Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Mini-Review Article

Challenges and Perspectives in the Discovery of Dengue Virus Entry Inhibitors

Author(s): Facundo N. Gallo, Ana G. Enderle, Lucas A. Pardo, Emilse S. Leal and Mariela Bollini*

Volume 29, Issue 4, 2022

Published on: 09 July, 2021

Page: [719 - 740] Pages: 22

DOI: 10.2174/0929867328666210521213118

Price: $65

Abstract

Dengue virus (DENV) disease has become one of the major challenges in public health. Currently, there is no antiviral treatment for this infection. Since human transmission occurs via mosquitoes of the Aedes genus, most efforts have been focused on the control of this vector. However, these control strategies have not been totally successful, as reflected in the increasing number of DENV infections per year, becoming an endemic disease in more than 100 countries worldwide. Consequently, the development of a safe antiviral agent is urgently needed. In this sense, rational design approaches have been applied in the development of antiviral compounds that inhibit one or more steps in the viral replication cycle.

The entry of viruses into host cells is an early and specific stage of infection. Targeting either viral components or cellular protein targets are an affordable and effective strategy for therapeutic intervention of viral infections.

This review provides an extensive overview of the small organic molecules, peptides, and inorganic moieties that have been tested so far as DENV entry direct-acting antiviral agents. The latest advances based on computer-aided drug design (CADD) strategies and traditional medicinal chemistry approaches in the design and evaluation of DENV virus entry inhibitors will be discussed. Furthermore, physicochemical drug properties, such as solubility, lipophilicity, stability, and current results of pre-clinical and clinical studies will also be discussed in detail.

Keywords: Dengue virus, entry inhibitors, computer-aided drug design, envelope protein, small molecules, peptides, inorganic compounds.

[2]
Castilla, V.; Piccini, L.E.; Damonte, E.B. Dengue virus entry and trafficking: Perspectives as antiviral target for prevention and therapy. Future Virol., 2015, 10(5), 625-645.
[http://dx.doi.org/10.2217/fvl.15.35]
[3]
Mustafa, M.S.; Rasotgi, V.; Jain, S.; Gupta, V. Discovery of fifth serotype of dengue virus (DENV-5): A new public health dilemma in dengue control. Med. J. Armed Forces India, 2015, 71(1), 67-70.
[http://dx.doi.org/10.1016/j.mjafi.2014.09.011] [PMID: 25609867]
[4]
Release, FDA news: First FDA-approved vaccine for the prevention of dengue disease in endemic
[5]
Dengue vaccine: WHO position paper, September 2018 - Recommendations. Vaccine, 2019, 37(35), 4848-4849.
[http://dx.doi.org/10.1016/j.vaccine.2018.09.063] [PMID: 30424888]
[6]
Nasar, S.; Rashid, N.; Iftikhar, S. Dengue proteins with their role in pathogenesis, and strategies for developing an effective anti-dengue treatment: A review. J. Med. Virol., 2020, 92(8), 941-955.
[http://dx.doi.org/10.1002/jmv.25646] [PMID: 31784997]
[7]
Yennamalli, R.; Subbarao, N.; Kampmann, T.; McGeary, R.P.; Young, P.R.; Kobe, B. Identification of novel target sites and an inhibitor of the dengue virus E protein. J. Comput. Aided Mol. Des., 2009, 23(6), 333-341.
[http://dx.doi.org/10.1007/s10822-009-9263-6] [PMID: 19241120]
[8]
Ma, L.; Jones, C. T.; Groesch, T. D.; Kuhn, R. J.; Post, C. B. Solution structure of dengue virus capsid protein reveals another fold. Proc. Natl. Acad. Sci. U. S. A., 2004, 101(10), 3414-3419.
[http://dx.doi.org/10.1073/pnas.0305892101 PMID: 14993605]
[9]
Li, L.; Lok, S.-M.; Yu, I.-M.; Zhang, Y.; Kuhn, R. J.; Chen, J.; Rossmann, M. G. The flavivirus precursor membrane-envelope protein complex: Structure and maturation. Science, 2008, 319(5871), 1830 LP-1834.
[http://dx.doi.org/10.1126/science.1153263 PMID: 18369147]
[10]
Zhang, X.; Ge, P.; Yu, X.; Brannan, J.M.; Bi, G.; Zhang, Q.; Schein, S.; Zhou, Z.H. Cryo-EM structure of the mature dengue virus at 3.5-Å resolution. Nat. Struct. Mol. Biol., 2013, 20(1), 105-110.
[http://dx.doi.org/10.1038/nsmb.2463] [PMID: 23241927]
[11]
Modis, Y.; Ogata, S.; Clements, D.; Harrison, S.C. A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc. Natl. Acad. Sci. USA, 2003, 100(12), 6986-6991.
[http://dx.doi.org/10.1073/pnas.0832193100] [PMID: 12759475]
[12]
Zou, B.; Chan, W.L.; Ding, M.; Leong, S.Y.; Nilar, S.; Seah, P.G.; Liu, W.; Karuna, R.; Blasco, F.; Yip, A.; Chao, A.; Susila, A.; Dong, H.; Wang, Q.Y.; Xu, H.Y.; Chan, K.; Wan, K.F.; Gu, F.; Diagana, T.T.; Wagner, T.; Dix, I.; Shi, P-Y.; Smith, P.W. Lead optimization of spiropyrazolopyridones: A new and potent class of dengue virus inhibitors. ACS Med. Chem. Lett., 2015, 6(3), 344-348.
[http://dx.doi.org/10.1021/ml500521r] [PMID: 25878766]
[13]
Wang, Q.-Y.; Dong, H.; Zou, B.; Karuna, R.; Wan, K. F.; Zou, J.; Susila, A.; Yip, A.; Shan, C.; Yeo, K. L.; Xu, H.; Ding, M.; Chan, W. L.; Gu, F.; Seah, P. G.; Liu, W.; Lakshminarayana, S. B.; Kang, C.; Lescar, J.; Blasco, F.; Smith, P. W.; Shi, P.-Y. Discovery of dengue virus NS4B inhibitors. J. Virol., 2015, 89(16), 8233 LP-8244.
[http://dx.doi.org/10.1128/JVI.00855-15]
[14]
Zhou, Z.; Khaliq, M.; Suk, J-E.E.; Patkar, C.; Li, L.; Kuhn, R.J.; Post, C.B. Antiviral compounds discovered by virtual screening of small-molecule libraries against dengue virus E protein. ACS Chem. Biol., 2008, 3(12), 765-775.
[http://dx.doi.org/10.1021/cb800176t] [PMID: 19053243]
[15]
de Wispelaere, M.; Lian, W.; Potisopon, S.; Li, P-C.; Jang, J.; Ficarro, S.B.; Clark, M.J.; Zhu, X.; Kaplan, J.B.; Pitts, J.D.; Wales, T.E.; Wang, J.; Engen, J.R.; Marto, J.A.; Gray, N.S.; Yang, P.L. Inhibition of flaviviruses by targeting a conserved pocket on the viral envelope protein. Cell Chem. Biol., 2018, 25(8), 1006-1016.e8.
[http://dx.doi.org/10.1016/j.chembiol.2018.05.011] [PMID: 29937406]
[16]
Cruz-Oliveira, C.; Freire, J.M.; Conceição, T.M.; Higa, L.M.; Castanho, M.A.R.B.; Da Poian, A.T. Receptors and routes of dengue virus entry into the host cells. FEMS Microbiol. Rev., 2015, 39(2), 155-170.
[http://dx.doi.org/10.1093/femsre/fuu004] [PMID: 25725010]
[17]
LaBonte, J.; Lebbos, J.; Kirkpatrick, P. Enfuvirtide. Nat. Rev. Drug Discov., 2003, 2(5), 345-346.
[http://dx.doi.org/10.1038/nrd1091] [PMID: 12755128]
[18]
Wouters, O.J.; McKee, M.; Luyten, J. Estimated research and development investment needed to bring a new medicine to market, 2009-2018. JAMA, 2020, 323(9), 844-853.
[http://dx.doi.org/10.1001/jama.2020.1166] [PMID: 32125404]
[19]
DiMasi, J.A.; Grabowski, H.G.; Hansen, R.W. Innovation in the pharmaceutical industry: New estimates of R&D costs. J. Health Econ., 2016, 47, 20-33.
[http://dx.doi.org/10.1016/j.jhealeco.2016.01.012] [PMID: 26928437]
[20]
Paul, S. M.; Mytelka, D. S.; Dunwiddie, C. T.; Persinger, C. C.; Munos, B. H.; Lindborg, S. R.; Schacht, A. L. How to improve r& d productivity: The pharmaceutical industry’s grand challenge. Nature reviews. Drug discovery, 2010, 9(3), 203-214.
[21]
Macalino, S.J.Y.; Gosu, V.; Hong, S.; Choi, S. Role of computer-aided drug design in modern drug discovery. Arch. Pharm. Res., 2015, 38(9), 1686-1701.
[http://dx.doi.org/10.1007/s12272-015-0640-5] [PMID: 26208641]
[22]
Baig, M.H.; Ahmad, K.; Roy, S.; Ashraf, J.M.; Adil, M.; Siddiqui, M.H.; Khan, S.; Kamal, M.A.; Provazník, I.; Choi, I. Success and limitations. Curr. Pharm. Des., 2016, 22(5), 572-581.
[http://dx.doi.org/10.2174/1381612822666151125000550] [PMID: 26601966]
[23]
Elton, D.C.; Boukouvalas, Z.; Fuge, M.D.; Chung, P.W. Deep learning for molecular design-a review of the state of the art. Mol. Syst. Des. Eng., 2019, 4(4), 828-849.
[http://dx.doi.org/10.1039/C9ME00039A]
[24]
Yang, J-M.; Chen, Y-F.; Tu, Y-Y.; Yen, K-R.; Yang, Y-L. Combinatorial computational approaches to identify tetracycline derivatives as flavivirus inhibitors. PLoS One, 2007, 2(5), e428.
[http://dx.doi.org/10.1371/journal.pone.0000428] [PMID: 17502914]
[25]
Wang, Q.Y.Q-Y.; Patel, S.J.; Vangrevelinghe, E.; Xu, H.Y.; Rao, R.; Jaber, D.; Schul, W.; Gu, F.; Heudi, O.; Ma, N.L.; Poh, M.K.; Phong, W.Y.; Keller, T.H.; Jacoby, E.; Vasudevan, S.G.; Hao, Y.X.; Rao, R.; Jaber, D.; Schul, W.; Gu, F.; Heudi, O.; Ngai, L.M.; Mee, K.P.; Wai, Y.P.; Keller, T.H.; Jacoby, E.; Vasudevan, S.G. A small-molecule dengue virus entry inhibitor. Antimicrob. Agents Chemother., 2009, 53(5), 1823-1831.
[http://dx.doi.org/10.1128/AAC.01148-08] [PMID: 19223625]
[26]
Clark, R.D.; Strizhev, A.; Leonard, J.M.; Blake, J.F.; Matthew, J.B. Consensus scoring for ligand/protein interactions. J. Mol. Graph. Model., 2002, 20(4), 281-295.
[http://dx.doi.org/10.1016/S1093-3263(01)00125-5] [PMID: 11858637]
[27]
Poh, M.K.; Yip, A.; Zhang, S.; Priestle, J.P.; Ma, N.L.; Smit, J.M.; Wilschut, J.; Shi, P.Y.; Wenk, M.R.; Schul, W. A small molecule fusion inhibitor of dengue virus. Antiviral Res., 2009, 84(3), 260-266.
[http://dx.doi.org/10.1016/j.antiviral.2009.09.011] [PMID: 19800368]
[28]
Kampmann, T.; Yennamalli, R.; Campbell, P.; Stoermer, M.J.; Fairlie, D.P.; Kobe, B.; Young, P.R. In silico screening of small molecule libraries using the dengue virus envelope E protein has identified compounds with antiviral activity against multiple flaviviruses. Antiviral Res., 2009, 84(3), 234-241.
[http://dx.doi.org/10.1016/j.antiviral.2009.09.007] [PMID: 19781577]
[29]
Srivarangkul, P.; Yuttithamnon, W.; Suroengrit, A.; Pankaew, S.; Hengphasatporn, K.; Rungrotmongkol, T.; Phuwapraisirisan, P.; Ruxrungtham, K.; Boonyasuppayakorn, S. A novel flavanone derivative inhibits dengue virus fusion and infectivity. Antiviral Res., 2018, 151, 27-38.
[http://dx.doi.org/10.1016/j.antiviral.2018.01.010] [PMID: 29360474]
[30]
Hengphasatporn, K.; Garon, A.; Wolschann, P.; Langer, T.; Yasuteru, S.; Huynh, T.N.T.; Chavasiri, W.; Saelee, T.; Boonyasuppayakorn, S.; Rungrotmongkol, T. Multiple virtual screening strategies for the discovery of novel compounds active against dengue virus: A hit identification study. Sci. Pharm., 2020, 88(1), 2.
[http://dx.doi.org/10.3390/scipharm88010002]
[31]
Leal, E.S.; Aucar, M.G.; Gebhard, L.G.; Iglesias, N.G.; Pascual, M.J.; Casal, J.J.; Gamarnik, A.V.; Cavasotto, C.N.; Bollini, M. Discovery of novel dengue virus entry inhibitors via a structure-based approach. Bioorg. Med. Chem. Lett., 2017, 27(16), 3851-3855.
[http://dx.doi.org/10.1016/j.bmcl.2017.06.049] [PMID: 28668194]
[32]
Leal, E.S.; Adler, N.S.; Fernández, G.A.; Gebhard, L.G.; Battini, L.; Aucar, M.G.; Videla, M.; Monge, M.E.; Hernández de Los Ríos, A.; Acosta Dávila, J.A.; Morell, M.L.; Cordo, S.M.; García, C.C.; Gamarnik, A.V.; Cavasotto, C.N.; Bollini, M. De novo design approaches targeting an envelope protein pocket to identify small molecules against dengue virus. Eur. J. Med. Chem., 2019, 182, 111628.
[http://dx.doi.org/10.1016/j.ejmech.2019.111628] [PMID: 31472473]
[33]
Schmidt, A.G.; Lee, K.; Yang, P.L.; Harrison, S.C. Small- molecule inhibitors of dengue-virus entry. PLoS Pathog., 2012, 8(4), e1002627.
[http://dx.doi.org/10.1371/journal.ppat.1002627] [PMID: 22496653]
[34]
Clark, M.J.; Miduturu, C.; Schmidt, A.G.; Zhu, X.; Pitts, J.D.; Wang, J.; Potisopon, S.; Zhang, J.; Wojciechowski, A.; Hann Chu, J.J.; Gray, N.S.; Yang, P.L. GNF-2 inhibits dengue virus by targeting Abl kinases and the viral E protein. Cell Chem. Biol., 2016, 23(4), 443-452.
[http://dx.doi.org/10.1016/j.chembiol.2016.03.010] [PMID: 27105280]
[35]
Dubey, K.D.; Tiwari, G.; Ojha, R.P. Targeting domain-III hinging of dengue envelope (DENV-2) protein by MD simulations, docking and free energy calculations. J. Mol. Model., 2017, 23(4), 102.
[http://dx.doi.org/10.1007/s00894-017-3259-2] [PMID: 28255859]
[36]
Wang, Z.; Sun, H.; Yao, X.; Li, D.; Xu, L.; Li, Y.; Tian, S.; Hou, T. Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: The prediction accuracy of sampling power and scoring power. Phys. Chem. Chem. Phys., 2016, 18(18), 12964-12975.
[http://dx.doi.org/10.1039/C6CP01555G] [PMID: 27108770]
[37]
Byrd, C. M.; Dai, D.; Grosenbach, D. W.; Berhanu, A.; Jones, K. F.; Cardwell, K. B.; Schneider, C.; Wineinger, K. A.; Page, J. M.; Harver, C.; Stavale, E.; Tyavanagimatt, S.; Stone, M. A.; Bartenschlager, R.; Scaturro, P.; Hruby, D. E.; Jordan, R. A novel inhibitor of dengue virus replication that targets the capsid protein. Antimicrob. Agents Chemother., 2013, 57(1), 15-25.
[http://dx.doi.org/10.1128/AAC.01429-12]
[38]
Scaturro, P.; Trist, I. M. L.; Paul, D.; Kumar, A.; Acosta, E. G.; Byrd, C. M.; Jordan, R.; Brancale, A.; Bartenschlager, R. Characterization of the mode of action of a potent dengue virus capsid inhibitor. J. Virol., 2014, 88(19), 11540-11555.
[http://dx.doi.org/10.1128/JVI.01745-14] [PMID: 25056895]
[39]
Xia, H.; Xie, X.; Zou, J.; Noble, C. G.; Russell, W. K.; Holthauzen, L. M. F.; Choi, K. H.; White, M. A.; Shi, P.-Y. A cocrystal structure of dengue capsid protein in complex of inhibitor. Natl. Acad. Sci., 2020, 117(30), 17992 LP-18001.
[40]
Schmidt, A.G.; Yang, P.L.; Harrison, S.C. Peptide inhibitors of dengue-virus entry target a late-stage fusion intermediate. PLoS Pathog., 2010, 6(4), e1000851.
[http://dx.doi.org/10.1371/journal.ppat.1000851] [PMID: 20386713]
[41]
Schmidt, A.G.; Yang, P.L.; Harrison, S.C. Peptide inhibitors of flavivirus entry derived from the E protein stem. J. Virol., 2010, 84(24), 12549-12554.
[http://dx.doi.org/10.1128/JVI.01440-10] [PMID: 20881042]
[42]
Panya, A.; Yongpitakwattana, P.; Budchart, P.; Sawasdee, N.; Krobthong, S.; Paemanee, A.; Roytrakul, S.; Rattanabunyong, S.; Choowongkomon, K.; Yenchitsomanus, P-T. Novel bioactive peptides demonstrating anti-dengue virus activity isolated from the Asian medicinal plant Acacia catechu. Chem. Biol. Drug Des., 2019, 93(2), 100-109.
[http://dx.doi.org/10.1111/cbdd.13400] [PMID: 30225997]
[43]
Costin, J.M.; Jenwitheesuk, E.; Lok, S-M.; Hunsperger, E.; Conrads, K.A.; Fontaine, K.A.; Rees, C.R.; Rossmann, M.G.; Isern, S.; Samudrala, R.; Michael, S.F. Structural optimization and de novo design of dengue virus entry inhibitory peptides. PLoS Negl. Trop. Dis., 2010, 4(6), e721.
[http://dx.doi.org/10.1371/journal.pntd.0000721] [PMID: 20582308]
[44]
Panya, A.; Bangphoomi, K.; Choowongkomon, K.; Yenchitsomanus, P-T. Peptide inhibitors against dengue virus infection. Chem. Biol. Drug Des., 2014, 84(2), 148-157.
[http://dx.doi.org/10.1111/cbdd.12309] [PMID: 24612829]
[45]
Li, Z.; Khaliq, M.; Zhou, Z.; Post, C.B.; Kuhn, R.J.; Cushman, M. Design, synthesis, and biological evaluation of antiviral agents targeting flavivirus envelope proteins. J. Med. Chem., 2008, 51(15), 4660-4671.
[http://dx.doi.org/10.1021/jm800412d] [PMID: 18610998]
[46]
Panya, A.; Sawasdee, N.; Junking, M.; Srisawat, C.; Choowongkomon, K.; Yenchitsomanus, P-T. A peptide inhibitor derived from the conserved ectodomain region of DENV membrane (M) protein with activity against dengue virus infection. Chem. Biol. Drug Des., 2015, 86(5), 1093-1104.
[http://dx.doi.org/10.1111/cbdd.12576] [PMID: 25891143]
[47]
Yamase, T. Anti-tumor, -viral, and -bacterial activities of polyoxometalates for realizing an inorganic drug. J. Mater. Chem., 2005, 15(45), 4773-4782.
[http://dx.doi.org/10.1039/b504585a]
[48]
Shigeta, S.; Mori, S.; Kodama, E.; Kodama, J.; Takahashi, K.; Yamase, T. Broad spectrum anti-RNA virus activities of titanium and vanadium substituted polyoxotungstates. Antiviral Res., 2003, 58(3), 265-271.
[http://dx.doi.org/10.1016/S0166-3542(03)00009-3] [PMID: 12767474]
[49]
Francese, R.; Civra, A.; Rittà, M.; Donalisio, M.; Argenziano, M.; Cavalli, R.; Mougharbel, A.S.; Kortz, U.; Lembo, D. Anti-zika virus activity of polyoxometalates. Antiviral Res., 2019, 163, 29-33.
[http://dx.doi.org/10.1016/j.antiviral.2019.01.005] [PMID: 30653996]
[50]
Qi, Y.; Han, L.; Qi, Y.; Jin, X.; Zhang, B.; Niu, J.; Zhong, J.; Xu, Y. Anti-flavivirus activity of polyoxometalate. Antiviral Res., 2020, 179, 104813.
[http://dx.doi.org/10.1016/j.antiviral.2020.104813] [PMID: 32376449]
[51]
Chakravarty, M.; Vora, A. Nanotechnology-based antiviral therapeutics. Drug Deliv. Transl. Res., 2021, 11(3), 748-787.
[http://dx.doi.org/10.1007/s13346-020-00818-0] [PMID: 32748035]
[52]
Murugan, K.; Aruna, P.; Panneerselvam, C.; Madhiyazhagan, P.; Paulpandi, M.; Subramaniam, J.; Rajaganesh, R.; Wei, H.; Alsalhi, M.S.; Devanesan, S.; Nicoletti, M.; Syuhei, B.; Canale, A.; Benelli, G. Fighting arboviral diseases: Low toxicity on mammalian cells, dengue growth inhibition (in vitro), and mosquitocidal activity of Centroceras clavulatum-synthesized silver nanoparticles. Parasitol. Res., 2016, 115(2), 651-662.
[http://dx.doi.org/10.1007/s00436-015-4783-6] [PMID: 26462804]
[53]
Cagno, V.; Andreozzi, P.; D’Alicarnasso, M.; Jacob Silva, P.; Mueller, M.; Galloux, M.; Le Goffic, R.; Jones, S.T.; Vallino, M.; Hodek, J.; Weber, J.; Sen, S.; Janeček, E-R.; Bekdemir, A.; Sanavio, B.; Martinelli, C.; Donalisio, M.; Rameix Welti, M-A.; Eleouet, J-F.; Han, Y.; Kaiser, L.; Vukovic, L.; Tapparel, C.; Král, P.; Krol, S.; Lembo, D.; Stellacci, F. Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism. Nat. Mater., 2018, 17(2), 195-203.
[http://dx.doi.org/10.1038/nmat5053] [PMID: 29251725]
[54]
Huang, S.; Gu, J.; Ye, J.; Fang, B.; Wan, S.; Wang, C.; Ashraf, U.; Li, Q.; Wang, X.; Shao, L.; Song, Y.; Zheng, X.; Cao, F.; Cao, S. Benzoxazine monomer derived carbon dots as a broad-spectrum agent to block viral infectivity. J. Colloid Interface Sci., 2019, 542, 198-206.
[http://dx.doi.org/10.1016/j.jcis.2019.02.010] [PMID: 30739009]
[55]
Zacheo, A.; Hodek, J.; Witt, D.; Mangiatordi, G.F.; Ong, Q.K.; Kocabiyik, O.; Depalo, N.; Fanizza, E.; Laquintana, V.; Denora, N.; Migoni, D.; Barski, P.; Stellacci, F.; Weber, J.; Krol, S. Multi-sulfonated ligands on gold nanoparticles as virucidal antiviral for Dengue virus. Sci. Rep., 2020, 10(1), 9052.
[http://dx.doi.org/10.1038/s41598-020-65892-3] [PMID: 32494059]
[56]
Bardiot, D.; Koukni, M.; Smets, W.; Carlens, G.; McNaughton, M.; Kaptein, S.; Dallmeier, K.; Chaltin, P.; Neyts, J.; Marchand, A. Discovery of indole derivatives as novel and potent dengue virus inhibitors. J. Med. Chem., 2018, 61(18), 8390-8401.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00913] [PMID: 30149709]
[57]
Coronel-Ruiz, C.; Gutiérrez-Barbosa, H.; Medina-Moreno, S.; Velandia-Romero, M.L.; Chua, J.V.; Castellanos, J.E.; Zapata, J.C. Humanized mice in dengue research: A comparison with other mouse models. Vaccines (Basel), 2020, 8(1), E39.
[http://dx.doi.org/10.3390/vaccines8010039] [PMID: 31979145]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy