]
Kwon, K.S.; Song, M.; Yu, M.H. Purification and characterization of alpha 1-antitrypsin secreted by recombinant yeast Saccharomyces diastaticus. J. Biotechnol., 1995, 42(3), 191-195.
[http://dx.doi.org/10.1016/0168-1656(95)00079-6] [PMID: 7576538]
[111]
Cereghino, J.L.; Cregg, J.M. Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol. Rev., 2000, 24(1), 45-66.
[http://dx.doi.org/10.1111/j.1574-6976.2000.tb00532.x] [PMID: 10640598]
[112]
Bretthauer, R.K. Genetic engineering of Pichia pastoris to humanize N-glycosylation of proteins. Trends Biotechnol., 2003, 21(11), 459-462.
[http://dx.doi.org/10.1016/j.tibtech.2003.09.005] [PMID: 14573354]
[113]
Hasannia, S.; Lotfi, A.S.; Mahboudi, F.; Rezaii, A.; Rahbarizadeh, F.; Mohsenifar, A. Elevated expression of human alpha-1 antitrypsin mediated by yeast intron in Pichia pastoris. Biotechnol. Lett., 2006, 28(19), 1545-1550.
[http://dx.doi.org/10.1007/s10529-006-9121-8] [PMID: 16900336]
[114]
Arjmand, S.; Bidram, E.; Lotfi, A.S.; Shamsara, M.; Mowla, S.J. Expression and purification of functionally active recombinant human alpha 1-antitrypsin in methylotrophic yeast Pichia pastoris. Avicenna J. Med. Biotechnol., 2011, 3(3), 127-134.
[PMID: 23408781]
[115]
Tavasoli, T.; Arjmand, S.; Ranaei Siadat, S.O.; Shojaosadati, S.A.; Sahebghadam Lotfi, A. Enhancement of alpha 1-antitrypsin production in Pichia pastoris by designing and optimizing medium using elemental analysis. Iranian J. Biotechnol., 2017, 15(4), 224-231.
[http://dx.doi.org/10.15171/ijb.1808] [PMID: 29845074]
[116]
Khatami, M.; Hosseini, S.N.; Hasannia, S. Co-expression of alpha-1 antitrypsin with cytoplasmic domain of v-SNARE in Pichia pastoris: Preserving biological activity of alpha-1 antitrypsin. Biotechnol. Appl. Biochem., 2018, 65(2), 181-187.
[http://dx.doi.org/10.1002/bab.1578] [PMID: 28762562]
[117]
Silberstein, D.Z.; Karuppanan, K.; Aung, H.H.; Chen, C.H.; Cross, C.E.; McDonald, K.A. An oxidation-resistant, recombinant alpha-1 antitrypsin produced in Nicotiana benthamiana. Free Radic. Biol. Med., 2018, 120, 303-310.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.03.015] [PMID: 29551638]
[118]
Huang, J.; Sutliff, T.D.; Wu, L.; Nandi, S.; Benge, K.; Terashima, M.; Ralston, A.H.; Drohan, W.; Huang, N.; Rodriguez, R.L. Expression and purification of functional human alpha-1-antitrypsin from cultured plant cells. Biotechnol. Prog., 2001, 17(1), 126-133.
[http://dx.doi.org/10.1021/bp0001516] [PMID: 11170490]
[119]
Zhang, L.; Shi, J.; Jiang, D.; Stupak, J.; Ou, J.; Qiu, Q.; An, N.; Li, J.; Yang, D. Expression and characterization of recombinant human alpha-antitrypsin in transgenic rice seed. J. Biotechnol., 2012, 164(2), 300-308.
[http://dx.doi.org/10.1016/j.jbiotec.2013.01.008] [PMID: 23376844]
[120]
Jha, S.; Agarwal, S.; Sanyal, I.; Amla, D.V. Single-step purification and characterization of a recombinant serine proteinase inhibitor from transgenic plants. Appl. Biochem. Biotechnol., 2016, 179(2), 220-236.
[http://dx.doi.org/10.1007/s12010-016-1989-8] [PMID: 26852026]
[121]
Castilho, A.; Windwarder, M.; Gattinger, P.; Mach, L.; Strasser, R.; Altmann, F.; Steinkellner, H. Proteolytic and N-glycan processing of human α1-antitrypsin expressed in Nicotiana benthamiana. Plant Physiol., 2014, 166(4), 1839-1851.
[http://dx.doi.org/10.1104/pp.114.250720] [PMID: 25355867]
[122]
Yee, C.M.; Zak, A.J.; Hill, B.D.; Wen, F. The coming age of insect cells for manufacturing and development of protein therapeutics. Ind. Eng. Chem. Res., 2018, 57(31), 10061-10070.
[http://dx.doi.org/10.1021/acs.iecr.8b00985] [PMID: 30886455]
[123]
Curtis, H.; Sandoval, C.; Oblin, C.; Difalco, M.R.; Congote, L.F. Insect cell production of a secreted form of human alpha(1)-proteinase inhibitor as a bifunctional protein which inhibits neutrophil elastase and has growth factor-like activities. J. Biotechnol., 2002, 93(1), 35-44.
[http://dx.doi.org/10.1016/S0168-1656(01)00380-7] [PMID: 11690693]
[124]
Morifuji, Y.; Xu, J.; Karasaki, N.; Iiyama, K.; Morokuma, D.; Hino, M.; Masuda, A.; Yano, T.; Mon, H.; Kusakabe, T.; Lee, J.M. Expression, purification, and characterization of recombinant human α1-antitrypsin produced using silkworm-baculovirus expression system. Mol. Biotechnol., 2018, 60(12), 924-934.
[http://dx.doi.org/10.1007/s12033-018-0127-y] [PMID: 30302632]
[125]
Hang, G.D.; Chen, C.J.; Lin, C.Y.; Chen, H.C.; Chen, H. Improvement of glycosylation in insect cells with mammalian glycosyltransferases. J. Biotechnol., 2003, 102(1), 61-71.
[http://dx.doi.org/10.1016/S0168-1656(02)00364-4] [PMID: 12668315]
[126]
Goh, J.B.; Ng, S.K. Impact of host cell line choice on glycan profile. Crit. Rev. Biotechnol., 2018, 38(6), 851-867.
[http://dx.doi.org/10.1080/07388551.2017.1416577] [PMID: 29262720]
[127]
Paterson, T.; Innes, J.; Moore, S. Approaches to maximizing stable expression of alpha 1-antitrypsin in transformed CHO cells. Appl. Microbiol. Biotechnol., 1994, 40(5), 691-698.
[http://dx.doi.org/10.1007/BF00173331] [PMID: 7764427]
[128]
Chin, C.L.; Chin, H.K.; Chin, C.S.; Lai, E.T.; Ng, S.K. Engineering selection stringency on expression vector for the production of recombinant human alpha1-antitrypsin using Chinese hamster ovary cells. BMC Biotechnol., 2015, 15, 44.
[http://dx.doi.org/10.1186/s12896-015-0145-9] [PMID: 26033090]
[129]
Lee, K.J.; Lee, S.M.; Gil, J.Y.; Kwon, O.; Kim, J.Y.; Park, S.J.; Chung, H.S.; Oh, D.B. N-glycan analysis of human α1-antitrypsin produced in Chinese hamster ovary cells. Glycoconj. J., 2013, 30(5), 537-547.
[http://dx.doi.org/10.1007/s10719-012-9453-7] [PMID: 23065139]
[130]
Butler, M.; Spearman, M. The choice of mammalian cell host and possibilities for glycosylation engineering. Curr. Opin. Biotechnol., 2014, 30, 107-112.
[http://dx.doi.org/10.1016/j.copbio.2014.06.010] [PMID: 25005678]
[131]
Lalonde, M.E.; Koyuturk, I.; Brochu, D.; Jabbour, J.; Gilbert, M.; Durocher, Y. Production of α2,6-sialylated and non-fucosylated recombinant alpha-1-antitrypsin in CHO cells. J. Biotechnol., 2020, 307, 87-97.
[http://dx.doi.org/10.1016/j.jbiotec.2019.10.021] [PMID: 31697975]
[132]
Amann, T.; Hansen, A.H.; Kol, S.; Hansen, H.G.; Arnsdorf, J.; Nallapareddy, S.; Voldborg, B.; Lee, G.M.; Andersen, M.R.; Kildegaard, H.F. Glyco-engineered CHO cell lines producing alpha-1-antitrypsin and C1 esterase inhibitor with fully humanized N-glycosylation profiles. Metab. Eng., 2019, 52, 143-152.
[http://dx.doi.org/10.1016/j.ymben.2018.11.014] [PMID: 30513349]
[133]
Pallister, E.G.; Choo, M.S.F.; Tai, J.N.; Leong, D.S.Z.; Tang, W.Q.; Ng, S.K.; Huang, K.; Marchesi, A.; Both, P.; Gray, C.; Rudd, P.M.; Flitsch, S.L.; Nguyen-Khuong, T. Exploiting the disialyl galactose activity of α2,6-sialyltransferase from Photobacterium damselae To generate a highly sialylated recombinant α-1-antitrypsin. Biochemistry, 2020, 59(34), 3123-3128.
[http://dx.doi.org/10.1021/acs.biochem.9b00563] [PMID: 31580652]
[134]
Janesch, B.; Saxena, H.; Sim, L.; Wakarchuk, W.W. Comparison of α2,6-sialyltransferases for sialylation of therapeutic proteins. Glycobiology, 2019, 29(10), 735-747.
[http://dx.doi.org/10.1093/glycob/cwz050] [PMID: 31281932]
[135]
Blanchard, V.; Liu, X.; Eigel, S.; Kaup, M.; Rieck, S.; Janciauskiene, S.; Sandig, V.; Marx, U.; Walden, P.; Tauber, R.; Berger, M. N-glycosylation and biological activity of recombinant human alpha1-antitrypsin expressed in a novel human neuronal cell line. Biotechnol. Bioeng., 2011, 108(9), 2118-2128.
[http://dx.doi.org/10.1002/bit.23158] [PMID: 21495009]
[136]
Ross, D.; Brown, T.; Harper, R.; Pamarthi, M.; Nixon, J.; Bromirski, J.; Li, C.M.; Ghali, R.; Xie, H.; Medvedeff, G.; Li, H.; Scuderi, P.; Arora, V.; Hunt, J.; Barnett, T. Production and characterization of a novel human recombinant alpha-1-antitrypsin in PER.C6 cells. J. Biotechnol., 2012, 162(2-3), 262-273.
[http://dx.doi.org/10.1016/j.jbiotec.2012.09.018] [PMID: 23036927]
[137]
Jaberie, H.; Naghibalhossaini, F. Recombinant production of native human α-1-antitrypsin protein in the liver HepG2 cells. Biotechnol. Lett., 2016, 38(10), 1683-1690.
[http://dx.doi.org/10.1007/s10529-016-2150-z] [PMID: 27314477]
[138]
Scott, B.M.; Sheffield, W.P. Engineering the serpin α1 -antitrypsin: a diversity of goals and techniques. Protein Sci., 2020, 29(4), 856-871.
[http://dx.doi.org/10.1002/pro.3794] [PMID: 31774589]
[139]
Zhu, W.; Li, L.; Deng, M.; Wang, B.; Li, M.; Ding, G.; Yang, Z.; Medynski, D.; Lin, X.; Ouyang, Y.; Lin, J.; Li, L.; Lin, X. Oxidation-resistant and thermostable forms of alpha-1 antitrypsin from Escherichia coli inclusion bodies. FEBS Open Bio, 2018, 8(10), 1711-1721.
[http://dx.doi.org/10.1002/2211-5463.12515] [PMID: 30338221]
[140]
Pirooznia, N.; Hasannia, S.; Arab, S.S.; Lotfi, A.S.; Ghanei, M.; Shali, A. The design of a new truncated and engineered alpha1-antitrypsin based on theoretical studies: an antiprotease therapeutics for pulmonary diseases. Theor. Biol. Med. Model., 2013, 10, 36.
[http://dx.doi.org/10.1186/1742-4682-10-36] [PMID: 23705923]
[141]
Zhang, N.; Wright, T.; Caraway, P.; Xu, J. Enhanced secretion of human α1-antitrypsin expressed with a novel glycosylation module in tobacco BY-2 cell culture. Bioengineered, 2019, 10(1), 87-97.
[http://dx.doi.org/10.1080/21655979.2019.1604037] [PMID: 30957636]
[142]
Czajkowsky, D.M.; Hu, J.; Shao, Z.; Pleass, R.J. Fc-fusion proteins: new developments and future perspectives. EMBO Mol. Med., 2012, 4(10), 1015-1028.
[http://dx.doi.org/10.1002/emmm.201201379] [PMID: 22837174]
[143]
Lee, S.; Lee, Y.; Hong, K.; Hong, J.; Bae, S.; Choi, J.; Jhun, H.; Kwak, A.; Kim, E.; Jo, S.; Dinarello, C.A.; Kim, S. Effect of recombinant α1-antitrypsin Fc-fused (AAT-Fc)protein on the inhibition of inflammatory cytokine production and streptozotocin-induced diabetes. Mol. Med., 2013, 19, 65-71.
[http://dx.doi.org/10.2119/molmed.2012.00308] [PMID: 23552726]
[144]
Joosten, L.A.; Crişan, T.O.; Azam, T.; Cleophas, M.C.; Koenders, M.I.; van de Veerdonk, F.L.; Netea, M.G.; Kim, S.; Dinarello, C.A. Alpha-1-anti-trypsin-Fc fusion protein ameliorates gouty arthritis by reducing release and extracellular processing of IL-1β and by the induction of endogenous IL-1Ra. Ann. Rheum. Dis., 2016, 75(6), 1219-1227.
[http://dx.doi.org/10.1136/annrheumdis-2014-206966] [PMID: 26174021]
[145]
Toldo, S.; Mauro, A.G.; Marchetti, C.; Rose, S.W.; Mezzaroma, E.; Van Tassell, B.W.; Kim, S.; Dinarello, C.A.; Abbate, A. Recombinant human alpha-1 antitrypsin-Fc fusion protein reduces mouse myocardial inflammatory injury after ischemia-reperfusion independent of elastase inhibition. J. Cardiovasc. Pharmacol., 2016, 68(1), 27-32.
[http://dx.doi.org/10.1097/FJC.0000000000000383] [PMID: 26945157]
[146]
Harris, J.M.; Chess, R.B. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov., 2003, 2(3), 214-221.
[http://dx.doi.org/10.1038/nrd1033] [PMID: 12612647]
[147]
Bye, J.W.; Platts, L.; Falconer, R.J. Biopharmaceutical liquid formulation: a review of the science of protein stability and solubility in aqueous environments. Biotechnol. Lett., 2014, 36(5), 869-875.
[http://dx.doi.org/10.1007/s10529-013-1445-6] [PMID: 24557073]
[148]
Kolarich, D.; Turecek, P.L.; Weber, A.; Mitterer, A.; Graninger, M.; Matthiessen, P.; Nicolaes, G.A.; Altmann, F.; Schwarz, H.P. Biochemical, molecular characterization, and glycoproteomic analyses of alpha(1)-proteinase inhibitor products used for replacement therapy. Transfusion, 2006, 46(11), 1959-1977.
[http://dx.doi.org/10.1111/j.1537-2995.2006.01004.x] [PMID: 17076852]
[149]
Sieluk, J.; Levy, J.; Sandhaus, R.A.; Silverman, H.; Holm, K.E.; Mullins, C.D. Costs of Medical care among augmentation therapy users and non-users with alpha-1 antitrypsin deficiency in the United States. Chronic Obstr. Pulm. Dis. (Miami), 2018, 6(1), 6-16.
[http://dx.doi.org/10.15326/jcopdf.6.1.2017.0187] [PMID: 30775420]
[150]
Sieluk, J.; Slejko, J.F.; Silverman, H.; Perfetto, E.; Mullins, C.D. Medical costs of Alpha-1 antitrypsin deficiency-associated COPD in the United States. Orphanet J. Rare Dis., 2020, 15(1), 260.
[http://dx.doi.org/10.1186/s13023-020-01523-4] [PMID: 32967697]
[151]
Arora, V.; Cruz, M.; Lang, J.; Klos, A.M.; Merritt, W.K.; Price, J.; Taylor, G.; Vandeberg, P.; Wee, K.; Willis, T. Comparison of the liquid and lyophilized formulations of Prolastin(R)-C for Alpha1-Antitrypsin deficiency: Biochemical characteristics, pharmacokinetics, safety and neoantigenicity in rabbits. Biologicals, 2019, 62, 77-84.
[http://dx.doi.org/10.1016/j.biologicals.2019.09.002] [PMID: 31522909]
[152]
Stocks, J.M.; Brantly, M.L.; Wang-Smith, L.; Campos, M.A.; Chapman, K.R.; Kueppers, F.; Sandhaus, R.A.; Strange, C.; Turino, G. Pharmacokinetic comparability of Prolastin®-C to Prolastin® in alpha1-antitrypsin deficiency: a randomized study. BMC Clin. Pharmacol., 2010, 10, 13.
[http://dx.doi.org/10.1186/1472-6904-10-13] [PMID: 20920295]
[153]
Brantly, M.L.; Lascano, J.E.; Shahmohammadi, A. Intravenous alpha-1 antitrypsin therapy for alpha-1 antitrypsin deficiency: the current state of the evidence. Chronic Obstr. Pulm. Dis. (Miami), 2018, 6(1), 100-114.
[http://dx.doi.org/10.15326/jcopdf.6.1.2017.0185] [PMID: 30775428]
[154]
Turner, A.M. Alpha-1 antitrypsin deficiency: new developments in augmentation and other therapies. BioDrugs, 2013, 27(6), 547-558.
[http://dx.doi.org/10.1007/s40259-013-0042-5] [PMID: 23771682]
[155]
Siekmeier, R. Lung deposition of inhaled alpha-1-proteinase inhibitor (alpha 1-PI) - problems and experience of alpha1-PI inhalation therapy in patients with hereditary alpha1-PI deficiency and cystic fibrosis. Eur. J. Med. Res., 2010, 15(Suppl. 2), 164-174.
[http://dx.doi.org/10.1186/2047-783X-15-S2-164] [PMID: 21147646]
[156]
Mohanka, M.; Khemasuwan, D.; Stoller, J.K. A review of augmentation therapy for alpha-1 antitrypsin deficiency. Expert Opin. Biol. Ther., 2012, 12(6), 685-700.
[http://dx.doi.org/10.1517/14712598.2012.676638] [PMID: 22500781]
[157]
Stolk, J.; Tov, N.; Chapman, K.R.; Fernandez, P.; MacNee, W.; Hopkinson, N.S.; Piitulainen, E.; Seersholm, N.; Vogelmeier, C.F.; Bals, R.; McElvaney, G.; Stockley, R.A. Efficacy and safety of inhaled α1-antitrypsin in patients with severe α1-antitrypsin deficiency and frequent exacerbations of COPD. Eur. Respir. J., 2019, 54(5)1900673
[http://dx.doi.org/10.1183/13993003.00673-2019] [PMID: 31467115]
[158]
Newman, S.P. Drug delivery to the lungs: challenges and opportunities. Ther. Deliv., 2017, 8(8), 647-661.
[http://dx.doi.org/10.4155/tde-2017-0037] [PMID: 28730933]
[159]
Lockett, A.D.; Brown, M.B.; Santos-Falcon, N.; Rush, N.I.; Oueini, H.; Oberle, A.J.; Bolanis, E.; Fragoso, M.A.; Petrusca, D.N.; Serban, K.A.; Schweitzer, K.S.; Presson, R.G., Jr; Campos, M.; Petrache, I. Active trafficking of alpha 1 antitrypsin across the lung endothelium. PLoS One, 2014, 9(4)e93979
[http://dx.doi.org/10.1371/journal.pone.0093979] [PMID: 24743137]
[160]
Griese, M.; Scheuch, G. Delivery of alpha-1 antitrypsin to airways. Ann. Am. Thorac. Soc., 2016, 13(Suppl. 4), S346-S351.
[http://dx.doi.org/10.1513/AnnalsATS.201507-469KV] [PMID: 27564672]
[161]
Usmani, O.S. Feasibility of aerosolized alpha-1 antitrypsin as a therapeutic option. Chronic Obstr. Pulm. Dis. (Miami), 2020, 7(3), 272-279.
[http://dx.doi.org/10.15326/jcopdf.7.3.2019.0179] [PMID: 32726075]
[162]
Bodier-Montagutelli, E.; Mayor, A.; Vecellio, L.; Respaud, R.; Heuzé-Vourc’h, N. Designing inhaled protein therapeutics for topical lung delivery: what are the next steps? Expert Opin. Drug Deliv., 2018, 15(8), 729-736.
[http://dx.doi.org/10.1080/17425247.2018.1503251] [PMID: 30025210]
[163]
Geller, D.E. The science of aerosol delivery in cystic fibrosis. Pediatr. Pulmonol., 2008, 43(S9), S5-S17.
[http://dx.doi.org/10.1002/ppul.20860]
[164]
Hubbard, R.C.; Casolaro, M.A.; Mitchell, M.; Sellers, S.E.; Arabia, F.; Matthay, M.A.; Crystal, R.G. Fate of aerosolized recombinant DNA-produced alpha 1-antitrypsin: use of the epithelial surface of the lower respiratory tract to administer proteins of therapeutic importance. Proc. Natl. Acad. Sci. USA, 1989, 86(2), 680-684.
[http://dx.doi.org/10.1073/pnas.86.2.680] [PMID: 2783491]
[165]
Griese, M.; Latzin, P.; Kappler, M.; Weckerle, K.; Heinzlmaier, T.; Bernhardt, T.; Hartl, D. alpha1-Antitrypsin inhalation reduces airway inflammation in cystic fibrosis patients. Eur. Respir. J., 2007, 29(2), 240-250.
[http://dx.doi.org/10.1183/09031936.00047306] [PMID: 17050563]
[166]
Loira-Pastoriza, C.; Todoroff, J.; Vanbever, R. Delivery strategies for sustained drug release in the lungs. Adv. Drug Deliv. Rev., 2014, 75, 81-91.
[http://dx.doi.org/10.1016/j.addr.2014.05.017] [PMID: 24915637]
[167]
Brand, P.; Beckmann, H.; Maas Enriquez, M.; Meyer, T.; Müllinger, B.; Sommerer, K.; Weber, N.; Weuthen, T.; Scheuch, G. Peripheral deposition of alpha1-protease inhibitor using commercial inhalation devices. Eur. Respir. J., 2003, 22(2), 263-267.
[http://dx.doi.org/10.1183/09031936.03.00096802] [PMID: 12952258]
[168]
Brand, P.; Schulte, M.; Wencker, M.; Herpich, C.H.; Klein, G.; Hanna, K.; Meyer, T. Lung deposition of inhaled alpha1-proteinase inhibitor in cystic fibrosis and alpha1-antitrypsin deficiency. Eur. Respir. J., 2009, 34(2), 354-360.
[http://dx.doi.org/10.1183/09031936.00118408] [PMID: 19251783]
[169]
Geller, D.E.; Kesser, K.C. The I-neb adaptive aerosol delivery system enhances delivery of alpha1-antitrypsin with controlled inhalation. J. Aerosol Med. Pulm. Drug Deliv., 2010, 23(Suppl. 1), S55-S59.
[http://dx.doi.org/10.1089/jamp.2009.0793] [PMID: 20373910]
[170]
Martin, S.L.; Downey, D.; Bilton, D.; Keogan, M.T.; Edgar, J.; Elborn, J.S.; Recombinant, A.A.T.C.F.S.T. Recombinant AAT CF Study Team. Safety and efficacy of recombinant alpha(1)-antitrypsin therapy in cystic fibrosis. Pediatr. Pulmonol., 2006, 41(2), 177-183.
[http://dx.doi.org/10.1002/ppul.20345] [PMID: 16372352]
[171]
Monk, R.; Graves, M.; Williams, P.; Strange, C. Inhaled alpha 1-antitrypsin: gauging patient interest in a new treatment. COPD, 2013, 10(4), 411-415.
[http://dx.doi.org/10.3109/15412555.2012.758698] [PMID: 23537112]
[172]
Pilcer, G.; Amighi, K. Formulation strategy and use of excipients in pulmonary drug delivery. Int. J. Pharm., 2010, 392(1-2), 1-19.
[http://dx.doi.org/10.1016/j.ijpharm.2010.03.017] [PMID: 20223286]
[173]
de Boer, A.H.; Hagedoorn, P.; Hoppentocht, M.; Buttini, F.; Grasmeijer, F.; Frijlink, H.W. Dry powder inhalation: past, present and future. Expert Opin. Drug Deliv., 2017, 14(4), 499-512.
[http://dx.doi.org/10.1080/17425247.2016.1224846] [PMID: 27534768]
[174]
Quarta, E.; Chierici, V.; Flammini, L.; Tognolini, M.; Barocelli, E.; Cantoni, A.M.; Dujovny, G.; Ecenarro Probst, S.; Sonvico, F.; Colombo, G.; Rossi, A.; Bettini, R.; Colombo, P.; Buttini, F. Excipient-free pulmonary insulin dry powder: Pharmacokinetic and pharmacodynamics profiles in rats. J. Control. Release, 2020, 323, 412-420.
[http://dx.doi.org/10.1016/j.jconrel.2020.04.015] [PMID: 32325175]
[175]
Geller, D.E.; Weers, J.; Heuerding, S. Development of an inhaled dry-powder formulation of tobramycin using PulmoSphere™ technology. J. Aerosol Med. Pulm. Drug Deliv., 2011, 24(4), 175-182.
[http://dx.doi.org/10.1089/jamp.2010.0855] [PMID: 21395432]
[176]
Pontes, J.F.; Grenha, A. Multifunctional nanocarriers for lung drug delivery. Nanomaterials (Basel), 2020, 10(2)E183
[http://dx.doi.org/10.3390/nano10020183] [PMID: 31973051]
[177]
Pirooznia, N.; Hasannia, S.; Lotfi, A.S.; Ghanei, M. Encapsulation of alpha-1 antitrypsin in PLGA nanoparticles: in vitro characterization as an effective aerosol formulation in pulmonary diseases. J. Nanobiotechnology, 2012, 10, 20.
[http://dx.doi.org/10.1186/1477-3155-10-20] [PMID: 22607686]
[178]
Fredenberg, S.; Wahlgren, M.; Reslow, M.; Axelsson, A. The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems-a review. Int. J. Pharm., 2011, 415(1-2), 34-52.
[http://dx.doi.org/10.1016/j.ijpharm.2011.05.049] [PMID: 21640806]
[179]
Ghasemi, A.; Mohtashami, M.; Sheijani, S.S.; Aliakbari, K. Chitosan-genipin nanohydrogel as a vehicle for sustained delivery of alpha-1 antitrypsin. Res. Pharm. Sci., 2015, 10(6), 523-534.
[PMID: 26779272]
[180]
Heyder, J.; Gebhart, J.; Rudolf, G.; Schiller, C.F.; Stahlhofen, W. Deposition of particles in the human respiratory tract in the size range 0.005-15 μm. J. Aerosol Sci., 1986, 17(5), 811-825.
[http://dx.doi.org/10.1016/0021-8502(86)90035-2]
[181]
Mejias, J.C.; Roy, K. In-vitro and in-vivo characterization of a multi-stage enzyme-responsive nanoparticle-in-microgel pulmonary drug delivery system. J. Control. Disease., 2019, 316, 393-403.
[http://dx.doi.org/10.1016/j.jconrel.2019.09.012] [PMID: 31715279]
[182]
Mueller, C.; Flotte, T.R. Gene-based therapy for alpha-1 antitrypsin deficiency. COPD, 2013, 10(Suppl. 1), 44-49.
[http://dx.doi.org/10.3109/15412555.2013.764978] [PMID: 23527792]
[183]
Lorincz, R.; Curiel, D.T. Advances in alpha-1 antitrypsin gene therapy. Am. J. Respir. Cell Mol. Biol., 2020, 63(5), 560-570.
[http://dx.doi.org/10.1165/rcmb.2020-0159PS] [PMID: 32668173]
[184]
Gruntman, A.M.; Flotte, T.R. Therapeutics: gene therapy for alpha-1 antitrypsin deficiency. Methods Mol. Biol., 2017, 1639, 267-275.
[http://dx.doi.org/10.1007/978-1-4939-7163-3_27] [PMID: 28752467]
[185]
Song, S.; Morgan, M.; Ellis, T.; Poirier, A.; Chesnut, K.; Wang, J.; Brantly, M.; Muzyczka, N.; Byrne, B.J.; Atkinson, M.; Flotte, T.R. Sustained secretion of human alpha-1-antitrypsin from murine muscle transduced with adeno-associated virus vectors. Proc. Natl. Acad. Sci. USA, 1998, 95(24), 14384-14388.
[http://dx.doi.org/10.1073/pnas.95.24.14384] [PMID: 9826709]
[186]
Sosulski, M.L.; Stiles, K.M.; Frenk, E.Z.; Hart, F.M.; Matsumura, Y.; De, B.P.; Kaminsky, S.M.; Crystal, R.G. Gene therapy for alpha 1-antitrypsin deficiency with an oxidant-resistant human alpha 1-antitrypsin. JCI Insight, 2020, 5(15)135951
[http://dx.doi.org/10.1172/jci.insight.135951] [PMID: 32759494]
[187]
Ma, H.; Lu, Y.; Lowe, K.; van der Meijden-Erkelens, L.; Wasserfall, C.; Atkinson, M.A.; Song, S. Regulated hAAT expression from a novel rAAV vector and its application in the prevention of type 1 diabetes. J. Clin. Med., 2019, 8(9)E1321
[http://dx.doi.org/10.3390/jcm8091321] [PMID: 31466263]
[188]
Song, C.Q.; Wang, D.; Jiang, T.; O’Connor, K.; Tang, Q.; Cai, L.; Li, X.; Weng, Z.; Yin, H.; Gao, G.; Mueller, C.; Flotte, T.R.; Xue, W. In vivo genome editing partially restores alpha1-antitrypsin in a murine model of Aat deficiency. Hum. Gene Ther., 2018, 29(8), 853-860.
[http://dx.doi.org/10.1089/hum.2017.225] [PMID: 29597895]
[189]
Wooddell, C.I.; Blomenkamp, K.; Peterson, R.M.; Subbotin, V.M.; Schwabe, C.; Hamilton, J.; Chu, Q.; Christianson, D.R.; Hegge, J.O.; Kolbe, J.; Hamilton, H.L.; Branca-Afrazi, M.F.; Given, B.D.; Lewis, D.L.; Gane, E.; Kanner, S.B.; Teckman, J.H. Development of an RNAi therapeutic for alpha-1-antitrypsin liver disease. JCI Insight, 2020, 5(12)135348
[http://dx.doi.org/10.1172/jci.insight.135348] [PMID: 32379724]
[190]
Berthelier, V.; Harris, J.B.; Estenson, K.N.; Baudry, J. Discovery of an inhibitor of Z-alpha1 antitrypsin polymerization. PLoS One, 2015, 10(5)e0126256
[http://dx.doi.org/10.1371/journal.pone.0126256] [PMID: 25961288]
[191]
Lomas, D.A.; Irving, J.A.; Arico-Muendel, C.; Belyanskaya, S.; Brewster, A.; Brown, M.; Chung, C-w.; Dave, H.; Denis, A.; Dodic, N.; Dossang, A.; Eddershaw, P.; Klimaszewska, D.; Haq, I.; Holmes, D.S.; Hutchinson, J.P.; Jagger, A.; Jakhria, T.; Jigorel, E.; Liddle, J.; Lind, K.; Marciniak, S.J.; Messer, J.; Neu, M.; Olszewski, A.; Ordonez, A.; Ronzoni, R.; Rowedder, J.; Rüdiger, M.; Skinner, S.; Smith, K.J.; Terry, R.; Trottet, L.; Uings, I.; Wilson, S.; Zhu, Z.; Pearce, A.C. Development of a small molecule that corrects misfolding and increases secretion of Z α1-antitrypsin. bioRxiv, 2020. preprint..
[http://dx.doi.org/10.1101/2020.07.26.217661]
[192]
Zhang, X.; Pham, K.; Li, D.; Schutte, R.J.; Gonzalo, D.H.; Zhang, P.; Oshins, R.; Tan, W.; Brantly, M.; Liu, C.; Ostrov, D.A. A novel small molecule inhibits intrahepatocellular accumulation of z-variant alpha 1-antitrypsin in vitro and in vivo. Cells, 2019, 8(12)E1586
[http://dx.doi.org/10.3390/cells8121586] [PMID: 31817705]
[193]
Sullivan, G.P.; Davidovich, P.B.; Sura-Trueba, S.; Belotcerkovskaya, E.; Henry, C.M.; Clancy, D.M.; Zinoveva, A.; Mametnabiev, T.; Garabadzhiu, A.V.; Martin, S.J. Identification of small-molecule elastase inhibitors as antagonists of IL-36 cytokine activation. FEBS Open Bio, 2018, 8(5), 751-763.
[http://dx.doi.org/10.1002/2211-5463.12406] [PMID: 29744290]
[194]
Schepetkin, I.A.; Khlebnikov, A.I.; Quinn, M.T. N-benzoylpyrazoles are novel small-molecule inhibitors of human neutrophil elastase. J. Med. Chem., 2007, 50(20), 4928-4938.
[http://dx.doi.org/10.1021/jm070600+] [PMID: 17850059]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy