Mini-Review Article

登革热病毒进入抑制剂的挑战和前景

卷 29, 期 4, 2022

发表于: 09 July, 2021

页: [719 - 740] 页: 22

弟呕挨: 10.2174/0929867328666210521213118

价格: $65

conference banner
摘要

登革热病毒(DENV)疾病已成为公共卫生领域的主要挑战之一。目前,没有针对这种感染的抗病毒治疗。由于人类传播是通过伊蚊属的蚊子传播的,因此大多数努力都集中在控制这种媒介上。然而,这些控制策略并未完全成功,这反映在每年 DENV 感染数量不断增加,成为全球 100 多个国家的地方病。因此,迫切需要开发一种安全的抗病毒药物。从这个意义上说,合理的设计方法已应用于开发抑制病毒复制周期中一个或多个步骤的抗病毒化合物。病毒进入宿主细胞是感染的早期和特定阶段。靶向病毒成分或细胞蛋白靶点是治疗干预病毒感染的一种负担得起且有效的策略。这篇综述对迄今为止作为 DENV 进入直接作用的抗病毒剂进行测试的有机小分子、肽和无机部分进行了广泛的概述。将讨论基于计算机辅助药物设计 (CADD) 策略和传统药物化学方法设计和评估 DENV 病毒进入抑制剂的最新进展。此外,还将详细讨论药物的物理化学性质,例如溶解度、亲脂性、稳定性以及临床前和临床研究的当前结果。

关键词: 登革热病毒、进入抑制剂、计算机辅助药物设计、包膜蛋白、小分子、肽、无机化合物

[2]
Castilla, V.; Piccini, L.E.; Damonte, E.B. Dengue virus entry and trafficking: Perspectives as antiviral target for prevention and therapy. Future Virol., 2015, 10(5), 625-645.
[http://dx.doi.org/10.2217/fvl.15.35]
[3]
Mustafa, M.S.; Rasotgi, V.; Jain, S.; Gupta, V. Discovery of fifth serotype of dengue virus (DENV-5): A new public health dilemma in dengue control. Med. J. Armed Forces India, 2015, 71(1), 67-70.
[http://dx.doi.org/10.1016/j.mjafi.2014.09.011] [PMID: 25609867]
[4]
Release, FDA news: First FDA-approved vaccine for the prevention of dengue disease in endemic
[5]
Dengue vaccine: WHO position paper, September 2018 - Recommendations. Vaccine, 2019, 37(35), 4848-4849.
[http://dx.doi.org/10.1016/j.vaccine.2018.09.063] [PMID: 30424888]
[6]
Nasar, S.; Rashid, N.; Iftikhar, S. Dengue proteins with their role in pathogenesis, and strategies for developing an effective anti-dengue treatment: A review. J. Med. Virol., 2020, 92(8), 941-955.
[http://dx.doi.org/10.1002/jmv.25646] [PMID: 31784997]
[7]
Yennamalli, R.; Subbarao, N.; Kampmann, T.; McGeary, R.P.; Young, P.R.; Kobe, B. Identification of novel target sites and an inhibitor of the dengue virus E protein. J. Comput. Aided Mol. Des., 2009, 23(6), 333-341.
[http://dx.doi.org/10.1007/s10822-009-9263-6] [PMID: 19241120]
[8]
Ma, L.; Jones, C. T.; Groesch, T. D.; Kuhn, R. J.; Post, C. B. Solution structure of dengue virus capsid protein reveals another fold. Proc. Natl. Acad. Sci. U. S. A., 2004, 101(10), 3414-3419.
[http://dx.doi.org/10.1073/pnas.0305892101 PMID: 14993605]
[9]
Li, L.; Lok, S.-M.; Yu, I.-M.; Zhang, Y.; Kuhn, R. J.; Chen, J.; Rossmann, M. G. The flavivirus precursor membrane-envelope protein complex: Structure and maturation. Science, 2008, 319(5871), 1830 LP-1834.
[http://dx.doi.org/10.1126/science.1153263 PMID: 18369147]
[10]
Zhang, X.; Ge, P.; Yu, X.; Brannan, J.M.; Bi, G.; Zhang, Q.; Schein, S.; Zhou, Z.H. Cryo-EM structure of the mature dengue virus at 3.5-Å resolution. Nat. Struct. Mol. Biol., 2013, 20(1), 105-110.
[http://dx.doi.org/10.1038/nsmb.2463] [PMID: 23241927]
[11]
Modis, Y.; Ogata, S.; Clements, D.; Harrison, S.C. A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc. Natl. Acad. Sci. USA, 2003, 100(12), 6986-6991.
[http://dx.doi.org/10.1073/pnas.0832193100] [PMID: 12759475]
[12]
Zou, B.; Chan, W.L.; Ding, M.; Leong, S.Y.; Nilar, S.; Seah, P.G.; Liu, W.; Karuna, R.; Blasco, F.; Yip, A.; Chao, A.; Susila, A.; Dong, H.; Wang, Q.Y.; Xu, H.Y.; Chan, K.; Wan, K.F.; Gu, F.; Diagana, T.T.; Wagner, T.; Dix, I.; Shi, P-Y.; Smith, P.W. Lead optimization of spiropyrazolopyridones: A new and potent class of dengue virus inhibitors. ACS Med. Chem. Lett., 2015, 6(3), 344-348.
[http://dx.doi.org/10.1021/ml500521r] [PMID: 25878766]
[13]
Wang, Q.-Y.; Dong, H.; Zou, B.; Karuna, R.; Wan, K. F.; Zou, J.; Susila, A.; Yip, A.; Shan, C.; Yeo, K. L.; Xu, H.; Ding, M.; Chan, W. L.; Gu, F.; Seah, P. G.; Liu, W.; Lakshminarayana, S. B.; Kang, C.; Lescar, J.; Blasco, F.; Smith, P. W.; Shi, P.-Y. Discovery of dengue virus NS4B inhibitors. J. Virol., 2015, 89(16), 8233 LP-8244.
[http://dx.doi.org/10.1128/JVI.00855-15]
[14]
Zhou, Z.; Khaliq, M.; Suk, J-E.E.; Patkar, C.; Li, L.; Kuhn, R.J.; Post, C.B. Antiviral compounds discovered by virtual screening of small-molecule libraries against dengue virus E protein. ACS Chem. Biol., 2008, 3(12), 765-775.
[http://dx.doi.org/10.1021/cb800176t] [PMID: 19053243]
[15]
de Wispelaere, M.; Lian, W.; Potisopon, S.; Li, P-C.; Jang, J.; Ficarro, S.B.; Clark, M.J.; Zhu, X.; Kaplan, J.B.; Pitts, J.D.; Wales, T.E.; Wang, J.; Engen, J.R.; Marto, J.A.; Gray, N.S.; Yang, P.L. Inhibition of flaviviruses by targeting a conserved pocket on the viral envelope protein. Cell Chem. Biol., 2018, 25(8), 1006-1016.e8.
[http://dx.doi.org/10.1016/j.chembiol.2018.05.011] [PMID: 29937406]
[16]
Cruz-Oliveira, C.; Freire, J.M.; Conceição, T.M.; Higa, L.M.; Castanho, M.A.R.B.; Da Poian, A.T. Receptors and routes of dengue virus entry into the host cells. FEMS Microbiol. Rev., 2015, 39(2), 155-170.
[http://dx.doi.org/10.1093/femsre/fuu004] [PMID: 25725010]
[17]
LaBonte, J.; Lebbos, J.; Kirkpatrick, P. Enfuvirtide. Nat. Rev. Drug Discov., 2003, 2(5), 345-346.
[http://dx.doi.org/10.1038/nrd1091] [PMID: 12755128]
[18]
Wouters, O.J.; McKee, M.; Luyten, J. Estimated research and development investment needed to bring a new medicine to market, 2009-2018. JAMA, 2020, 323(9), 844-853.
[http://dx.doi.org/10.1001/jama.2020.1166] [PMID: 32125404]
[19]
DiMasi, J.A.; Grabowski, H.G.; Hansen, R.W. Innovation in the pharmaceutical industry: New estimates of R&D costs. J. Health Econ., 2016, 47, 20-33.
[http://dx.doi.org/10.1016/j.jhealeco.2016.01.012] [PMID: 26928437]
[20]
Paul, S. M.; Mytelka, D. S.; Dunwiddie, C. T.; Persinger, C. C.; Munos, B. H.; Lindborg, S. R.; Schacht, A. L. How to improve r& d productivity: The pharmaceutical industry’s grand challenge. Nature reviews. Drug discovery, 2010, 9(3), 203-214.
[21]
Macalino, S.J.Y.; Gosu, V.; Hong, S.; Choi, S. Role of computer-aided drug design in modern drug discovery. Arch. Pharm. Res., 2015, 38(9), 1686-1701.
[http://dx.doi.org/10.1007/s12272-015-0640-5] [PMID: 26208641]
[22]
Baig, M.H.; Ahmad, K.; Roy, S.; Ashraf, J.M.; Adil, M.; Siddiqui, M.H.; Khan, S.; Kamal, M.A.; Provazník, I.; Choi, I. Success and limitations. Curr. Pharm. Des., 2016, 22(5), 572-581.
[http://dx.doi.org/10.2174/1381612822666151125000550] [PMID: 26601966]
[23]
Elton, D.C.; Boukouvalas, Z.; Fuge, M.D.; Chung, P.W. Deep learning for molecular design-a review of the state of the art. Mol. Syst. Des. Eng., 2019, 4(4), 828-849.
[http://dx.doi.org/10.1039/C9ME00039A]
[24]
Yang, J-M.; Chen, Y-F.; Tu, Y-Y.; Yen, K-R.; Yang, Y-L. Combinatorial computational approaches to identify tetracycline derivatives as flavivirus inhibitors. PLoS One, 2007, 2(5), e428.
[http://dx.doi.org/10.1371/journal.pone.0000428] [PMID: 17502914]
[25]
Wang, Q.Y.Q-Y.; Patel, S.J.; Vangrevelinghe, E.; Xu, H.Y.; Rao, R.; Jaber, D.; Schul, W.; Gu, F.; Heudi, O.; Ma, N.L.; Poh, M.K.; Phong, W.Y.; Keller, T.H.; Jacoby, E.; Vasudevan, S.G.; Hao, Y.X.; Rao, R.; Jaber, D.; Schul, W.; Gu, F.; Heudi, O.; Ngai, L.M.; Mee, K.P.; Wai, Y.P.; Keller, T.H.; Jacoby, E.; Vasudevan, S.G. A small-molecule dengue virus entry inhibitor. Antimicrob. Agents Chemother., 2009, 53(5), 1823-1831.
[http://dx.doi.org/10.1128/AAC.01148-08] [PMID: 19223625]
[26]
Clark, R.D.; Strizhev, A.; Leonard, J.M.; Blake, J.F.; Matthew, J.B. Consensus scoring for ligand/protein interactions. J. Mol. Graph. Model., 2002, 20(4), 281-295.
[http://dx.doi.org/10.1016/S1093-3263(01)00125-5] [PMID: 11858637]
[27]
Poh, M.K.; Yip, A.; Zhang, S.; Priestle, J.P.; Ma, N.L.; Smit, J.M.; Wilschut, J.; Shi, P.Y.; Wenk, M.R.; Schul, W. A small molecule fusion inhibitor of dengue virus. Antiviral Res., 2009, 84(3), 260-266.
[http://dx.doi.org/10.1016/j.antiviral.2009.09.011] [PMID: 19800368]
[28]
Kampmann, T.; Yennamalli, R.; Campbell, P.; Stoermer, M.J.; Fairlie, D.P.; Kobe, B.; Young, P.R. In silico screening of small molecule libraries using the dengue virus envelope E protein has identified compounds with antiviral activity against multiple flaviviruses. Antiviral Res., 2009, 84(3), 234-241.
[http://dx.doi.org/10.1016/j.antiviral.2009.09.007] [PMID: 19781577]
[29]
Srivarangkul, P.; Yuttithamnon, W.; Suroengrit, A.; Pankaew, S.; Hengphasatporn, K.; Rungrotmongkol, T.; Phuwapraisirisan, P.; Ruxrungtham, K.; Boonyasuppayakorn, S. A novel flavanone derivative inhibits dengue virus fusion and infectivity. Antiviral Res., 2018, 151, 27-38.
[http://dx.doi.org/10.1016/j.antiviral.2018.01.010] [PMID: 29360474]
[30]
Hengphasatporn, K.; Garon, A.; Wolschann, P.; Langer, T.; Yasuteru, S.; Huynh, T.N.T.; Chavasiri, W.; Saelee, T.; Boonyasuppayakorn, S.; Rungrotmongkol, T. Multiple virtual screening strategies for the discovery of novel compounds active against dengue virus: A hit identification study. Sci. Pharm., 2020, 88(1), 2.
[http://dx.doi.org/10.3390/scipharm88010002]
[31]
Leal, E.S.; Aucar, M.G.; Gebhard, L.G.; Iglesias, N.G.; Pascual, M.J.; Casal, J.J.; Gamarnik, A.V.; Cavasotto, C.N.; Bollini, M. Discovery of novel dengue virus entry inhibitors via a structure-based approach. Bioorg. Med. Chem. Lett., 2017, 27(16), 3851-3855.
[http://dx.doi.org/10.1016/j.bmcl.2017.06.049] [PMID: 28668194]
[32]
Leal, E.S.; Adler, N.S.; Fernández, G.A.; Gebhard, L.G.; Battini, L.; Aucar, M.G.; Videla, M.; Monge, M.E.; Hernández de Los Ríos, A.; Acosta Dávila, J.A.; Morell, M.L.; Cordo, S.M.; García, C.C.; Gamarnik, A.V.; Cavasotto, C.N.; Bollini, M. De novo design approaches targeting an envelope protein pocket to identify small molecules against dengue virus. Eur. J. Med. Chem., 2019, 182, 111628.
[http://dx.doi.org/10.1016/j.ejmech.2019.111628] [PMID: 31472473]
[33]
Schmidt, A.G.; Lee, K.; Yang, P.L.; Harrison, S.C. Small- molecule inhibitors of dengue-virus entry. PLoS Pathog., 2012, 8(4), e1002627.
[http://dx.doi.org/10.1371/journal.ppat.1002627] [PMID: 22496653]
[34]
Clark, M.J.; Miduturu, C.; Schmidt, A.G.; Zhu, X.; Pitts, J.D.; Wang, J.; Potisopon, S.; Zhang, J.; Wojciechowski, A.; Hann Chu, J.J.; Gray, N.S.; Yang, P.L. GNF-2 inhibits dengue virus by targeting Abl kinases and the viral E protein. Cell Chem. Biol., 2016, 23(4), 443-452.
[http://dx.doi.org/10.1016/j.chembiol.2016.03.010] [PMID: 27105280]
[35]
Dubey, K.D.; Tiwari, G.; Ojha, R.P. Targeting domain-III hinging of dengue envelope (DENV-2) protein by MD simulations, docking and free energy calculations. J. Mol. Model., 2017, 23(4), 102.
[http://dx.doi.org/10.1007/s00894-017-3259-2] [PMID: 28255859]
[36]
Wang, Z.; Sun, H.; Yao, X.; Li, D.; Xu, L.; Li, Y.; Tian, S.; Hou, T. Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: The prediction accuracy of sampling power and scoring power. Phys. Chem. Chem. Phys., 2016, 18(18), 12964-12975.
[http://dx.doi.org/10.1039/C6CP01555G] [PMID: 27108770]
[37]
Byrd, C. M.; Dai, D.; Grosenbach, D. W.; Berhanu, A.; Jones, K. F.; Cardwell, K. B.; Schneider, C.; Wineinger, K. A.; Page, J. M.; Harver, C.; Stavale, E.; Tyavanagimatt, S.; Stone, M. A.; Bartenschlager, R.; Scaturro, P.; Hruby, D. E.; Jordan, R. A novel inhibitor of dengue virus replication that targets the capsid protein. Antimicrob. Agents Chemother., 2013, 57(1), 15-25.
[http://dx.doi.org/10.1128/AAC.01429-12]
[38]
Scaturro, P.; Trist, I. M. L.; Paul, D.; Kumar, A.; Acosta, E. G.; Byrd, C. M.; Jordan, R.; Brancale, A.; Bartenschlager, R. Characterization of the mode of action of a potent dengue virus capsid inhibitor. J. Virol., 2014, 88(19), 11540-11555.
[http://dx.doi.org/10.1128/JVI.01745-14] [PMID: 25056895]
[39]
Xia, H.; Xie, X.; Zou, J.; Noble, C. G.; Russell, W. K.; Holthauzen, L. M. F.; Choi, K. H.; White, M. A.; Shi, P.-Y. A cocrystal structure of dengue capsid protein in complex of inhibitor. Natl. Acad. Sci., 2020, 117(30), 17992 LP-18001.
[40]
Schmidt, A.G.; Yang, P.L.; Harrison, S.C. Peptide inhibitors of dengue-virus entry target a late-stage fusion intermediate. PLoS Pathog., 2010, 6(4), e1000851.
[http://dx.doi.org/10.1371/journal.ppat.1000851] [PMID: 20386713]
[41]
Schmidt, A.G.; Yang, P.L.; Harrison, S.C. Peptide inhibitors of flavivirus entry derived from the E protein stem. J. Virol., 2010, 84(24), 12549-12554.
[http://dx.doi.org/10.1128/JVI.01440-10] [PMID: 20881042]
[42]
Panya, A.; Yongpitakwattana, P.; Budchart, P.; Sawasdee, N.; Krobthong, S.; Paemanee, A.; Roytrakul, S.; Rattanabunyong, S.; Choowongkomon, K.; Yenchitsomanus, P-T. Novel bioactive peptides demonstrating anti-dengue virus activity isolated from the Asian medicinal plant Acacia catechu. Chem. Biol. Drug Des., 2019, 93(2), 100-109.
[http://dx.doi.org/10.1111/cbdd.13400] [PMID: 30225997]
[43]
Costin, J.M.; Jenwitheesuk, E.; Lok, S-M.; Hunsperger, E.; Conrads, K.A.; Fontaine, K.A.; Rees, C.R.; Rossmann, M.G.; Isern, S.; Samudrala, R.; Michael, S.F. Structural optimization and de novo design of dengue virus entry inhibitory peptides. PLoS Negl. Trop. Dis., 2010, 4(6), e721.
[http://dx.doi.org/10.1371/journal.pntd.0000721] [PMID: 20582308]
[44]
Panya, A.; Bangphoomi, K.; Choowongkomon, K.; Yenchitsomanus, P-T. Peptide inhibitors against dengue virus infection. Chem. Biol. Drug Des., 2014, 84(2), 148-157.
[http://dx.doi.org/10.1111/cbdd.12309] [PMID: 24612829]
[45]
Li, Z.; Khaliq, M.; Zhou, Z.; Post, C.B.; Kuhn, R.J.; Cushman, M. Design, synthesis, and biological evaluation of antiviral agents targeting flavivirus envelope proteins. J. Med. Chem., 2008, 51(15), 4660-4671.
[http://dx.doi.org/10.1021/jm800412d] [PMID: 18610998]
[46]
Panya, A.; Sawasdee, N.; Junking, M.; Srisawat, C.; Choowongkomon, K.; Yenchitsomanus, P-T. A peptide inhibitor derived from the conserved ectodomain region of DENV membrane (M) protein with activity against dengue virus infection. Chem. Biol. Drug Des., 2015, 86(5), 1093-1104.
[http://dx.doi.org/10.1111/cbdd.12576] [PMID: 25891143]
[47]
Yamase, T. Anti-tumor, -viral, and -bacterial activities of polyoxometalates for realizing an inorganic drug. J. Mater. Chem., 2005, 15(45), 4773-4782.
[http://dx.doi.org/10.1039/b504585a]
[48]
Shigeta, S.; Mori, S.; Kodama, E.; Kodama, J.; Takahashi, K.; Yamase, T. Broad spectrum anti-RNA virus activities of titanium and vanadium substituted polyoxotungstates. Antiviral Res., 2003, 58(3), 265-271.
[http://dx.doi.org/10.1016/S0166-3542(03)00009-3] [PMID: 12767474]
[49]
Francese, R.; Civra, A.; Rittà, M.; Donalisio, M.; Argenziano, M.; Cavalli, R.; Mougharbel, A.S.; Kortz, U.; Lembo, D. Anti-zika virus activity of polyoxometalates. Antiviral Res., 2019, 163, 29-33.
[http://dx.doi.org/10.1016/j.antiviral.2019.01.005] [PMID: 30653996]
[50]
Qi, Y.; Han, L.; Qi, Y.; Jin, X.; Zhang, B.; Niu, J.; Zhong, J.; Xu, Y. Anti-flavivirus activity of polyoxometalate. Antiviral Res., 2020, 179, 104813.
[http://dx.doi.org/10.1016/j.antiviral.2020.104813] [PMID: 32376449]
[51]
Chakravarty, M.; Vora, A. Nanotechnology-based antiviral therapeutics. Drug Deliv. Transl. Res., 2021, 11(3), 748-787.
[http://dx.doi.org/10.1007/s13346-020-00818-0] [PMID: 32748035]
[52]
Murugan, K.; Aruna, P.; Panneerselvam, C.; Madhiyazhagan, P.; Paulpandi, M.; Subramaniam, J.; Rajaganesh, R.; Wei, H.; Alsalhi, M.S.; Devanesan, S.; Nicoletti, M.; Syuhei, B.; Canale, A.; Benelli, G. Fighting arboviral diseases: Low toxicity on mammalian cells, dengue growth inhibition (in vitro), and mosquitocidal activity of Centroceras clavulatum-synthesized silver nanoparticles. Parasitol. Res., 2016, 115(2), 651-662.
[http://dx.doi.org/10.1007/s00436-015-4783-6] [PMID: 26462804]
[53]
Cagno, V.; Andreozzi, P.; D’Alicarnasso, M.; Jacob Silva, P.; Mueller, M.; Galloux, M.; Le Goffic, R.; Jones, S.T.; Vallino, M.; Hodek, J.; Weber, J.; Sen, S.; Janeček, E-R.; Bekdemir, A.; Sanavio, B.; Martinelli, C.; Donalisio, M.; Rameix Welti, M-A.; Eleouet, J-F.; Han, Y.; Kaiser, L.; Vukovic, L.; Tapparel, C.; Král, P.; Krol, S.; Lembo, D.; Stellacci, F. Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism. Nat. Mater., 2018, 17(2), 195-203.
[http://dx.doi.org/10.1038/nmat5053] [PMID: 29251725]
[54]
Huang, S.; Gu, J.; Ye, J.; Fang, B.; Wan, S.; Wang, C.; Ashraf, U.; Li, Q.; Wang, X.; Shao, L.; Song, Y.; Zheng, X.; Cao, F.; Cao, S. Benzoxazine monomer derived carbon dots as a broad-spectrum agent to block viral infectivity. J. Colloid Interface Sci., 2019, 542, 198-206.
[http://dx.doi.org/10.1016/j.jcis.2019.02.010] [PMID: 30739009]
[55]
Zacheo, A.; Hodek, J.; Witt, D.; Mangiatordi, G.F.; Ong, Q.K.; Kocabiyik, O.; Depalo, N.; Fanizza, E.; Laquintana, V.; Denora, N.; Migoni, D.; Barski, P.; Stellacci, F.; Weber, J.; Krol, S. Multi-sulfonated ligands on gold nanoparticles as virucidal antiviral for Dengue virus. Sci. Rep., 2020, 10(1), 9052.
[http://dx.doi.org/10.1038/s41598-020-65892-3] [PMID: 32494059]
[56]
Bardiot, D.; Koukni, M.; Smets, W.; Carlens, G.; McNaughton, M.; Kaptein, S.; Dallmeier, K.; Chaltin, P.; Neyts, J.; Marchand, A. Discovery of indole derivatives as novel and potent dengue virus inhibitors. J. Med. Chem., 2018, 61(18), 8390-8401.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00913] [PMID: 30149709]
[57]
Coronel-Ruiz, C.; Gutiérrez-Barbosa, H.; Medina-Moreno, S.; Velandia-Romero, M.L.; Chua, J.V.; Castellanos, J.E.; Zapata, J.C. Humanized mice in dengue research: A comparison with other mouse models. Vaccines (Basel), 2020, 8(1), E39.
[http://dx.doi.org/10.3390/vaccines8010039] [PMID: 31979145]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy