Generic placeholder image

Current Materials Science

Editor-in-Chief

ISSN (Print): 2666-1454
ISSN (Online): 2666-1462

Review Article

Effects of Nanomaterials on Plant Growth at Molecular Level

Author(s): Yuxin Li, Yukui Rui*, Bo Huang, Mengyuan Liu, Adeel Muhammad, Zihan Lu and Shuang Lu

Volume 15, Issue 1, 2022

Published on: 21 May, 2021

Page: [21 - 27] Pages: 7

DOI: 10.2174/2666145414666210521213759

Price: $65

Abstract

Nanomaterials are widely used in all walks of life, bring great changes to our life and production. In addition, nanomaterials have also been used in agriculture. The most common ones are carbon-based nanomaterials and TiO2 nanoparticles, which can stimulate plant growth and increase crop yield. However, not all nanomaterials have a positive effect on plant growth. Therefore, it is necessary to understand the influence of nanomaterials on plants after entering the environment. Nanomaterials can be inhaled directly or through endocytosis. Some nanomaterials will become the corresponding ion state to enter the plant, while some larger nanomaterials will block cell wall channels or adsorb on the surface of plants. Nanoparticles (NPs) enter the plant can produce positive or negative effects on the plant's genes, proteins. This paper discusses the effects of nanomaterials on plant growth and on the molecular level.

Keywords: Plants, nanomaterials, genes, proteins, enzyme, risk.

Graphical Abstract

[1]
Jitao Lv, Zhang S. Interactions between artificial nanomaterials and plants: plant toxicity, absorption, and transport. Huaxue Jinzhan 2013; 25(01): 156-63.
[2]
Lin D, Ji J, Tian X, et al. Environmental behavior and biotoxicity of nanomaterials. Chin Sci Bull 2009; 54(23): 3590-604.
[http://dx.doi.org/10.1360/972009-2075]
[3]
Maynard AD, Aitken RJ, Butz T, et al. Safe handling of nanotechnology. Nature 2006; 444(7117): 267-9.
[http://dx.doi.org/10.1038/444267a] [PMID: 17108940]
[4]
Service RF. American Chemical Society meeting. Nanomaterials show signs of toxicity. Science 2003; 300(5617): 243.
[http://dx.doi.org/10.1126/science.300.5617.243a] [PMID: 12690169]
[5]
Bai Wei, Chengcheng Zhang, Wenjun Jiang, et al. Advances in environmental behavior and toxicology of nanomaterials. J Ecotoxicology 2009; 4(02): 174-82.
[6]
Jeng HA, Swanson J. Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health A Tox Hazard Subst Environ Eng 2006; 41(12): 2699-711.
[http://dx.doi.org/10.1080/10934520600966177] [PMID: 17114101]
[7]
Yeo M, Kang M. Effects of Nanometer Sized Silver Materials on Biological Toxicity During Zebrafish Embryogenesis. Bulletin of The Korean Chemical Society 2008; (6): 1179-84.
[8]
Hao Y, Cao X, Ma C, et al. Potential applications and antifungal activities of engineered nanomaterials against gray mold disease agent Botrytis cinerea on rose petals. Front Plant Sci 2017; 8: 1332.
[http://dx.doi.org/10.3389/fpls.2017.01332] [PMID: 28824670]
[9]
Ruffini Castiglione M, Cremonini R. Nanoparticles and higher plants. Caryologia 2009; (2): 161-5.
[10]
Chichiriccò G, Poma A. Penetration and toxicity of nanomaterials in higher plants. Nanomaterials 2015; 5(2): 851-73.
[http://dx.doi.org/10.3390/nano5020851] [PMID: 28347040]
[11]
Rizwan M, Ali S, Qayyum MF, et al. Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: a critical review. J Hazard Mater 2017; 322(Pt A): 2-16.
[http://dx.doi.org/10.1016/j.jhazmat.2016.05.061] [PMID: 27267650]
[12]
Lu C, Zhang C, Wen J, et al. Effects of nanomaterials on soybean germination and growth and its mechanism. Dadou Kexue 2002; (03): 168-71.
[13]
Lahiani MH, Chen J, Irin F, et al. Interaction of carbon nanohorns with plants: uptake and biological effects. Carbon 2015; 81: 607-19.
[http://dx.doi.org/10.1016/j.carbon.2014.09.095]
[14]
Khodakovskaya M, Dervishi E, Mahmood M, et al. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 2009; 3(10): 3221-7.
[http://dx.doi.org/10.1021/nn900887m] [PMID: 19772305]
[15]
Haghighi M, Teixeira Da Silva JA. The effect of N-TiO2 on tomato, onion, and radish seed germination. J Crop Sci Biotechnol 2014; 17(4): 221-7.
[http://dx.doi.org/10.1007/s12892-014-0056-7]
[16]
Dimkpa CO, McLean JE, Martineau N, Britt DW, Haverkamp R, Anderson AJ. Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ Sci Technol 2013; 47(2): 1082-90.
[http://dx.doi.org/10.1021/es302973y] [PMID: 23259709]
[17]
Adhikari T, Kundu S, Biswas AK, Tarafdar JC, Rao AS. Effect of copper oxide nano particle on seed germination of selected crops. J Agric Sci Technol A 2012; 2(6): 815-23.
[18]
Ma C, Chhikara S, Xing B, et al. Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure. ACS Sustain Chem& Eng 2013; 1(7): 768-78.
[http://dx.doi.org/10.1021/sc400098h]
[19]
Taylor AF, Rylott EL, Anderson CWN, Bruce NC. Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold. PLoS One 2014; 9(4): e93793.
[http://dx.doi.org/10.1371/journal.pone.0093793] [PMID: 24736522]
[20]
Syu YY, Hung JH, Chen JC, Chuang HW. Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiol Biochem 2014; 83: 57-64.
[http://dx.doi.org/10.1016/j.plaphy.2014.07.010] [PMID: 25090087]
[21]
Wang S, Liu H, Zhang Y, Xin H. The effect of CuO NPs on reactive oxygen species and cell cycle gene expression in roots of rice. Environ Toxicol Chem 2015; 34(3): 554-61.
[http://dx.doi.org/10.1002/etc.2826] [PMID: 25475023]
[22]
Wang Y, Deng C, Cota-Ruiz K, et al. Effects of different surface-coated nTiO2 on full-grown carrot plants: impacts on root splitting, essential elements, and Ti uptake. J Hazard Mater 2021; 402: 123768.
[http://dx.doi.org/10.1016/j.jhazmat.2020.123768] [PMID: 33254779]
[23]
Khodakovskaya MV, de Silva K, Nedosekin DA, et al. Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc Natl Acad Sci USA 2011; 108(3): 1028-33.
[http://dx.doi.org/10.1073/pnas.1008856108] [PMID: 21189303]
[24]
Khodakovskaya MV, de Silva K, Biris AS, Dervishi E, Villagarcia H. Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 2012; 6(3): 2128-35.
[http://dx.doi.org/10.1021/nn204643g] [PMID: 22360840]
[25]
Yan S, Zhao L, Li H, et al. Single-walled carbon nanotubes selectively influence maize root tissue development accompanied by the change in the related gene expression. J Hazard Mater 2013; 246-247: 110-8.
[http://dx.doi.org/10.1016/j.jhazmat.2012.12.013] [PMID: 23291336]
[26]
McGehee DL, Lahiani MH, Irin F, Green MJ, Khodakovskaya MV. Multiwalled carbon nanotubes dramatically affect the fruit metabolome of exposed tomato plants. ACS Appl Mater Interfaces 2017; 9(38): 32430-5.
[http://dx.doi.org/10.1021/acsami.7b10511] [PMID: 28921945]
[27]
Chen Hao, Yang Xiaojing. Inhibitory effects of nano-TiO2 and single-walled carbon nanotubes on the growth of Chlorella vulgis. J Ecotoxicology 2010; 1(5): 38-43.
[28]
Zhao S, Wang Q, Zhao Y, Rui Q, Wang D. Toxicity and translocation of graphene oxide in Arabidopsis thaliana. Environ Toxicol Pharmacol 2015; 39(1): 145-56.
[http://dx.doi.org/10.1016/j.etap.2014.11.014] [PMID: 25499792]
[29]
Lahiani MH, Dervishi E, Chen J, et al. Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl Mater Interfaces 2013; 5(16): 7965-73.
[http://dx.doi.org/10.1021/am402052x] [PMID: 23834323]
[30]
Ren W, Chang H, Li L, Teng Y. Effect of graphene oxide on growth of wheat seedlings: insights from oxidative stress and physiological flux. Bull Environ Contam Toxicol 2020; 105(1): 139-45.
[http://dx.doi.org/10.1007/s00128-020-02888-9] [PMID: 32458034]
[31]
Atha DH, Wang H, Petersen EJ, et al. Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 2012; 46(3): 1819-27.
[http://dx.doi.org/10.1021/es202660k] [PMID: 22201446]
[32]
Burklew CE, Ashlock J, Winfrey WB, Zhang B. Effects of aluminum oxide nanoparticles on the growth, development, and microRNA expression of tobacco (Nicotiana tabacum). PLoS One 2012; 7(5): e34783.
[http://dx.doi.org/10.1371/journal.pone.0034783] [PMID: 22606225]
[33]
Landa P, Vankova R, Andrlova J, et al. Nanoparticle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO2, and fullerene soot. J Hazard Mater 2012; 241-242: 55-62.
[http://dx.doi.org/10.1016/j.jhazmat.2012.08.059] [PMID: 23036700]
[34]
Kaveh R, Li YS, Ranjbar S, Tehrani R, Brueck CL, Van Aken B. Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environ Sci Technol 2013; 47(18): 10637-44.
[http://dx.doi.org/10.1021/es402209w] [PMID: 23962165]
[35]
Vannini C, Domingo G, Onelli E, et al. Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate. PLoS One 2013; 8(7): e68752.
[http://dx.doi.org/10.1371/journal.pone.0068752] [PMID: 23874747]
[36]
Mustafa G, Sakata K, Hossain Z, Komatsu S. Proteomic study on the effects of silver nanoparticles on soybean under flooding stress. J Proteomics 2015; 122: 100-18.
[http://dx.doi.org/10.1016/j.jprot.2015.03.030] [PMID: 25857275]
[37]
Mustafa G, Sakata K, Komatsu S. Proteomic analysis of flooded soybean root exposed to aluminum oxide nanoparticles. J Proteomics 2015; 128: 280-97.
[http://dx.doi.org/10.1016/j.jprot.2015.08.010] [PMID: 26306862]
[38]
Mirzajani F, Askari H, Hamzelou S, et al. Proteomics study of silver nanoparticles toxicity on Oryza sativa L. Ecotoxicol Environ Saf 2014; 108: 335-9.
[http://dx.doi.org/10.1016/j.ecoenv.2014.07.013] [PMID: 25124680]
[39]
Vannini C, Domingo G, Onelli E, et al. Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings. J Plant Physiol 2014; 171(13): 1142-8.
[http://dx.doi.org/10.1016/j.jplph.2014.05.002] [PMID: 24973586]
[40]
Teodoro M, Clemente R, Ferrer-Bustins E, et al. Nanoscale zero-valent iron has minimum toxicological risk on the germination and early growth of two grass species with potential for phytostabilization. Nanomaterials 2020; 10(8): 1537.
[http://dx.doi.org/10.3390/nano10081537] [PMID: 32764467]
[41]
Wang Y, Deng C, Cota-Ruiz K, et al. Improvement of nutrient elements and allicin content in green onion (Allium fistulosum) plants exposed to CuO nanoparticles. Sci Total Environ 2020; 725: 138387.
[http://dx.doi.org/10.1016/j.scitotenv.2020.138387] [PMID: 32298898]
[42]
Lian J, Zhao L, Wu J, et al. Foliar spray of TiO2 nanoparticles prevails over root application in reducing Cd accumulation and mitigating Cd-induced phytotoxicity in maize (Zea mays L.). Chemosphere 2020; 239: 124794.
[http://dx.doi.org/10.1016/j.chemosphere.2019.124794] [PMID: 31521929]
[43]
Hao Y, Xu B, Ma C, et al. Synthesis of novel mesoporous carbon nanoparticles and their phytotoxicity to rice (Oryza sativa L.). J Saudi Chem Soc 2019; 23(1): 75-82.
[http://dx.doi.org/10.1016/j.jscs.2018.05.003]
[44]
Rui M, Ma C, Hao Y, et al. Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front Plant Sci 2016; 7: 815.
[http://dx.doi.org/10.3389/fpls.2016.00815] [PMID: 27375665]
[45]
Le VN, Rui Y, Gui X, Li X, Liu S, Han Y. Uptake, transport, distribution and bio-effects of SiO2 nanoparticles in Bt-transgenic cotton. J Nanobiotech 2014; 12(1): 50.
[http://dx.doi.org/10.1186/s12951-014-0050-8] [PMID: 25477033]
[46]
Hao Y, Ma C, Zhang Z, et al. Carbon nanomaterials alter plant physiology and soil bacterial community composition in a rice-soil-bacterial ecosystem. Environ Pollut 2018; 232: 123-36.
[http://dx.doi.org/10.1016/j.envpol.2017.09.024] [PMID: 28947315]
[47]
Hao Y, Yu F, Lv R, et al. Carbon nanotubes filled with different ferromagnetic alloys affect the growth and development of rice seedlings by changing the c:n ratio and plant hormones concentrations. PLoS One 2016; 11(6): e0157264.
[http://dx.doi.org/10.1371/journal.pone.0157264] [PMID: 27284692]
[48]
Konate A, Wang Y, He X, et al. Comparative effects of nano and bulk-Fe3O4 on the growth of cucumber (Cucumis sativus). Ecotoxicol Environ Saf 2018; 165: 547-54.
[http://dx.doi.org/10.1016/j.ecoenv.2018.09.053] [PMID: 30223168]
[49]
Wang Y, Chen R, Liu H, et al. Application of nanomaterials in agriculture and their effects on plant growth and development. J Plant Physiol 2017; 53(06): 933-42.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy