Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Anti-Coronavirus Vaccines: Past Investigations on SARS-CoV-1 and MERS-CoV, the Approved Vaccines from BioNTech/Pfizer, Moderna, Oxford/AstraZeneca and others under Development Against SARSCoV- 2 Infection

Author(s): Michele Costanzo, Maria Anna Rachele De Giglio and Giovanni Nicola Roviello*

Volume 29, Issue 1, 2022

Published on: 29 July, 2021

Page: [4 - 18] Pages: 15

DOI: 10.2174/0929867328666210521164809

Abstract

The aim of this review article is to summarize the knowledge available to date on prophylaxis achievements in the frame of the fight against Coronaviruses. This work will give an overview of what is reported in the recent literature on vaccines (under investigation or already developed like BNT162b2, mRNA-1273, and ChAdOx1-S) effective against the most pathogenic Coronaviruses (SARS-CoV-1, MERS-CoV-1, and SARS-CoV-2), with of course particular attention paid to those under development or already in use to combat the current COVID-19 (CoronaVIrus Disease 19) pandemic. Our main objective is to make a contribution to the comprehension, even at a molecular level, of what is currently ready for anti-SARS-CoV-2 prophylactic intervention, as well as to provide the reader with an overall picture of the most innovative approaches for the development of vaccines that could be of general utility in the fight against the most pathogenic Coronaviruses.

Keywords: Coronavirus, coronavirus infections, pandemics, COVID-19, HCoV, SARS-CoV, SARS-CoV-2, MERS- CoV, vaccine, BioNTech/Pfizer, Moderna, Oxford/AstraZeneca, BNT162b2, mRNA-1273, ChAdOx1-S, Vaxzevria.

[1]
V’kovski, P.; Kratzel, A.; Steiner, S.; Stalder, H.; Thiel, V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat. Rev. Microbiol., 2021, 9(3), 155-17.
[http://dx.doi.org/10.1038/s41579-020-00468-6] [PMID: 33116300]
[2]
Chu, D.K.W.; Leung, C.Y.H.; Gilbert, M.; Joyner, P.H.; Ng, E.M.; Tse, T.M.; Guan, Y.; Peiris, J.S.M.; Poon, L.L.M. Avian coronavirus in wild aquatic birds. J. Virol., 2011, 85(23), 12815-12820.
[http://dx.doi.org/10.1128/JVI.05838-11] [PMID: 21957308]
[3]
Poon, L.L.M.; Chu, D.K.W.; Chan, K.H.; Wong, O.K.; Ellis, T.M.; Leung, Y.H.C.; Lau, S.K.P.; Woo, P.C.Y.; Suen, K.Y.; Yuen, K.Y.; Guan, Y.; Peiris, J.S.M. Identification of a novel coronavirus in bats. J. Virol., 2005, 79(4), 2001-2009.
[http://dx.doi.org/10.1128/JVI.79.4.2001-2009.2005] [PMID: 15681402]
[4]
Wang, L-F.; Anderson, D.E. Viruses in bats and potential spillover to animals and humans. Curr. Opin. Virol., 2019, 34, 79-89.
[http://dx.doi.org/10.1016/j.coviro.2018.12.007] [PMID: 30665189]
[5]
Memish, Z.A.; Mishra, N.; Olival, K.J.; Fagbo, S.F.; Kapoor, V.; Epstein, J.H.; Alhakeem, R.; Durosinloun, A.; Al Asmari, M.; Islam, A.; Kapoor, A.; Briese, T.; Daszak, P.; Al Rabeeah, A.A.; Lipkin, W.I. Middle East respiratory syndrome coronavirus in bats, Saudi Arabia. Emerg. Infect. Dis., 2013, 19(11), 1819-1823.
[http://dx.doi.org/10.3201/eid1911.131172] [PMID: 24206838]
[6]
Hofmann, H.; Pyrc, K.; van der Hoek, L.; Geier, M.; Berkhout, B.; Pöhlmann, S. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc. Natl. Acad. Sci. USA, 2005, 102(22), 7988-7993.
[http://dx.doi.org/10.1073/pnas.0409465102] [PMID: 15897467]
[7]
Xiong, H.; Ye, X.; Li, Y.; Wang, L.; Zhang, J.; Fang, X.; Kong, J. Rapid differential diagnosis of seven human respiratory coronaviruses based on centrifugal microfluidic nucleic acid assay. Anal. Chem., 2020, 92(21), 14297-14302.
[http://dx.doi.org/10.1021/acs.analchem.0c03364] [PMID: 33073982]
[8]
Gossner, C.; Danielson, N.; Gervelmeyer, A.; Berthe, F.; Faye, B.; Kaasik Aaslav, K.; Adlhoch, C.; Zeller, H.; Penttinen, P.; Coulombier, D. Human-dromedary camel interactions and the risk of acquiring zoonotic middle east respiratory syndrome coronavirus infection. Zoonoses Public Health, 2016, 63(1), 1-9.
[http://dx.doi.org/10.1111/zph.12171] [PMID: 25545147]
[9]
Sheahan, T.; Rockx, B.; Donaldson, E.; Sims, A.; Pickles, R.; Corti, D.; Baric, R. Mechanisms of zoonotic severe acute respiratory syndrome coronavirus host range expansion in human airway epithelium. J. Virol., 2008, 82(5), 2274-2285.
[http://dx.doi.org/10.1128/JVI.02041-07] [PMID: 18094188]
[10]
Sheahan, T.; Rockx, B.; Donaldson, E.; Corti, D.; Baric, R. Pathways of cross-species transmission of synthetically reconstructed zoonotic severe acute respiratory syndrome coronavirus. J. Virol., 2008, 82(17), 8721-8732.
[http://dx.doi.org/10.1128/JVI.00818-08] [PMID: 18579604]
[11]
Gaunt, E.R.; Hardie, A.; Claas, E.C.J.; Simmonds, P.; Templeton, K.E. Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method. J. Clin. Microbiol., 2010, 48(8), 2940-2947.
[http://dx.doi.org/10.1128/JCM.00636-10] [PMID: 20554810]
[12]
Woldemeskel, B.A.; Kwaa, A.K.; Garliss, C.C.; Laeyendecker, O.; Ray, S.C.; Blankson, J.N. Healthy donor T cell responses to common cold coronaviruses and SARS-CoV- 2. J. Clin. Invest., 2020, 130(12), 6631-6638.
[http://dx.doi.org/10.1172/JCI143120] [PMID: 32966269]
[13]
Pene, F.; Merlat, A.; Vabret, A.; Rozenberg, F.; Buzyn, A.; Dreyfus, F.; Cariou, A.; Freymuth, F.; Lebon, P. Coronavirus 229E-related pneumonia in immunocompromised patients. Clin. Infect. Dis., 2003, 37(7), 929-932.
[http://dx.doi.org/10.1086/377612] [PMID: 13130404]
[14]
Jordan, P.C.; Stevens, S.K.; Deval, J. Nucleosides for the treatment of respiratory RNA virus infections. Antivir. Chem. Chemother., 2018, 26, 2040206618764483.,
[http://dx.doi.org/10.1177/2040206618764483] [PMID: 29562753]
[15]
Abdul-Rasool, S.; Fielding, B.C. Understanding Human Coronavirus HCoV-NL63~!2009-11-13~!2010-04-09~ !2010-05-25~! Open Virol. J., 2010, 4(1), 76-84.
[http://dx.doi.org/10.2174/1874357901004010076] [PMID: 20700397]
[16]
Esper, F.; Weibel, C.; Ferguson, D.; Landry, M.L.; Kahn, J.S. Coronavirus HKU1 infection in the United States. Emerg. Infect. Dis., 2006, 12(5), 775-779.
[http://dx.doi.org/10.3201/eid1205.051316] [PMID: 16704837]
[17]
Cevik, M.; Tate, M.; Lloyd, O.; Maraolo, A.E.; Schafers, J.; Ho, A. SARS-CoV-2, SARS-CoV-1 and MERS-CoV viral load dynamics, duration of viral shedding and infectiousness: A systematic review and meta-analysis. Lancet Microbe., 2021, 2(1), e13-e22.,
[http://dx.doi.org/10.1016/S2666-5247(20)30172-5] [PMID: 33521734]
[18]
Andersen, K.G.; Rambaut, A.; Lipkin, W.I.; Holmes, E.C.; Garry, R.F. The proximal origin of SARS-CoV-2. Nat. Med., 2020, 26(4), 450-452.
[http://dx.doi.org/10.1038/s41591-020-0820-9] [PMID: 32284615]
[19]
Rabaan, A.A.; Al-Ahmed, S.H.; Haque, S.; Sah, R.; Tiwari, R.; Malik, Y.S.; Dhama, K.; Yatoo, M.I.; Bonilla-Aldana, D.K.; Rodriguez-Morales, A.J. SARS-CoV-2, SARS-CoV, and MERS-COV: A comparative overview. Infez. Med., 2020, 28(2), 174-184.
[PMID: 32275259]
[20]
Peeri, N.C.; Shrestha, N.; Rahman, M.S.; Zaki, R.; Tan, Z.; Bibi, S.; Baghbanzadeh, M.; Aghamohammadi, N.; Zhang, W.; Haque, U. The SARS, MERS and novel coronavirus (COVID-19) epidemics, the newest and biggest global health threats: What lessons have we learned? Int. J. Epidemiol., 2020, 49(3), 717-726.
[http://dx.doi.org/10.1093/ije/dyaa033] [PMID: 32086938]
[21]
Gordon, D.E.; Hiatt, J.; Bouhaddou, M.; Rezelj, V.V.; Ulferts, S.; Braberg, H.; Jureka, A.S.; Obernier, K.; Guo, J.Z.; Batra, J.; Kaake, R.M.; Weckstein, A.R.; Owens, T.W.; Gupta, M.; Pourmal, S.; Titus, E.W.; Cakir, M.; Soucheray, M.; McGregor, M.; Cakir, Z.; Jang, G.; O’Meara, M.J.; Tummino, T.A.; Zhang, Z.; Foussard, H.; Rojc, A.; Zhou, Y.; Kuchenov, D.; Hüttenhain, R.; Xu, J.; Eckhardt, M.; Swaney, D.L.; Fabius, J.M.; Ummadi, M.; Tutuncuoglu, B.; Rathore, U.; Modak, M.; Haas, P.; Haas, K.M.; Naing, Z.Z.C.; Pulido, E.H.; Shi, Y.; Barrio-Hernandez, I.; Memon, D.; Petsalaki, E.; Dunham, A.; Marrero, M.C.; Burke, D.; Koh, C.; Vallet, T.; Silvas, J.A.; Azumaya, C.M.; Billesbølle, C.; Brilot, A.F.; Campbell, M.G.; Diallo, A.; Dickinson, M.S.; Diwanji, D.; Herrera, N.; Hoppe, N.; Kratochvil, H.T.; Liu, Y.; Merz, G.E.; Moritz, M.; Nguyen, H.C.; Nowotny, C.; Puchades, C.; Rizo, A.N.; Schulze-Gahmen, U.; Smith, A.M.; Sun, M.; Young, I.D.; Zhao, J.; Asarnow, D.; Biel, J.; Bowen, A.; Braxton, J.R.; Chen, J.; Chio, C.M.; Chio, U.S.; Deshpande, I.; Doan, L.; Faust, B.; Flores, S.; Jin, M.; Kim, K.; Lam, V.L.; Li, F.; Li, J.; Li, Y-L.; Li, Y.; Liu, X.; Lo, M.; Lopez, K.E.; Melo, A.A.; Moss, F.R., III; Nguyen, P.; Paulino, J.; Pawar, K.I.; Peters, J.K.; Pospiech, T.H., Jr; Safari, M.; Sangwan, S.; Schaefer, K.; Thomas, P.V.; Thwin, A.C.; Trenker, R.; Tse, E.; Tsui, T.K.M.; Wang, F.; Whitis, N.; Yu, Z.; Zhang, K.; Zhang, Y.; Zhou, F.; Saltzberg, D.; Hodder, A.J.; Shun-Shion, A.S.; Williams, D.M.; White, K.M.; Rosales, R.; Kehrer, T.; Miorin, L.; Moreno, E.; Patel, A.H.; Rihn, S.; Khalid, M.M.; Vallejo-Gracia, A.; Fozouni, P.; Simoneau, C.R.; Roth, T.L.; Wu, D.; Karim, M.A.; Ghoussaini, M.; Dunham, I.; Berardi, F.; Weigang, S.; Chazal, M.; Park, J.; Logue, J.; McGrath, M.; Weston, S.; Haupt, R.; Hastie, C.J.; Elliott, M.; Brown, F.; Burness, K.A.; Reid, E.; Dorward, M.; Johnson, C.; Wilkinson, S.G.; Geyer, A.; Giesel, D.M.; Baillie, C.; Raggett, S.; Leech, H.; Toth, R.; Goodman, N.; Keough, K.C.; Lind, A.L.; Klesh, R.J.; Hemphill, K.R.; Carlson-Stevermer, J.; Oki, J.; Holden, K.; Maures, T.; Pollard, K.S.; Sali, A.; Agard, D.A.; Cheng, Y.; Fraser, J.S.; Frost, A.; Jura, N.; Kortemme, T.; Manglik, A.; Southworth, D.R.; Stroud, R.M.; Alessi, D.R.; Davies, P.; Frieman, M.B.; Ideker, T.; Abate, C.; Jouvenet, N.; Kochs, G.; Shoichet, B.; Ott, M.; Palmarini, M.; Shokat, K.M.; García-Sastre, A.; Rassen, J.A.; Grosse, R.; Rosenberg, O.S.; Verba, K.A.; Basler, C.F.; Vignuzzi, M.; Peden, A.A.; Beltrao, P.; Krogan, N.J. Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms. Science, 2020, 370(6521), eabe9403.
[http://dx.doi.org/10.1126/science.abe9403] [PMID: 33060197]
[22]
Heurich, A.; Hofmann-Winkler, H.; Gierer, S.; Liepold, T.; Jahn, O.; Pöhlmann, S. TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J. Virol., 2014, 88(2), 1293-1307.
[http://dx.doi.org/10.1128/JVI.02202-13] [PMID: 24227843]
[23]
Belouzard, S.; Millet, J.K.; Licitra, B.N.; Whittaker, G.R. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses, 2012, 4(6), 1011-1033.
[http://dx.doi.org/10.3390/v4061011] [PMID: 22816037]
[24]
Hulswit, R.J.G.; de Haan, C.A.M.; Bosch, B.J. Coronavirus spike protein and tropism changes., 2016, 96, 29-57.
[25]
Kirchdoerfer, R.N.; Cottrell, C.A.; Wang, N.; Pallesen, J.; Yassine, H.M.; Turner, H.L.; Corbett, K.S.; Graham, B.S.; McLellan, J.S.; Ward, A.B. Pre-fusion structure of a human coronavirus spike protein. Nature, 2016, 531(7592), 118-121.
[http://dx.doi.org/10.1038/nature17200] [PMID: 26935699]
[26]
Pillay, T.S. Gene of the month: the 2019-nCoV/SARS- CoV-2 novel coronavirus spike protein. J. Clin. Pathol., 2020, 73(7), 366-369.
[http://dx.doi.org/10.1136/jclinpath-2020-206658] [PMID: 32376714]
[27]
Xia, S.; Liu, M.; Wang, C.; Xu, W.; Lan, Q.; Feng, S.; Qi, F.; Bao, L.; Du, L.; Liu, S.; Qin, C.; Sun, F.; Shi, Z.; Zhu, Y.; Jiang, S.; Lu, L. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res., 2020, 30(4), 343-355.
[http://dx.doi.org/10.1038/s41422-020-0305-x] [PMID: 32231345]
[28]
Kim, C-H. SARS-CoV-2 evolutionary adaptation toward host entry and recognition of receptor o-acetyl sialylation in virus-host interaction. Int. J. Mol. Sci., 2020, 21(12), 4549.
[http://dx.doi.org/10.3390/ijms21124549] [PMID: 32604730]
[29]
Artese, A.; Svicher, V.; Costa, G.; Salpini, R.; Di Maio, V.C.; Alkhatib, M.; Ambrosio, F.A.; Santoro, M.M.; Assaraf, Y.G.; Alcaro, S.; Ceccherini-Silberstein, F. Current status of antivirals and druggable targets of SARS CoV-2 and other human pathogenic coronaviruses. Drug Resist. Updat., 2020, 53, 100721.
[http://dx.doi.org/10.1016/j.drup.2020.100721] [PMID: 33132205]
[30]
Schoeman, D.; Fielding, B.C. Coronavirus envelope protein: current knowledge. Virol. J., 2019, 16(1), 69.
[http://dx.doi.org/10.1186/s12985-019-1182-0] [PMID: 31133031]
[31]
Chen, B.; Tian, E-K.; He, B.; Tian, L.; Han, R.; Wang, S.; Xiang, Q.; Zhang, S.; El Arnaout, T.; Cheng, W. Overview of lethal human coronaviruses. Signal Transduct. Target. Ther., 2020, 5(1), 89.
[http://dx.doi.org/10.1038/s41392-020-0190-2] [PMID: 32533062]
[32]
Cucinotta, D.; Vanelli, M.; Declares, W.H.O. COVID-19 a Pandemic. Acta Biomed., 2020, 91(1), 157-160.
[PMID: 32191675]
[33]
Mercatelli, D.; Holding, A.N.; Giorgi, F.M. Web tools to fight pandemics: The COVID-19 experience. Brief. Bioinform., 2021, 22(2), 690-70.
[PMID: 33057582]
[34]
Arthi, V.; Parman, J. Disease, downturns, and wellbeing: Economic history and the long-run impacts of COVID-19. Explor. Econ. Hist., 2021, 79, 101381.
[http://dx.doi.org/10.1016/j.eeh.2020.101381] [PMID: 33162564]
[35]
Roviello, V.; Roviello, G.N. Lower COVID-19 mortality in Italian forested areas suggests immunoprotection by Mediterranean plants. Environ. Chem. Lett., 2020, 1-12.
[PMID: 32837486]
[36]
Ibn-Mohammed, T.; Mustapha, K.B.; Godsell, J.; Adamu, Z.; Babatunde, K.A.; Akintade, D.D.; Acquaye, A.; Fujii, H.; Ndiaye, M.M.; Yamoah, F.A.; Koh, S.C.L. A critical analysis of the impacts of COVID-19 on the global economy and ecosystems and opportunities for circular economy strategies. Resour. Conserv. Recycling, 2021, 164, 105169.
[http://dx.doi.org/10.1016/j.resconrec.2020.105169] [PMID: 32982059]
[37]
Caterino, M.; Gelzo, M.; Sol, S.; Fedele, R.; Annunziata, A.; Calabrese, C.; Fiorentino, G.; D’Abbraccio, M.; Dell’Isola, C.; Fusco, F.M.; Parrella, R.; Fabbrocini, G.; Gentile, I.; Andolfo, I.; Capasso, M.; Costanzo, M.; Daniele, A.; Marchese, E.; Polito, R.; Russo, R.; Missero, C.; Ruoppolo, M.; Castaldo, G. Dysregulation of lipid metabolism and pathological inflammation in patients with COVID-19. Sci. Rep., 2021, 11(1), 2941.
[http://dx.doi.org/10.1038/s41598-021-82426-7] [PMID: 33536486]
[38]
Sturley, S.L.; Rajakumar, T.; Hammond, N.; Higaki, K.; Marka, Z.; Marka, S.; Munkacsi, A.B. Potential COVID-19 therapeutics from a rare disease: weaponizing lipid dysregulation to combat viral infectivity. J. Lipid Res., 2020, 61(7), 972-982.
[http://dx.doi.org/10.1194/jlr.R120000851] [PMID: 32457038]
[39]
Abu-Farha, M.; Thanaraj, T.A.; Qaddoumi, M.G.; Hashem, A.; Abubaker, J.; Al-Mulla, F. The role of lipid metabolism in COVID-19 virus infection and as a drug target. Int. J. Mol. Sci., 2020, 21(10), 3544.
[http://dx.doi.org/10.3390/ijms21103544] [PMID: 32429572]
[40]
Costanzo, M.; De Giglio, M.A.R.; Roviello, G.N. SARS- CoV-2: Recent reports on antiviral therapies based on lopinavir/ritonavir, darunavir/umifenovir, hydroxychloroquine, remdesivir, favipiravir and other drugs for the treatment of the new coronavirus. Curr. Med. Chem., 2020, 27(27), 4536-4541.
[http://dx.doi.org/10.2174/0929867327666200416131117] [PMID: 32297571]
[41]
Singh, T.U.; Parida, S.; Lingaraju, M.C.; Kesavan, M.; Kumar, D.; Singh, R.K. Drug repurposing approach to fight COVID-19. Pharmacol. Rep., 2020, 72(6), 1479-1508.
[http://dx.doi.org/10.1007/s43440-020-00155-6] [PMID: 32889701]
[42]
Borbone, N.; Piccialli, G.; Roviello, G.N.; Oliviero, G. Nucleoside analogs and nucleoside precursors as drugs in the fight against SARS-CoV-2 and other coronaviruses. Molecules, 2021, 26(4), 986.
[http://dx.doi.org/10.3390/molecules26040986] [PMID: 33668428]
[43]
Vicidomini, C.; Roviello, V.; Roviello, G.N. molecular basis of the therapeutical potential of clove (syzygium aromaticum L.) and clues to its anti-COVID-19 utility. Molecules, 2021, 26(7), 1880.
[http://dx.doi.org/10.3390/molecules26071880] [PMID: 33810416]
[44]
Roviello, V.; Musumeci, D.; Mokhir, A.; Roviello, G.N. Evidence of protein binding by a nucleopeptide based on a thymine-decorated L-diaminopropanoic acid through CD and in silico studies. Curr. Med. Chem., 2021, 28(24), 5004-5015.
[http://dx.doi.org/10.2174/0929867328666210201152326] [PMID: 33593247]
[45]
Hung, L.S. The SARS epidemic in Hong Kong: what lessons have we learned? J. R. Soc. Med., 2003, 96(8), 374-378.
[http://dx.doi.org/10.1177/014107680309600803] [PMID: 12893851]
[46]
Outbreak of severe acute respiratory syndrome-worldwide, 2003. MMWR Morb. Mortal. Wkly. Rep., 2003, 52(11), 226-228.
[PMID: 12665115]
[47]
Abdel-Moneim, A.S. Middle East respiratory syndrome coronavirus (MERS-CoV): evidence and speculations. Arch. Virol., 2014, 159(7), 1575-1584.
[http://dx.doi.org/10.1007/s00705-014-1995-5] [PMID: 24515532]
[48]
Oboho, I.K.; Tomczyk, S.M.; Al-Asmari, A.M.; Banjar, A.A.; Al-Mugti, H.; Aloraini, M.S.; Alkhaldi, K.Z.; Almohammadi, E.L.; Alraddadi, B.M.; Gerber, S.I.; Swerdlow, D.L.; Watson, J.T.; Madani, T.A. 2014 MERS-CoV outbreak in Jeddah-a link to health care facilities. N. Engl. J. Med., 2015, 372(9), 846-854.
[http://dx.doi.org/10.1056/NEJMoa1408636] [PMID: 25714162]
[49]
Yi, Y.; Lagniton, P.N.P.; Ye, S.; Li, E.; Xu, R-H. COVID-19: what has been learned and to be learned about the novel coronavirus disease. Int. J. Biol. Sci., 2020, 16(10), 1753-1766.
[http://dx.doi.org/10.7150/ijbs.45134] [PMID: 32226295]
[50]
Sallard, E.; Halloy, J.; Casane, D.; Decroly, E.; van Helden, J. Tracing the origins of SARS-COV-2 in coronavirus phylogenies. arXiv preprint, 2020.
[51]
Gaye, B.; Fanidi, A.; Jouven, X. Denominator matters in estimating COVID-19 mortality rates. Eur. Heart J., 2020, 41(37), 3500-3500.
[http://dx.doi.org/10.1093/eurheartj/ehaa282] [PMID: 32255475]
[52]
Lvov, D.K.; Alkhovsky, S.V. Source of the COVID-19 pandemic: Ecology and genetics of coronaviruses (Betacoronavirus: Coronaviridae) SARS-CoV, SARS-CoV-2 (subgenus Sarbecovirus), and MERS-CoV (subgenus Merbecovirus). Prob. of Vir., Rus. jrn., 2020, 65(2), 62-70.
[53]
Hatmal, M.M.; Alshaer, W.; Al-Hatamleh, M.A.I.; Hatmal, M.; Smadi, O.; Taha, M.O.; Oweida, A.J.; Boer, J.C.; Mohamud, R.; Plebanski, M. Comprehensive Structural and Molecular Comparison of Spike Proteins of SARS-CoV-2, SARS-CoV and MERS-CoV, and Their Interactions with ACE2. Cells, 2020, 9(12), 2638.
[http://dx.doi.org/10.3390/cells9122638] [PMID: 33302501]
[54]
Bestle, D.; Heindl, M.R.; Limburg, H.; Van Lam van, T.; Pilgram, O.; Moulton, H.; Stein, D.A.; Hardes, K.; Eickmann, M.; Dolnik, O.; Rohde, C.; Klenk, H.D.; Garten, W.; Steinmetzer, T.; Böttcher-Friebertshäuser, E. TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Sci. Alliance, 2020, 3(9), e202000786.
[http://dx.doi.org/10.26508/lsa.202000786] [PMID: 32703818]
[55]
Xia, S.; Lan, Q.; Su, S.; Wang, X.; Xu, W.; Liu, Z.; Zhu, Y.; Wang, Q.; Lu, L.; Jiang, S. The role of furin cleavage site in SARS-CoV-2 spike protein-mediated membrane fusion in the presence or absence of trypsin. Signal Transduct. Target. Ther., 2020, 5(1), 92.
[http://dx.doi.org/10.1038/s41392-020-0184-0] [PMID: 32532959]
[56]
Costanzo, M.; Caterino, M.; Cevenini, A.; Jung, V.; Chhuon, C.; Lipecka, J.; Fedele, R.; Guerrera, I.C.; Ruoppolo, M. Proteomics reveals that methylmalonyl-CoA mutase modulates cell architecture and increases susceptibility to stress. Int. J. Mol. Sci., 2020, 21(14), 4998.
[http://dx.doi.org/10.3390/ijms21144998] [PMID: 32679819]
[57]
Caterino, M.; Ruoppolo, M.; Mandola, A.; Costanzo, M.; Orrù, S.; Imperlini, E. Protein-protein interaction networks as a new perspective to evaluate distinct functional roles of voltage-dependent anion channel isoforms. Mol. Biosyst., 2017, 13(12), 2466-2476.
[http://dx.doi.org/10.1039/C7MB00434F] [PMID: 29028058]
[58]
De Pasquale, V.; Costanzo, M.; Siciliano, R.A.; Mazzeo, M.F.; Pistorio, V.; Bianchi, L.; Marchese, E.; Ruoppolo, M.; Pavone, L.M.; Caterino, M. Proteomic analysis of mucopolysaccharidosis IIIB mouse brain. Biomolecules, 2020, 10(3), 355.
[http://dx.doi.org/10.3390/biom10030355] [PMID: 32111039]
[59]
Gordon, D.E.; Jang, G.M.; Bouhaddou, M.; Xu, J.; Obernier, K.; White, K.M.; O’Meara, M.J.; Rezelj, V.V.; Guo, J.Z.; Swaney, D.L.; Tummino, T.A.; Hüttenhain, R.; Kaake, R.M.; Richards, A.L.; Tutuncuoglu, B.; Foussard, H.; Batra, J.; Haas, K.; Modak, M.; Kim, M.; Haas, P.; Polacco, B.J.; Braberg, H.; Fabius, J.M.; Eckhardt, M.; Soucheray, M.; Bennett, M.J.; Cakir, M.; McGregor, M.J.; Li, Q.; Meyer, B.; Roesch, F.; Vallet, T.; Mac Kain, A.; Miorin, L.; Moreno, E.; Naing, Z.Z.C.; Zhou, Y.; Peng, S.; Shi, Y.; Zhang, Z.; Shen, W.; Kirby, I.T.; Melnyk, J.E.; Chorba, J.S.; Lou, K.; Dai, S.A.; Barrio-Hernandez, I.; Memon, D.; Hernandez-Armenta, C.; Lyu, J.; Mathy, C.J.P.; Perica, T.; Pilla, K.B.; Ganesan, S.J.; Saltzberg, D.J.; Rakesh, R.; Liu, X.; Rosenthal, S.B.; Calviello, L.; Venkataramanan, S.; Liboy-Lugo, J.; Lin, Y.; Huang, X-P.; Liu, Y.; Wankowicz, S.A.; Bohn, M.; Safari, M.; Ugur, F.S.; Koh, C.; Savar, N.S.; Tran, Q.D.; Shengjuler, D.; Fletcher, S.J.; O’Neal, M.C.; Cai, Y.; Chang, J.C.J.; Broadhurst, D.J.; Klippsten, S.; Sharp, P.P.; Wenzell, N.A.; Kuzuoglu-Ozturk, D.; Wang, H-Y.; Trenker, R.; Young, J.M.; Cavero, D.A.; Hiatt, J.; Roth, T.L.; Rathore, U.; Subramanian, A.; Noack, J.; Hubert, M.; Stroud, R.M.; Frankel, A.D.; Rosenberg, O.S.; Verba, K.A.; Agard, D.A.; Ott, M.; Emerman, M.; Jura, N.; von Zastrow, M.; Verdin, E.; Ashworth, A.; Schwartz, O.; d’Enfert, C.; Mukherjee, S.; Jacobson, M.; Malik, H.S.; Fujimori, D.G.; Ideker, T.; Craik, C.S.; Floor, S.N.; Fraser, J.S.; Gross, J.D.; Sali, A.; Roth, B.L.; Ruggero, D.; Taunton, J.; Kortemme, T.; Beltrao, P.; Vignuzzi, M.; García-Sastre, A.; Shokat, K.M.; Shoichet, B.K.; Krogan, N.J. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 2020, 583(7816), 459-468.
[http://dx.doi.org/10.1038/s41586-020-2286-9] [PMID: 32353859]
[60]
Bolles, M.; Deming, D.; Long, K.; Agnihothram, S.; Whitmore, A.; Ferris, M.; Funkhouser, W.; Gralinski, L.; Totura, A.; Heise, M.; Baric, R.S. A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge. J. Virol., 2011, 85(23), 12201-12215.
[http://dx.doi.org/10.1128/JVI.06048-11] [PMID: 21937658]
[61]
Awadasseid, A.; Wu, Y.; Tanaka, Y.; Zhang, W. Current advances in the development of SARS-CoV-2 vaccines. Int. J. Biol. Sci., 2021, 17(1), 8-19.
[http://dx.doi.org/10.7150/ijbs.52569] [PMID: 33390829]
[62]
Li, Y-D.; Chi, W-Y.; Su, J-H.; Ferrall, L.; Hung, C-F.; Wu, T-C. Coronavirus vaccine development: from SARS and MERS to COVID-19. J. Biomed. Sci., 2020, 27(1), 104.
[http://dx.doi.org/10.1186/s12929-020-00695-2] [PMID: 33341119]
[63]
van Doremalen, N.; Haddock, E.; Feldmann, F.; Meade-White, K.; Bushmaker, T.; Fischer, R.J.; Okumura, A.; Hanley, P.W.; Saturday, G.; Edwards, N.J.; Clark, M.H.A.; Lambe, T.; Gilbert, S.C.; Munster, V.J. A single dose of ChAdOx1 MERS provides protective immunity in rhesus macaques. Sci. Adv., 2020, 6(24), eaba8399.
[http://dx.doi.org/10.1126/sciadv.aba8399] [PMID: 32577525]
[64]
Alharbi, N.K.; Qasim, I.; Almasoud, A.; Aljami, H.A.; Alenazi, M.W.; Alhafufi, A.; Aldibasi, O.S.; Hashem, A.M.; Kasem, S.; Albrahim, R.; Aldubaib, M.; Almansour, A.; Temperton, N.J.; Kupke, A.; Becker, S.; Abu-Obaidah, A.; Alkarar, A.; Yoon, I.K.; Azhar, E.; Lambe, T.; Bayoumi, F.; Aldowerij, A.; Ibrahim, O.H.; Gilbert, S.C.; Balkhy, H.H. Humoral immunogenicity and efficacy of a single dose of ChAdOx1 MERS vaccine candidate in dromedary camels. Sci. Rep., 2019, 9(1), 16292.
[http://dx.doi.org/10.1038/s41598-019-52730-4] [PMID: 31705137]
[65]
Ashfaq, U.A.; Saleem, S.; Masoud, M.S.; Ahmad, M.; Nahid, N.; Bhatti, R.; Almatroudi, A.; Khurshid, M. Rational design of multi epitope-based subunit vaccine by exploring MERS-COV proteome: Reverse vaccinology and molecular docking approach. PLoS One, 2021, 16(2), e0245072.
[http://dx.doi.org/10.1371/journal.pone.0245072] [PMID: 33534822]
[66]
Parker, E.P.K.; Shrotri, M.; Kampmann, B. Keeping track of the SARS-CoV-2 vaccine pipeline. Nat. Rev. Immunol., 2020, 20(11), 650-650.
[http://dx.doi.org/10.1038/s41577-020-00455-1] [PMID: 32989290]
[67]
Le, T.T.; Cramer, J.P.; Chen, R.; Mayhew, S. Evolution of the COVID-19 vaccine development landscape. Nat. Rev. Drug Discov., 2020, 19(10), 667-668.
[http://dx.doi.org/10.1038/d41573-020-00151-8] [PMID: 32887942]
[68]
Lurie, N.; Saville, M.; Hatchett, R.; Halton, J. Developing Covid-19 vaccines at pandemic speed. N. Engl. J. Med., 2020, 382(21), 1969-1973.
[http://dx.doi.org/10.1056/NEJMp2005630] [PMID: 32227757]
[69]
Strizova, Z.; Smetanova, J.; Bartunkova, J.; Milota, T. Principles and challenges in anti-COVID-19 vaccine development. Int. Arch. Allergy Immunol., 2021, 182(4), 339-349.
[http://dx.doi.org/10.1159/000514225] [PMID: 33524979]
[70]
Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; Bailey, R.; Swanson, K.A.; Roychoudhury, S.; Koury, K.; Li, P.; Kalina, W.V.; Cooper, D.; Frenck, R.W., Jr; Hammitt, L.L.; Türeci, Ö.; Nell, H.; Schaefer, A.; Ünal, S.; Tresnan, D.B.; Mather, S.; Dormitzer, P.R.; Şahin, U.; Jansen, K.U.; Gruber, W.C. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med., 2020, 383(27), 2603-2615.
[http://dx.doi.org/10.1056/NEJMoa2034577] [PMID: 33301246]
[71]
Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med., 2021, 384(5), 403-416.
[PMID: 33378609]
[72]
Voysey, M.; Clemens, S.A.C.; Madhi, S.A.; Weckx, L.Y.; Folegatti, P.M.; Aley, P.K.; Angus, B.; Baillie, V.L.; Barnabas, S.L.; Bhorat, Q.E.; Bibi, S.; Briner, C.; Cicconi, P.; Collins, A.M.; Colin-Jones, R.; Cutland, C.L.; Darton, T.C.; Dheda, K.; Duncan, C.J.A.; Emary, K.R.W.; Ewer, K.J.; Fairlie, L.; Faust, S.N.; Feng, S.; Ferreira, D.M.; Finn, A.; Goodman, A.L.; Green, C.M.; Green, C.A.; Heath, P.T.; Hill, C.; Hill, H.; Hirsch, I.; Hodgson, S.H.C.; Izu, A.; Jackson, S.; Jenkin, D.; Joe, C.C.D.; Kerridge, S.; Koen, A.; Kwatra, G.; Lazarus, R.; Lawrie, A.M.; Lelliott, A.; Libri, V.; Lillie, P.J.; Mallory, R.; Mendes, A.V.A.; Milan, E.P.; Minassian, A.M.; McGregor, A.; Morrison, H.; Mujadidi, Y.F.; Nana, A.; O’Reilly, P.J.; Padayachee, S.D.; Pittella, A.; Plested, E.; Pollock, K.M.; Ramasamy, M.N.; Rhead, S.; Schwarzbold, A.V.; Singh, N.; Smith, A.; Song, R.; Snape, M.D.; Sprinz, E.; Sutherland, R.K.; Tarrant, R.; Thomson, E.C.; Torok, M.E.; Toshner, M.; Turner, D.P.J.; Vekemans, J.; Villafana, T.L.; Watson, M.E.E.; Williams, C.J.; Douglas, A.D.; Hill, A.V.S.; Lambe, T.; Gilbert, S.C.; Pollard, A.J. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet, 2021, 397(10269), 99-111.
[http://dx.doi.org/10.1016/S0140-6736(20)32661-1] [PMID: 33306989]
[73]
Logunov, D.Y.; Dolzhikova, I.V.; Zubkova, O.V.; Tukhvatulin, A.I.; Shcheblyakov, D.V.; Dzharullaeva, A.S.; Grousova, D.M.; Erokhova, A.S.; Kovyrshina, A.V.; Botikov, A.G.; Izhaeva, F.M.; Popova, O.; Ozharovskaya, T.A.; Esmagambetov, I.B.; Favorskaya, I.A.; Zrelkin, D.I.; Voronina, D.V.; Shcherbinin, D.N.; Semikhin, A.S.; Simakova, Y.V.; Tokarskaya, E.A.; Lubenets, N.L.; Egorova, D.A.; Shmarov, M.M.; Nikitenko, N.A.; Morozova, L.F.; Smolyarchuk, E.A.; Kryukov, E.V.; Babira, V.F.; Borisevich, S.V.; Naroditsky, B.S.; Gintsburg, A.L. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia. Lancet, 2020, 396(10255), 887-897.
[http://dx.doi.org/10.1016/S0140-6736(20)31866-3] [PMID: 32896291]
[74]
Kauffman, K.J.; Webber, M.J.; Anderson, D.G. Materials for non-viral intracellular delivery of messenger RNA therapeutics. J. Control. Release, 2016, 240, 227-234.
[http://dx.doi.org/10.1016/j.jconrel.2015.12.032] [PMID: 26718856]
[75]
Cimolai, N. Do RNA vaccines obviate the need for genotoxicity studies? Mutagenesis, 2020, 35(6), 509-510.
[PMID: 33216145]
[76]
Meurens, F. Multidisciplinary Digital Publishing Institute, 2020.
[77]
Sahin, U.; Karikó, K.; Türeci, Ö. mRNA-based therapeutics-developing a new class of drugs. Nat. Rev. Drug Discov., 2014, 13(10), 759-780.
[http://dx.doi.org/10.1038/nrd4278] [PMID: 25233993]
[78]
Imoukhuede, E.; Payne, R.; Fehling, S.; Strecker, T.; Biedenkopf, N.; Krähling, V.; Tully, C.; Edwards, N.; Bentley, E.; Samuel, D. A Monovalent Chimpanzee Adenovirus Ebola Vaccine Boosted with MVA., 2016.
[79]
Morris, S.J.; Sebastian, S.; Spencer, A.J.; Gilbert, S.C. Simian adenoviruses as vaccine vectors. Future Virol., 2016, 11(9), 649-659.
[http://dx.doi.org/10.2217/fvl-2016-0070] [PMID: 29527232]
[80]
Zhu, F-C.; Li, Y-H.; Guan, X-H.; Hou, L-H.; Wang, W-J.; Li, J-X.; Wu, S-P.; Wang, B-S.; Wang, Z.; Wang, L.; Jia, S.Y.; Jiang, H.D.; Wang, L.; Jiang, T.; Hu, Y.; Gou, J.B.; Xu, S.B.; Xu, J.J.; Wang, X.W.; Wang, W.; Chen, W. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet, 2020, 395(10240), 1845-1854.
[http://dx.doi.org/10.1016/S0140-6736(20)31208-3] [PMID: 32450106]
[81]
Sadoff, J.; Le Gars, M.; Shukarev, G.; Heerwegh, D.; Truyers, C.; de Groot, A.M.; Stoop, J.; Tete, S.; Van Damme, W.; Leroux-Roels, I.; Berghmans, P-J.; Kimmel, M.; Van Damme, P.; de Hoon, J.; Smith, W.; Stephenson, K.E.; De Rosa, S.C.; Cohen, K.W.; McElrath, M.J.; Cormier, E.; Scheper, G.; Barouch, D.H.; Hendriks, J.; Struyf, F.; Douoguih, M.; Van Hoof, J.; Schuitemaker, H. Interim Results of a Phase 1-2a Trial of Ad26.COV2.S Covid-19 Vaccine. N. Engl. J. Med., 2021.
[http://dx.doi.org/10.1056/NEJMoa2034201] [PMID: 33440088]
[82]
Zhang, Y.; Zeng, G.; Pan, H.; Li, C.; Hu, Y.; Chu, K.; Han, W.; Chen, Z.; Tang, R.; Yin, W. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18–59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect. Dis., 2021, 21(2), 181-192.
[http://dx.doi.org/10.1016/S1473-3099(20)30843-4] [PMID: 33217362]
[83]
Xia, S.; Duan, K.; Zhang, Y.; Zhao, D.; Zhang, H.; Xie, Z.; Li, X.; Peng, C.; Zhang, Y.; Zhang, W.; Yang, Y.; Chen, W.; Gao, X.; You, W.; Wang, X.; Wang, Z.; Shi, Z.; Wang, Y.; Yang, X.; Zhang, L.; Huang, L.; Wang, Q.; Lu, J.; Yang, Y.; Guo, J.; Zhou, W.; Wan, X.; Wu, C.; Wang, W.; Huang, S.; Du, J.; Meng, Z.; Pan, A.; Yuan, Z.; Shen, S.; Guo, W.; Yang, X. Effect of an inactivated vaccine against SARS-CoV-2 on safety and immunogenicity outcomes: interim analysis of 2 randomized clinical trials. JAMA, 2020, 324(10), 951-960.
[http://dx.doi.org/10.1001/jama.2020.15543] [PMID: 32789505]
[84]
Xia, S.; Zhang, Y.; Wang, Y.; Wang, H.; Yang, Y.; Gao, G.F.; Tan, W.; Wu, G.; Xu, M.; Lou, Z. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect. Dis., 2021, 21(1), 39-51.
[http://dx.doi.org/10.1016/S1473-3099(20)30831-8] [PMID: 33069281]
[85]
Yang, S.; Li, Y.; Dai, L.; Wang, J.; He, P.; Li, C.; Fang, X.; Wang, C.; Zhao, X.; Huang, E.; Wu, C.; Zhong, Z.; Wang, F.; Duan, X.; Tian, S.; Wu, L.; Liu, Y.; Luo, Y.; Chen, Z.; Li, F.; Li, J.; Yu, X.; Ren, H.; Liu, L.; Meng, S.; Yan, J.; Hu, Z.; Gao, L.; Gao, G.F. Safety and immunogenicity of a recombinant tandem-repeat dimeric RBD-based protein subunit vaccine (ZF2001) against COVID-19 in adults: two randomised, double-blind, placebo-controlled, phase 1 and 2 trials. Lancet Infect. Dis., 2021.21(8), 1107-1119..
[PMID: 33773111]
[86]
Ella, R.; Reddy, S.; Jogdand, H.; Sarangi, V.; Ganneru, B.; Prasad, S.; Das, D.; Raju, D.; Praturi, U.; Sapkal, G.; Yadav, P.; Reddy, P.; Verma, S.; Singh, C.; Redkar, S.V.; Gillurkar, C.S.; Kushwaha, J.S.; Mohapatra, S.; Bhate, A.; Rai, S.; Panda, S.; Abraham, P.; Gupta, N.; Ella, K.; Bhargava, B.; Vadrevu, K.M. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBV152: interim results from a double-blind, randomised, multicentre, phase 2 trial, and 3-month follow-up of a double-blind, randomised phase 1 trial. Lancet Infect. Dis., 2021.21(7),950-961..
[PMID: 33705727]
[87]
Kochhar, S.; Excler, J-L.; Kim, D.; Robertson, J.S.; Fast, P.E.; Condit, R.C.; Drew, S.; Wood, D.; Gurwith, M.; Klug, B.; Whelan, M.; Khuri-Bulos, N.; Mallett Moore, T.; Smith, E.R.; Chen, R.T. The Brighton Collaboration standardized template for collection of key information for benefit-risk assessment of inactivated viral vaccines. Vaccine, 2020, 38(39), 6184-6189.
[http://dx.doi.org/10.1016/j.vaccine.2020.07.028] [PMID: 32747214]
[88]
Tseng, C-T.; Sbrana, E.; Iwata-Yoshikawa, N.; Newman, P.C.; Garron, T.; Atmar, R.L.; Peters, C.J.; Couch, R.B. Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus. PLoS One, 2012, 7(4), e35421.
[http://dx.doi.org/10.1371/journal.pone.0035421] [PMID: 22536382]
[89]
Jaras, M.; Edqvist, A.; Rebetz, J.; Salford, L.G.; Widegren, B.; Fan, X. Human short-term repopulating cells have enhanced telomerase reverse transcriptase expression. Blood, 2006, 108(3), 1084-1091.
[http://dx.doi.org/10.1182/blood-2005-09-008904] [PMID: 16861355]
[90]
Su, Y.; Ghodke, P.P.; Egli, M.; Li, L.; Wang, Y.; Guengerich, F.P. Human DNA polymerase ā has reverse transcriptase activity in cellular environments. J. Biol. Chem., 2019, 294(15), 6073-6081.
[http://dx.doi.org/10.1074/jbc.RA119.007925] [PMID: 30842261]
[91]
Shimizu, A.; Nakatani, Y.; Nakamura, T.; Jinno-Oue, A.; Ishikawa, O.; Boeke, J.D.; Takeuchi, Y.; Hoshino, H. Characterisation of cytoplasmic DNA complementary to non-retroviral RNA viruses in human cells. Sci. Rep., 2014, 4, 5074.
[http://dx.doi.org/10.1038/srep05074] [PMID: 24875540]
[92]
Schwertz, H.; Rowley, J.W.; Schumann, G.G.; Thorack, U.; Campbell, R.A.; Manne, B.K.; Zimmerman, G.A.; Weyrich, A.S.; Rondina, M.T. Endogenous LINE-1 (long interspersed nuclear element-1) reverse transcriptase activity in platelets controls translational events through RNA.DNA hybrids. Arterioscler. Thromb. Vasc. Biol., 2018, 38(4), 801-815.
[http://dx.doi.org/10.1161/ATVBAHA.117.310552] [PMID: 29301786]
[93]
Modjarrad, K. MERS-CoV vaccine candidates in development: The current landscape. Vaccine, 2016, 34(26), 2982-2987.
[http://dx.doi.org/10.1016/j.vaccine.2016.03.104] [PMID: 27083424]
[94]
Wang, L.; Shi, W.; Joyce, M.G.; Modjarrad, K.; Zhang, Y.; Leung, K.; Lees, C.R.; Zhou, T.; Yassine, H.M.; Kanekiyo, M.; Yang, Z.Y.; Chen, X.; Becker, M.M.; Freeman, M.; Vogel, L.; Johnson, J.C.; Olinger, G.; Todd, J.P.; Bagci, U.; Solomon, J.; Mollura, D.J.; Hensley, L.; Jahrling, P.; Denison, M.R.; Rao, S.S.; Subbarao, K.; Kwong, P.D.; Mascola, J.R.; Kong, W.P.; Graham, B.S. Evaluation of candidate vaccine approaches for MERS-CoV. Nat. Commun., 2015, 6(1), 7712.
[http://dx.doi.org/10.1038/ncomms8712] [PMID: 26218507]
[95]
Sui, J.; Deming, M.; Rockx, B.; Liddington, R.C.; Zhu, Q.K.; Baric, R.S.; Marasco, W.A. Effects of human anti-spike protein receptor binding domain antibodies on severe acute respiratory syndrome coronavirus neutralization escape and fitness. J. Virol., 2014, 88(23), 13769-13780.
[http://dx.doi.org/10.1128/JVI.02232-14] [PMID: 25231316]
[96]
Greaney, A.J.; Loes, A.N.; Crawford, K.H.; Starr, T.N.; Malone, K.D.; Chu, H.Y.; Bloom, J.D. Comprehensive mapping of mutations to the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human serum antibodies. bio. Rxiv., 2021, 9(3), 463-476.e6.
[http://dx.doi.org/10.1016/j.chom.2021.02.003] [PMID: 33592168]

© 2025 Bentham Science Publishers | Privacy Policy