Review Article

了解 SARS 病毒抑制剂的结构基础

卷 29, 期 4, 2022

发表于: 14 May, 2021

页: [666 - 681] 页: 16

弟呕挨: 10.2174/0929867328666210514122418

价格: $65

conference banner
摘要

2019 年 12 月在中国武汉市爆发的严重急性呼吸系统综合症 - 冠状病毒 (SARSCoV-2) 爆发并继续在国际上蔓延,构成了世界卫生组织宣布的大流行威胁,截至 2021 年 3 月 10 日,已确诊病例全球有 1.18 亿人死亡,260 万人死亡。在没有特定的抗病毒药物的情况下,对症治疗和身体隔离仍然是控制疾病和传染的选择。最近的抗病毒药物临床试验突出了一些有前景的化合物,如umifenovir(血凝素与SA介导的融合抑制剂只有70%的相似性)、remdesivir(RdRp核苷抑制剂)和favipiravir(RdRp抑制剂)。世卫组织针对几种有希望的类似物开展了一项多国临床试验,作为对抗 SARS 感染的潜在治疗方法。这种情况促使人们采用整体方法来发明安全和特定的药物,作为与 SARS 相关的病毒性疾病(包括 COVID-19)的预防和治疗方法。值得注意的是,世界各地的研究人员一直在尽最大努力应对危机,并产生了一个广泛而有前途的文献机构。它打开了一个范围,并允许在分子水平上了解病毒的进入。基于结构的方法可以揭示病毒进入相互作用的分子水平理解。参与氨基酸残基之间的配体谱和非共价相互作用是描述结构解释的关键信息。 SARS病毒进入宿主细胞的结构研究将揭示设计药物如进入抑制剂的可能策略。基于结构的方法展示了 3D 分子水平的细节。它显示了 SARS-CoV-2 刺突相互作用的特异性,它使用人血管紧张素转换酶 2(ACE2)作为受体进入,由人蛋白酶完成病毒融合和感染的过程。 3D 结构研究揭示了两个单元的存在,即 S1 和 S2。 S1被称为受体结合域(RBD),负责与宿主(ACE2)相互作用,S2单元参与病毒和细胞膜的融合。 TMPRSS2 介导 SARS CoV-2 的 S 蛋白中 S1/S2 亚基界面处的切割,导致病毒融合。与 S1 结合相关的构象差异会改变 ACE2 相互作用并抑制病毒融合。总体而言,详细的 3D 结构研究有助于了解病毒与宿主因子相互作用的 3D 结构基础,并为针对 SARS 相关病毒进入宿主细胞的新药发现过程开辟了空间。

关键词: 严重急性呼吸综合征 (SARS)、SARS-CoV2、COVID-19、受体结合域 (RBD)、蛋白质-蛋白质界面、进入抑制剂。

[1]
Cui, J.; Li, F.; Shi, Z-L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol., 2019, 17(3), 181-192.
[http://dx.doi.org/10.1038/s41579-018-0118-9] [PMID: 30531947]
[2]
de Wit, E.; van Doremalen, N.; Falzarano, D.; Munster, V.J. SARS and MERS: recent insights into emerging coronaviruses. Nat. Rev. Microbiol., 2016, 14(8), 523-534.
[http://dx.doi.org/10.1038/nrmicro.2016.81] [PMID: 27344959]
[3]
Zhong, N.S.; Zheng, B.J.; Li, Y.M.; Poon, ; Xie, Z.H.; Chan, K.H.; Li, P.H.; Tan, S.Y.; Chang, Q.; Xie, J.P.; Liu, X.Q.; Xu, J.; Li, D.X.; Yuen, K.Y.; Peiris, ; Guan, Y. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China, in February, 2003. Lancet, 2003, 362(9393), 1353-1358.
[http://dx.doi.org/10.1016/S0140-6736(03)14630-2] [PMID: 14585636]
[4]
Guan, Y.; Zheng, B.J.; He, Y.Q.; Liu, X.L.; Zhuang, Z.X.; Cheung, C.L.; Luo, S.W.; Li, P.H.; Zhang, L.J.; Guan, Y.J.; Butt, K.M.; Wong, K.L.; Chan, K.W.; Lim, W.; Shortridge, K.F.; Yuen, K.Y.; Peiris, J.S.; Poon, L.L. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science, 2003, 302(5643), 276-278.
[http://dx.doi.org/10.1126/science.1087139] [PMID: 12958366]
[5]
Li, W.; Shi, Z.; Yu, M.; Ren, W.; Smith, C.; Epstein, J.H.; Wang, H.; Crameri, G.; Hu, Z.; Zhang, H.; Zhang, J.; McEachern, J.; Field, H.; Daszak, P.; Eaton, B.T.; Zhang, S.; Wang, L.F. Bats are natural reservoirs of SARS-like coronaviruses. Science, 2005, 310(5748), 676-679.
[http://dx.doi.org/10.1126/science.1118391] [PMID: 16195424]
[6]
Zhu, Z.; Lian, X.; Su, X.; Wu, W.; Marraro, G.A.; Zeng, Y. From SARS and MERS to COVID-19: a brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. Respir. Res., 2020, 21(1), 224.
[http://dx.doi.org/10.1186/s12931-020-01479-w] [PMID: 32854739]
[7]
Sahin, A.R.; Erdogan, A.; Agaoglu, P.M.; Dineri, Y.; Cakirci, A.Y.; Senel, M.E.; Okyay, R.A.; Tasdogan, A.M. 2019 Novel Coronavirus (COVID-19) Outbreak: A Review of the Current Literature. Eurasian Journal of Medicine and Oncology, 2020.
[8]
Zhao, S.; Lin, Q.; Ran, J.; Musa, S.S.; Yang, G.; Wang, W.; Lou, Y.; Gao, D.; Yang, L.; He, D.; Wang, M.H. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. Int. J. Infect. Dis., 2020, 92, 214-217.
[http://dx.doi.org/10.1016/j.ijid.2020.01.050] [PMID: 32007643]
[9]
Salata, C.; Calistri, A.; Parolin, C.; Palù, G. Coronaviruses: a paradigm of new emerging zoonotic diseases. Pathog. Dis., 2019, 77(9), ftaa006.
[http://dx.doi.org/10.1093/femspd/ftaa006] [PMID: 32065221]
[10]
Mahase, E. Covid-19: WHO declares pandemic because of “alarming levels” of spread, severity, and inaction. BMJ, 2020, 368, m1036.
[http://dx.doi.org/10.1136/bmj.m1036] [PMID: 32165426]
[11]
McIntosh, K.; Dees, J.H.; Becker, W.B.; Kapikian, A.Z.; Chanock, R.M. Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease. Proc. Natl. Acad. Sci. USA, 1967, 57(4), 933-940.
[http://dx.doi.org/10.1073/pnas.57.4.933] [PMID: 5231356]
[12]
Pillaiyar, T.; Meenakshisundaram, S.; Manickam, M. Recent discovery and development of inhibitors targeting coronaviruses. Drug Discov. Today, 2020, 25(4), 668-688.
[http://dx.doi.org/10.1016/j.drudis.2020.01.015] [PMID: 32006468]
[13]
Satarker, S.; Nampoothiri, M. Structural Proteins in Severe Acute Respiratory Syndrome Coronavirus-2. Arch. Med. Res., 2020, 51(6), 482-491.
[http://dx.doi.org/10.1016/j.arcmed.2020.05.012] [PMID: 32493627]
[14]
Delmas, B.; Laude, H. Assembly of coronavirus spike protein into trimers and its role in epitope expression. J. Virol., 1990, 64(11), 5367-5375.
[http://dx.doi.org/10.1128/jvi.64.11.5367-5375.1990] [PMID: 2170676]
[15]
Abraham, S.; Kienzle, T.E.; Lapps, W.; Brian, D.A. Deduced sequence of the bovine coronavirus spike protein and identification of the internal proteolytic cleavage site. Virology, 1990, 176(1), 296-301.
[http://dx.doi.org/10.1016/0042-6822(90)90257-R] [PMID: 2184576]
[16]
Shirato, K.; Kawase, M.; Matsuyama, S. Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2. J. Virol., 2013, 87(23), 12552-12561.
[http://dx.doi.org/10.1128/JVI.01890-13] [PMID: 24027332]
[17]
Xiu, S.; Dick, A.; Ju, H.; Mirzaie, S.; Abdi, F.; Cocklin, S.; Zhan, P.; Liu, X. Inhibitors of SARS-CoV-2 Entry: Current and Future Opportunities. J. Med. Chem., 2020, 63(21), 12256-12274.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00502] [PMID: 32539378]
[18]
Wu, C.; Zheng, M.; Yang, Y.; Gu, X.; Yang, K.; Li, M.; Liu, Y.; Zhang, Q.; Zhang, P.; Wang, Y.; Wang, Q.; Xu, Y.; Zhou, Y.; Zhang, Y.; Chen, L.; Li, H. Furin: A Potential Therapeutic Target for COVID-19. iScience, 2020, 23(10), 101642.
[http://dx.doi.org/10.1016/j.isci.2020.101642] [PMID: 33043282]
[19]
Papa, G.; Mallery, D.L.; Albecka, A.; Welch, L.G.; Cattin-Ortolá, J.; Luptak, J.; Paul, D.; McMahon, H.T.; Goodfellow, I.G.; Carter, A.; Munro, S.; James, L.C. Furin cleavage of SARS-CoV-2 Spike promotes but is not essential for infection and cell-cell fusion. PLoS Pathog., 2021, 17(1), e1009246.
[http://dx.doi.org/10.1371/journal.ppat.1009246] [PMID: 33493182]
[20]
Gralinski, L.E.; Menachery, V.D. Return of the Coronavirus: 2019-nCoV. Viruses, 2020, 12(2), 135.
[http://dx.doi.org/10.3390/v12020135] [PMID: 31991541]
[21]
World Health Organization. Modes of transmission of virus causing COVID-19: implications for IPC precaution recommendations. Available at: https://www.who.int/news-room/commentaries/detail/modes-of-transmission-of-virus-causing-covid-19-implications-for-ipc-precaution-recommendations
[22]
Signorelli, C.; Odone, A.; Riccò, M.; Bellini, L.; Croci, R.; Oradini-Alacreu, A.; Fiacchini, D.; Burioni, R. Major sports events and the transmission of SARS-CoV-2: analysis of seven case-studies in Europe. Acta Biomed., 2020, 91(2), 242-244.
[PMID: 32420959]
[23]
Ong, S.W.X.; Tan, Y.K.; Chia, P.Y.; Lee, T.H.; Ng, O.T.; Wong, M.S.Y.; Marimuthu, K. Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS- CoV-2) from a symptomatic patient. JAMA, 2020, 323(16), 1610-1612.
[http://dx.doi.org/10.1001/jama.2020.3227] [PMID: 32129805]
[24]
van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; Lloyd-Smith, J.O.; de Wit, E.; Munster, V.J. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med., 2020, 382(16), 1564-1567.
[http://dx.doi.org/10.1056/NEJMc2004973] [PMID: 32182409]
[25]
Wang, K. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein BioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.03.14.988345]
[26]
Kumar, S.; Nyodu, R.; Maurya, V.K.; Saxena, S.K. Morphology, Genome Organization, Replication, and Pathogenesis of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). In: Coronavirus Disease 2019 (COVID-19); Saxena, S.K., Ed.; Springer, 2020; pp. 23-31.
[27]
Ortega, J.T.; Serrano, M.L.; Pujol, F.H.; Rangel, H.R. Role of changes in SARS-CoV-2 spike protein in the interaction with the human ACE2 receptor: An in silico analysis. EXCLI J., 2020, 19, 410-417.
[PMID: 32210742]
[28]
Yan, R.; Zhang, Y.; Li, Y.; Xia, L.; Guo, Y.; Zhou, Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science, 2020, 367(6485), 1444-1448.
[http://dx.doi.org/10.1126/science.abb2762] [PMID: 32132184]
[29]
Shang, J.; Ye, G.; Shi, K.; Wan, Y.; Luo, C.; Aihara, H.; Geng, Q.; Auerbach, A.; Li, F. Structural basis of receptor recognition by SARS-CoV-2. Nature, 2020, 581(7807), 221-224.
[http://dx.doi.org/10.1038/s41586-020-2179-y] [PMID: 32225175]
[30]
Song, W.; Gui, M.; Wang, X.; Xiang, Y.; Luo, C.; Aihara, H.; Geng, Q.; Auerbach, A.; Li, F. Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS Pathog., 2018, 14(8), e1007236.
[http://dx.doi.org/10.1371/journal.ppat.1007236] [PMID: 30102747]
[31]
Vincent, M.J.; Bergeron, E.; Benjannet, S.; Erickson, B.R.; Rollin, P.E.; Ksiazek, T.G.; Seidah, N.G.; Nichol, S.T. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol. J., 2005, 2(1), 69.
[http://dx.doi.org/10.1186/1743-422X-2-69] [PMID: 16115318]
[32]
Hu, H.; Li, L.; Kao, R.Y.; Kou, B.; Wang, Z.; Zhang, L.; Zhang, H.; Hao, Z.; Tsui, W.H.; Ni, A.; Cui, L.; Fan, B.; Guo, F.; Rao, S.; Jiang, C.; Li, Q.; Sun, M.; He, W.; Liu, G. Screening and identification of linear B-cell epitopes and entry-blocking peptide of severe acute respiratory syndrome (SARS)-associated coronavirus using synthetic overlapping peptide library. J. Comb. Chem., 2005, 7(5), 648-656.
[http://dx.doi.org/10.1021/cc0500607] [PMID: 16153058]
[33]
Struck, A.W.; Axmann, M.; Pfefferle, S.; Drosten, C.; Meyer, B. A hexapeptide of the receptor-binding domain of SARS corona virus spike protein blocks viral entry into host cells via the human receptor ACE2. Antiviral Res., 2012, 94(3), 288-296.
[http://dx.doi.org/10.1016/j.antiviral.2011.12.012] [PMID: 22265858]
[34]
Robertson, N.S.; Spring, D.R. Using peptidomimetics and constrained peptides as valuable tools for inhibiting protein–protein interactions. Molecules, 2018, 23(4), 959.
[http://dx.doi.org/10.3390/molecules23040959] [PMID: 29671834]
[35]
Donoghue, M.; Hsieh, F.; Baronas, E.; Godbout, K.; Gosselin, M.; Stagliano, N.; Donovan, M.; Woolf, B.; Robison, K.; Jeyaseelan, R.; Breitbart, R.E.; Acton, S. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ. Res., 2000, 87(5), E1-E9.
[http://dx.doi.org/10.1161/01.RES.87.5.e1] [PMID: 10969042]
[36]
Zhang, H.; Penninger, J.M.; Li, Y.; Zhong, N.; Slutsky, A.S. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med., 2020, 46(4), 586-590.
[http://dx.doi.org/10.1007/s00134-020-05985-9] [PMID: 32125455]
[37]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[38]
Adedeji, A.O.; Severson, W.; Jonsson, C.; Singh, K.; Weiss, S.R.; Sarafianos, S.G. Novel inhibitors of severe acute respiratory syndrome coronavirus entry that act by three distinct mechanisms. J. Virol., 2013, 87(14), 8017-8028.
[http://dx.doi.org/10.1128/JVI.00998-13] [PMID: 23678171]
[39]
Huentelman, M.J.; Zubcevic, J.; Hernández Prada, J.A.; Xiao, X.; Dimitrov, D.S.; Raizada, M.K.; Ostrov, D.A. Structure-based discovery of a novel angiotensin-converting enzyme 2 inhibitor. Hypertension, 2004, 44(6), 903-906.
[http://dx.doi.org/10.1161/01.HYP.0000146120.29648.36] [PMID: 15492138]
[40]
Uzunova, K.; Filipova, E.; Pavlova, V.; Vekov, T. Insights into antiviral mechanisms of remdesivir, lopinavir/ritonavir and chloroquine/hydroxychloroquine affecting the new SARS-CoV-2. Biomed. Pharmacother., 2020, 131, 110668.
[http://dx.doi.org/10.1016/j.biopha.2020.110668] [PMID: 32861965]
[41]
Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30(3), 269-271.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[42]
Rainsford, K.D.; Parke, A.L.; Clifford-Rashotte, M.; Kean, W.F. Therapy and pharmacological properties of hydroxychloroquine and chloroquine in treatment of systemic lupus erythematosus, rheumatoid arthritis and related diseases. Inflammopharmacology, 2015, 23(5), 231-269.
[http://dx.doi.org/10.1007/s10787-015-0239-y] [PMID: 26246395]
[43]
Yao, X.; Ye, F.; Zhang, M.; Cui, C.; Huang, B.; Niu, P.; Liu, X.; Zhao, L.; Dong, E.; Song, C.; Zhan, S.; Lu, R.; Li, H.; Tan, W.; Liu, D. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis., 2020, 71(15), 732-739.
[http://dx.doi.org/10.1093/cid/ciaa237] [PMID: 32150618]
[44]
Lambert, D.W.; Yarski, M.; Warner, F.J.; Thornhill, P.; Parkin, E.T.; Smith, A.I.; Hooper, N.M.; Turner, A.J. Tumor necrosis factor-α convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin- converting enzyme-2 (ACE2). J. Biol. Chem., 2005, 280(34), 30113-30119.
[http://dx.doi.org/10.1074/jbc.M505111200] [PMID: 15983030]
[45]
Towler, P.; Staker, B.; Prasad, S.G.; Menon, S.; Tang, J.; Parsons, T.; Ryan, D.; Fisher, M.; Williams, D.; Dales, N.A.; Patane, M.A.; Pantoliano, M.W. ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis. J. Biol. Chem., 2004, 279(17), 17996-18007.
[http://dx.doi.org/10.1074/jbc.M311191200] [PMID: 14754895]
[46]
Lundin, A.; Dijkman, R.; Bergström, T.; Kann, N.; Adamiak, B.; Hannoun, C.; Kindler, E.; Jónsdóttir, H.R.; Muth, D.; Kint, J.; Forlenza, M.; Müller, M.A.; Drosten, C.; Thiel, V.; Trybala, E. Targeting membrane-bound viral RNA synthesis reveals potent inhibition of diverse coronaviruses including the middle East respiratory syndrome virus. PLoS Pathog., 2014, 10(5), e1004166.
[http://dx.doi.org/10.1371/journal.ppat.1004166] [PMID: 24874215]
[47]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[48]
Kilianski, A.; Baker, S.C. Cell-based antiviral screening against coronaviruses: developing virus-specific and broad-spectrum inhibitors. Antiviral Res., 2014, 101, 105-112.
[http://dx.doi.org/10.1016/j.antiviral.2013.11.004] [PMID: 24269477]
[49]
Simmons, G.; Gosalia, D.N.; Rennekamp, A.J.; Reeves, J.D.; Diamond, S.L.; Bates, P. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc. Natl. Acad. Sci. USA, 2005, 102(33), 11876-11881.
[http://dx.doi.org/10.1073/pnas.0505577102] [PMID: 16081529]
[50]
van Dongen, M.J.P.; Kadam, R.U.; Juraszek, J.; Lawson, E.; Brandenburg, B.; Schmitz, F.; Schepens, W.B.G.; Stoops, B.; van Diepen, H.A.; Jongeneelen, M.; Tang, C.; Vermond, J.; van Eijgen-Obregoso Real, A.; Blokland, S.; Garg, D.; Yu, W.; Goutier, W.; Lanckacker, E.; Klap, J.M.; Peeters, D.C.G.; Wu, J.; Buyck, C.; Jonckers, T.H.M.; Roymans, D.; Roevens, P.; Vogels, R.; Koudstaal, W.; Friesen, R.H.E.; Raboisson, P.; Dhanak, D.; Goudsmit, J.; Wilson, I.A. A small-molecule fusion inhibitor of influenza virus is orally active in mice. Science, 2019, 363(6431), eaar6221.
[http://dx.doi.org/10.1126/science.aar6221] [PMID: 30846569]
[51]
Frey, G.; Rits-Volloch, S.; Zhang, X.Q.; Schooley, R.T.; Chen, B.; Harrison, S.C. Small molecules that bind the inner core of gp41 and inhibit HIV envelope-mediated fusion. Proc. Natl. Acad. Sci. USA, 2006, 103(38), 13938-13943.
[http://dx.doi.org/10.1073/pnas.0601036103] [PMID: 16963566]
[52]
Yi, L.; Li, Z.; Yuan, K.; Qu, X.; Chen, J.; Wang, G.; Zhang, H.; Luo, H.; Zhu, L.; Jiang, P.; Chen, L.; Shen, Y.; Luo, M.; Zuo, G.; Hu, J.; Duan, D.; Nie, Y.; Shi, X.; Wang, W.; Han, Y.; Li, T.; Liu, Y.; Ding, M.; Deng, H.; Xu, X. Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. J. Virol., 2004, 78(20), 11334-11339.
[http://dx.doi.org/10.1128/JVI.78.20.11334-11339.2004] [PMID: 15452254]
[53]
Mitsuki, Y.Y.; Ohnishi, K.; Takagi, H.; Oshima, M.; Yamamoto, T.; Mizukoshi, F.; Terahara, K.; Kobayashi, K.; Yamamoto, N.; Yamaoka, S.; Tsunetsugu-Yokota, Y. A single amino acid substitution in the S1 and S2 Spike protein domains determines the neutralization escape phenotype of SARS-CoV. Microbes Infect., 2008, 10(8), 908-915.
[http://dx.doi.org/10.1016/j.micinf.2008.05.009] [PMID: 18606245]
[54]
Kadam, R.U.; Wilson, I.A. Structural basis of influenza virus fusion inhibition by the antiviral drug Arbidol. Proc. Natl. Acad. Sci. USA, 2017, 114(2), 206-214.
[http://dx.doi.org/10.1073/pnas.1617020114] [PMID: 28003465]
[55]
Wang, X.; Cao, R.; Zhang, H.; Liu, J.; Xu, M.; Hu, H.; Li, Y.; Zhao, L.; Li, W.; Sun, X.; Yang, X.; Shi, Z.; Deng, F.; Hu, Z.; Zhong, W.; Wang, M. The anti-influenza virus drug, arbidol is an efficient inhibitor of SARS-CoV-2 in vitro. Cell Discov., 2020, 6(1), 28.
[http://dx.doi.org/10.1038/s41421-020-0169-8] [PMID: 33934117]
[56]
Vankadari, N. Arbidol: A potential antiviral drug for the treatment of SARS-CoV-2 by blocking trimerization of the spike glycoprotein. Int. J. Antimicrob. Agents, 2020, 56(2), 105998.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105998] [PMID: 32360231]
[57]
Wang, Z; Yang, B; Li, Q; Wen, L; Zhang, R. Clinical features of 69 cases with coronavirus disease 2019 in Wuhan, China. Clin Infect Dis., 2020, 71(15), 769-777.
[http://dx.doi.org/10.1093/cid/ciaa272]
[58]
Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C.L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 2020, 367(6483), 1260-1263.
[http://dx.doi.org/10.1126/science.abb2507] [PMID: 32075877]
[59]
Greenough, T.C.; Babcock, G.J.; Roberts, A.; Hernandez, H.J.; Thomas, W.D., Jr; Coccia, J.A.; Graziano, R.F.; Srinivasan, M.; Lowy, I.; Finberg, R.W.; Subbarao, K.; Vogel, L.; Somasundaran, M.; Luzuriaga, K.; Sullivan, J.L.; Ambrosino, D.M. Development and characterization of a severe acute respiratory syndrome-associated coronavirus-neutralizing human monoclonal antibody that provides effective immunoprophylaxis in mice. J. Infect. Dis., 2005, 191(4), 507-514.
[http://dx.doi.org/10.1086/427242] [PMID: 15655773]
[60]
Zhao, G.; Du, L.; Ma, C.; Li, Y.; Li, L.; Poon, V.K.; Wang, L.; Yu, F.; Zheng, B.J.; Jiang, S.; Zhou, Y. A safe and convenient pseudovirus-based inhibition assay to detect neutralizing antibodies and screen for viral entry inhibitors against the novel human coronavirus MERS-CoV. Virol. J., 2013, 10(1), 266.
[http://dx.doi.org/10.1186/1743-422X-10-266] [PMID: 23978242]
[61]
Bosch, B.J.; Bartelink, W.; Rottier, P.J. Cathepsin L functionally cleaves the severe acute respiratory syndrome coronavirus class I fusion protein upstream of rather than adjacent to the fusion peptide. J. Virol., 2008, 82(17), 8887-8890.
[http://dx.doi.org/10.1128/JVI.00415-08] [PMID: 18562523]
[62]
Sosnowski, P.; Turk, D. Caught in the act: the crystal structure of cleaved cathepsin L bound to the active site of Cathepsin L. FEBS Lett., 2016, 590(8), 1253-1261.
[http://dx.doi.org/10.1002/1873-3468.12140] [PMID: 26992470]
[63]
Zhou, N.; Pan, T.; Zhang, J.; Li, Q.; Zhang, X.; Bai, C.; Huang, F.; Peng, T.; Zhang, J.; Liu, C.; Tao, L.; Zhang, H. Glycopeptide antibiotics potently inhibit cathepsin L in the late endosome/lysosome and block the entry of Ebola virus, Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus (SARS-CoV). J. Biol. Chem., 2016, 291(17), 9218-9232.
[http://dx.doi.org/10.1074/jbc.M116.716100] [PMID: 26953343]
[64]
Zhang, J.; Ma, X.; Yu, F.; Liu, J.; Zou, F.; Pan, T.; Zhang, H Teicoplanin potently blocks the cell entry of 2019-nCoV bioRxiv, 2020, 02.05.935387.
[http://dx.doi.org/10.1101/2020.02.05.935387]
[65]
Zhou, Y.; Vedantham, P.; Lu, K.; Agudelo, J.; Carrion, R., Jr; Nunneley, J.W.; Barnard, D.; Pöhlmann, S.; McKerrow, J.H.; Renslo, A.R.; Simmons, G. Protease inhibitors targeting coronavirus and filovirus entry. Antiviral Res., 2015, 116, 76-84.
[http://dx.doi.org/10.1016/j.antiviral.2015.01.011] [PMID: 25666761]
[66]
Shah, P.P.; Wang, T.; Kaletsky, R.L.; Myers, M.C.; Purvis, J.E.; Jing, H.; Huryn, D.M.; Greenbaum, D.C.; Smith, A.B., III; Bates, P.; Diamond, S.L. A small-molecule oxocarbazate inhibitor of human cathepsin L blocks severe acute respiratory syndrome and ebola pseudotype virus infection into human embryonic kidney 293T cells. Mol. Pharmacol., 2010, 78(2), 319-324.
[http://dx.doi.org/10.1124/mol.110.064261] [PMID: 20466822]
[67]
Kawase, M.; Shirato, K.; van der Hoek, L.; Taguchi, F.; Matsuyama, S. Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry. J. Virol., 2012, 86(12), 6537-6545.
[http://dx.doi.org/10.1128/JVI.00094-12] [PMID: 22496216]
[68]
Millet, J.K.; Whittaker, G.R. Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. Proc. Natl. Acad. Sci. USA, 2014, 111(42), 15214-15219.
[http://dx.doi.org/10.1073/pnas.1407087111] [PMID: 25288733]
[69]
Swinney, D.C. Phenotypic vs. target-based drug discovery for first-in-class medicines. Clin. Pharmacol. Ther., 2013, 93(4), 299-301.
[http://dx.doi.org/10.1038/clpt.2012.236] [PMID: 23511784]
[70]
Wu, G.; Zhao, T.; Kang, D.; Zhang, J.; Song, Y.; Namasivayam, V.; Kongsted, J.; Pannecouque, C.; De Clercq, E.; Poongavanam, V.; Liu, X.; Zhan, P. Overview of recent strategic advances in medicinal chemistry. J. Med. Chem., 2019, 62(21), 9375-9414.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00359] [PMID: 31050421]
[71]
Du, J.; Guo, J.; Kang, D.; Li, Z.; Wang, G.; Wu, J.; Zhang, Z.; Fang, H.; Hou, X.; Huang, Z.; Li, G.; Lu, X.; Liu, X.; Ouyang, L.; Rao, L.; Zhan, P.; Zhang, X.; Zhan, Y. New techniques and strategies in drug discovery. Chin. Chem. Lett., 2020, 31(7), 1695-1708.
[http://dx.doi.org/10.1016/j.cclet.2020.03.028]
[72]
Cherian, S.S.; Agrawal, M.; Basu, A.; Abraham, P.; Gangakhedkar, R.R.; Bhargava, B. Perspectives for repurposing drugs for the coronavirus disease 2019. Indian J. Med. Res., 2020, 151(2 & 3), 160-171.
[PMID: 32317408]
[73]
Liu, Q.; Xia, S.; Sun, Z.; Wang, Q.; Du, L.; Lu, L.; Jiang, S. Testing of Middle East respiratory syndrome coronavirus replication inhibitors for the ability to block viral entry. Antimicrob. Agents Chemother., 2015, 59(1), 742-744.
[http://dx.doi.org/10.1128/AAC.03977-14] [PMID: 25331705]
[74]
Sisk, J.M.; Frieman, M.B.; Machamer, C.E. Coronavirus S protein-induced fusion is blocked prior to hemifusion by Abl kinase inhibitors. J. Gen. Virol., 2018, 99(5), 619-630.
[http://dx.doi.org/10.1099/jgv.0.001047] [PMID: 29557770]
[75]
Coleman, C.M.; Sisk, J.M.; Mingo, R.M.; Nelson, E.A.; White, J.M.; Frieman, M.B. Abelson kinase inhibitors are potent inhibitors of severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus fusion. J. Virol., 2016, 90(19), 8924-8933.
[http://dx.doi.org/10.1128/JVI.01429-16] [PMID: 27466418]
[76]
Dyall, J.; Coleman, C.M.; Hart, B.J.; Venkataraman, T.; Holbrook, M.R.; Kindrachuk, J.; Johnson, R.F.; Olinger, G.G., Jr; Jahrling, P.B.; Laidlaw, M.; Johansen, L.M.; Lear-Rooney, C.M.; Glass, P.J.; Hensley, L.E.; Frieman, M.B. Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection. Antimicrob. Agents Chemother., 2014, 58(8), 4885-4893.
[http://dx.doi.org/10.1128/AAC.03036-14] [PMID: 24841273]
[77]
Shin, J.S.; Jung, E.; Kim, M.; Baric, R.S.; Go, Y.Y. Saracatinib inhibits middle east respiratory syndrome-coronavirus replication in vitro. Viruses, 2018, 10(6), 283.
[http://dx.doi.org/10.3390/v10060283] [PMID: 29795047]
[78]
Islam, M.T.; Sarkar, C.; El-Kersh, D.M.; Jamaddar, S.; Uddin, S.J.; Shilpi, J.A.; Mubarak, M.S. Natural products and their derivatives against coronavirus: A review of the non- clinical and pre-clinical data. Phytother. Res., 2020, 34(10), 2471-2492.
[http://dx.doi.org/10.1002/ptr.6700] [PMID: 32248575]
[79]
Ho, T.Y.; Wu, S.L.; Chen, J.C.; Li, C.C.; Hsiang, C.Y. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Res., 2007, 74(2), 92-101.
[http://dx.doi.org/10.1016/j.antiviral.2006.04.014] [PMID: 16730806]
[80]
Rabaan, A.A.; Al-Ahmed, S.H.; Haque, S.; Sah, R.; Tiwari, R.; Malik, Y.S.; Dhama, K.; Yatoo, M.I.; Bonilla-Aldana, D.K.; Rodriguez-Morales, A.J. SARS-CoV-2, SARS-CoV, and MERS-COV: A comparative overview. Infez. Med., 2020, 28(2), 174-184.
[PMID: 32275259]
[81]
Walls, A.C.; Park, Y.J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 2020, 183(6), 1735.
[http://dx.doi.org/10.1016/j.cell.2020.11.032] [PMID: 33306958]
[82]
Huang, Y.; Yang, C.; Xu, X.F.; Xu, W.; Liu, S.W. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol. Sin., 2020, 41(9), 1141-1149.
[http://dx.doi.org/10.1038/s41401-020-0485-4] [PMID: 32747721]
[83]
Liu, S.; Xiao, G.; Chen, Y.; He, Y.; Niu, J.; Escalante, C.R.; Xiong, H.; Farmar, J.; Debnath, A.K.; Tien, P.; Jiang, S. Interaction between heptad repeat 1 and 2 regions in spike protein of SARS-associated coronavirus: implications for virus fusogenic mechanism and identification of fusion inhibitors. Lancet, 2004, 363(9413), 938-947.
[http://dx.doi.org/10.1016/S0140-6736(04)15788-7] [PMID: 15043961]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy