Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Mini-Review Article

siRNAs and Viruses: The good, the Bad and the Way Forward

Author(s): Cassandra Soobramoney* and Raveen Parboosing

Volume 15, Issue 1, 2022

Published on: 20 April, 2021

Article ID: e200421192923 Pages: 16

DOI: 10.2174/1874467214666210420113427

Price: $65

Abstract

There are no available antivirals for many viruses or strains, while current antivirals are limited by toxicity and drug resistance. Therefore, alternative strategies, such as RNA interference (RNAi) are required. RNAi suppresses gene expression of any mRNA, making it an attractive candidate for antiviral therapeutics. Studies have evaluated siRNAs in a range of viruses, with some showing promising results. However, issues with stability and delivery of siRNAs remain. These issues may be minimized by modifying the siRNA structure, using an efficient delivery vector and targeting multiple regions of a virus's genome in a single dose. Finding these solutions could accelerate the progress of RNAi-based antivirals. This review highlights selected examples of antiviral siRNAs, limitations of RNAi and strategies to overcome these limitations

Keywords: RNAi, siRNAs, antiviral siRNAs, delivery vector, siRNA modification, combination siRNAs.

Graphical Abstract

[1]
Swamy, M.N.; Wu, H.; Shankar, P. Recent advances in RNAi-based strategies for therapy and prevention of HIV-1/AIDS. Adv. Drug Deliv. Rev., 2016, 103, 174-186.
[http://dx.doi.org/10.1016/j.addr.2016.03.005] [PMID: 27013255]
[2]
Dykxhoorn, D.M.; Lieberman, J. Silencing viral infection. PLoS Med., 2006, 3(7), e242.
[http://dx.doi.org/10.1371/journal.pmed.0030242] [PMID: 16848617]
[3]
Wittrup, A.; Lieberman, J. Knocking down disease: a progress report on siRNA therapeutics. Nat. Rev. Genet., 2015, 16(9), 543-552.
[http://dx.doi.org/10.1038/nrg3978] [PMID: 26281785]
[4]
Bobbin, M.L.; Burnett, J.C.; Rossi, J.J. RNA interference approaches for treatment of HIV-1 infection. Genome Med., 2015, 7(1), 50.
[http://dx.doi.org/10.1186/s13073-015-0174-y] [PMID: 26019725]
[5]
Fire, A.; Xu, S.; Montgomery, M.K.; Kostas, S.A.; Driver, S.E.; Mello, C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391(6669), 806-811.
[http://dx.doi.org/10.1038/35888] [PMID: 9486653]
[6]
Hoy, S.M. Patisiran: First Global Approval. Drugs, 2018, 78(15), 1625-1631.
[http://dx.doi.org/10.1007/s40265-018-0983-6] [PMID: 30251172]
[7]
Hu, B.; Zhong, L.; Weng, Y.; Peng, L.; Huang, Y.; Zhao, Y.; Liang, X-J. Therapeutic siRNA: state of the art. Signal Transduct. Target. Ther., 2020, 5(1), 101.
[http://dx.doi.org/10.1038/s41392-020-0207-x] [PMID: 32561705]
[8]
Lam, J.K.W.; Chow, M.Y.T.; Zhang, Y.; Leung, S.W.S. siRNA Versus miRNA as Therapeutics for Gene Silencing. Mol. Ther. Nucleic Acids, 2015, 4(9), e252-e252.
[http://dx.doi.org/10.1038/mtna.2015.23] [PMID: 26372022]
[9]
Qureshi, A.; Tantray, V.G.; Kirmani, A.R.; Ahangar, A.G. A review on current status of antiviral siRNA. Rev. Med. Virol., 2018, 28(4), e1976.
[http://dx.doi.org/10.1002/rmv.1976] [PMID: 29656441]
[10]
Hamilton, A.J.; Baulcombe, D.C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science, 1999, 286(5441), 950-952.
[http://dx.doi.org/10.1126/science.286.5441.950] [PMID: 10542148]
[11]
Elbashir, S.M.; Lendeckel, W.; Tuschl, T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev., 2001, 15(2), 188-200.
[http://dx.doi.org/10.1101/gad.862301] [PMID: 11157775]
[12]
Bernstein, E.; Caudy, A.A.; Hammond, S.M.; Hannon, G.J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 2001, 409(6818), 363-366.
[http://dx.doi.org/10.1038/35053110] [PMID: 11201747]
[13]
Levanova, A.; Poranen, M.M. RNA interference as a prospective tool for the control of human viral infections. Front. Microbiol., 2018, 9, 2151-2151.
[http://dx.doi.org/10.3389/fmicb.2018.02151] [PMID: 30254624]
[14]
Geisbert, T.W.; Lee, A.C.H.; Robbins, M.; Geisbert, J.B.; Honko, A.N.; Sood, V.; Johnson, J.C.; de Jong, S.; Tavakoli, I.; Judge, A.; Hensley, L.E.; Maclachlan, I. Postexposure protection of non-human primates against a lethal Ebola virus challenge with RNA interference: a proof-of-concept study. Lancet, 2010, 375(9729), 1896-1905.
[http://dx.doi.org/10.1016/S0140-6736(10)60357-1] [PMID: 20511019]
[15]
Arts, E.J.; Hazuda, D.J. HIV-1 antiretroviral drug therapy. Cold Spring Harb. Perspect. Med., 2012, 2(4), a007161.
[http://dx.doi.org/10.1101/cshperspect.a007161] [PMID: 22474613]
[16]
Ryu, W-S. Discovery and classification. Molecular Virology of Human Pathogenic Viruses, 2017, 3.
[17]
De Clercq, E.; Li, G. Approved antiviral drugs over the past 50 years. Clin. Microbiol. Rev., 2016, 29(3), 695-747.
[http://dx.doi.org/10.1128/CMR.00102-15] [PMID: 27281742]
[18]
Al-Omari, A.; Aljamaan, F.; Alhazzani, W.; Salih, S.; Arabi, Y. Cytomegalovirus infection in immunocompetent critically ill adults: literature review. Ann. Intensive Care, 2016, 6(1), 110-110.
[http://dx.doi.org/10.1186/s13613-016-0207-8] [PMID: 27813024]
[19]
Lee-Yoshimoto, M.; Goishi, K.; Torii, Y.; Ito, Y.; Ono, H.; Mori, T.; Kashiwa, N.; Hosokawa, S.; Shichino, H. Congenital cytomegalovirus pneumonitis and treatment response evaluation using viral load during ganciclovir therapy: a case report. Jpn. J. Infect. Dis., 2018, 71(4), 309-311.
[http://dx.doi.org/10.7883/yoken.JJID.2017.577] [PMID: 29709989]
[20]
Liu, J.; Feng, K.; Zhao, L.; Luo, H.; Zhu, Y. Improvement of cytomegalovirus pp65 DNA vaccine efficacy by co-administration of siRNAs targeting BAK and BAX. Exp. Ther. Med., 2017, 13(6), 3275-3280.
[http://dx.doi.org/10.3892/etm.2017.4385] [PMID: 28587400]
[21]
Hamilton, S.T.; Milbradt, J.; Marschall, M.; Rawlinson, W.D. Human cytomegalovirus replication is strictly inhibited by siRNAs targeting UL54, UL97 or UL122/123 gene transcripts. PLoS One, 2014, 9(6), e97231.
[http://dx.doi.org/10.1371/journal.pone.0097231] [PMID: 24887060]
[22]
Xiaofei, E.; Stadler, B.M.; Debatis, M.; Wang, S.; Lu, S.; Kowalik, T.F. RNA interference-mediated targeting of human cytomegalovirus immediate-early or early gene products inhibits viral replication with differential effects on cellular functions. J. Virol., 2012, 86(10), 5660-5673.
[http://dx.doi.org/10.1128/JVI.06338-11] [PMID: 22438545]
[23]
El-Sharkawy, A.; Al Zaidan, L.; Malki, A. Epstein-barr virus-associated malignancies: roles of viral oncoproteins in carcinogenesis. Front. Oncol., 2018, 8, 265-265.
[http://dx.doi.org/10.3389/fonc.2018.00265] [PMID: 30116721]
[24]
Larrat, S.; Morand, P.; Bas, A.; Vigne, S.; Crance, J-M.; Boyer, V.; Nicod, S.; Grossi, L.; Buisson, M.; Burmeister, W.P.; Seigneurin, J-M.; Germi, R. Inhibition of Epstein-Barr virus replication by small interfering RNA targeting the Epstein-Barr virus protease gene. Antivir. Ther., 2009, 14(5), 655-662.
[PMID: 19704168]
[25]
Wang, J.; Liang, C.; Meng, F.; Xu, X.; Wu, Y.; Lu, L. Lentivirus- mediated RNA interference targeting EBNA1 gene inhibits the growth of GT-38 cells in vitro and in vivo. Oncol. Lett., 2019, 18(3), 2286-2291.
[http://dx.doi.org/10.3892/ol.2019.10543] [PMID: 31402935]
[26]
World Health Organization. Herpes Simplex Virus, 2020. Available from: https://www.who.int/news-room/fact-sheets/detail/herpes-simplex-virus (Accessed on October 1, 2020).
[27]
Jin, F.; Li, S.; Zheng, K.; Zhuo, C.; Ma, K.; Chen, M.; Wang, Q.; Zhang, P.; Fan, J.; Ren, Z.; Wang, Y. Silencing herpes simplex virus type 1 capsid protein encoding genes by siRNA: a promising antiviral therapeutic approach. PLoS One, 2014, 9(5), e96623.
[http://dx.doi.org/10.1371/journal.pone.0096623] [PMID: 24794394]
[28]
Manda, V.; Josyula, V.R.; Hariharapura, R.C. siRNA intervention inhibiting viral replication and delivery strategies for treating herpes simplex viral infection. Virusdisease, 2019, 30(2), 180-185.
[http://dx.doi.org/10.1007/s13337-018-00508-z] [PMID: 31179354]
[29]
World Health Organization. Human papillomavirus (HPV). Available from: https://www.who.int/immunization/diseases/hpv/en/ (Accessed on October 1, 2020).
[30]
Yamamoto, N.; Sato, Y.; Munakata, T.; Kakuni, M.; Tateno, C.; Sanada, T.; Hirata, Y.; Murakami, S.; Tanaka, Y.; Chayama, K.; Hatakeyama, H.; Hyodo, M.; Harashima, H.; Kohara, M. Novel pH-sensitive multifunctional envelope-type nanodevice for siRNA-based treatments for chronic HBV infection. J. Hepatol., 2016, 64(3), 547-555.
[http://dx.doi.org/10.1016/j.jhep.2015.10.014] [PMID: 26505121]
[31]
Wang, L.; Wang, Y.; Ye, D.; Liu, Q. Review of the 2019 novel coronavirus (SARS-CoV-2) based on current evidence. Int. J. Antimicrob. Agents, 2020, 55(6), 105948-105948.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105948] [PMID: 32201353]
[32]
World Health Organization. Coronavirus, https://covid19/
[33]
Tu, Y-F.; Chien, C-S.; Yarmishyn, A.A.; Lin, Y-Y.; Luo, Y-H.; Lin, Y-T.; Lai, W-Y.; Yang, D-M.; Chou, S-J.; Yang, Y-P.; Wang, M-L.; Chiou, S-H. A Review of SARS-CoV-2 and the Ongoing Clinical Trials. Int. J. Mol. Sci., 2020, 21(7), 2657.
[http://dx.doi.org/10.3390/ijms21072657] [PMID: 32290293]
[34]
Uludağ, H.; Parent, K.; Aliabadi, H.M.; Haddadi, A. Prospects for rnai therapy of covid-19. Front. Bioeng. Biotechnol., 2020, 8(916), 916.
[http://dx.doi.org/10.3389/fbioe.2020.00916] [PMID: 32850752]
[35]
Wu, C-J.; Huang, H-W.; Liu, C-Y.; Hong, C-F.; Chan, Y-L. Inhibition of SARS-CoV replication by siRNA. Antiviral Res., 2005, 65(1), 45-48.
[http://dx.doi.org/10.1016/j.antiviral.2004.09.005] [PMID: 15652970]
[36]
Li, B.J.; Tang, Q.; Cheng, D.; Qin, C.; Xie, F.Y.; Wei, Q.; Xu, J.; Liu, Y.; Zheng, B.J.; Woodle, M.C.; Zhong, N.; Lu, P.Y. Using siRNA in prophylactic and therapeutic regimens against SARS coronavirus in Rhesus macaque. Nat. Med., 2005, 11(9), 944-951.
[http://dx.doi.org/10.1038/nm1280] [PMID: 16116432]
[37]
Wang, Y.; Cao, Y-L.; Yang, F.; Zhang, Y.; Wang, S-H.; Liu, L. Small interfering RNA effectively inhibits the expression of SARS coronavirus membrane gene at two novel targeting sites. Molecules, 2010, 15(10), 7197-7207.
[http://dx.doi.org/10.3390/molecules15107197] [PMID: 20956884]
[38]
Meng, B.; Lui, Y.W.; Meng, S.; Cao, C.; Hu, Y. Identification of effective siRNA blocking the expression of SARS viral envelope E and RDRP genes. Mol. Biotechnol., 2006, 33(2), 141-148.
[http://dx.doi.org/10.1385/MB:33:2:141] [PMID: 16757801]
[39]
Elmen, J.; Wahlestedt, C.; Brytting, M.; Wahren, B.; Ljungberg, K. SARS virus inhibited by siRNA. Preclinica, 2004, 2, 135-142.
[40]
Qin, Z.L.; Zhao, P.; Cao, M.M.; Qi, Z.T. siRNAs targeting terminal sequences of the SARS-associated coronavirus membrane gene inhibit M protein expression through degradation of M mRNA. J. Virol. Methods, 2007, 145(2), 146-154.
[http://dx.doi.org/10.1016/j.jviromet.2007.05.017] [PMID: 17590445]
[41]
World Health Organization. Dengue Control. Available from: http://www.who.int/denguecontrol/disease/en/ (Accessed on October 1, 2020).
[42]
Alhoot, M.A.; Wang, S.M.; Sekaran, S.D. RNA interference mediated inhibition of dengue virus multiplication and entry in HepG2 cells. PLoS One, 2012, 7(3), e34060.
[http://dx.doi.org/10.1371/journal.pone.0034060] [PMID: 22457813]
[43]
Stein, D.A.; Perry, S.T.; Buck, M.D.; Oehmen, C.S.; Fischer, M.A.; Poore, E.; Smith, J.L.; Lancaster, A.M.; Hirsch, A.J.; Slifka, M.K.; Nelson, J.A.; Shresta, S.; Früh, K. Inhibition of dengue virus infections in cell cultures and in AG129 mice by a small interfering RNA targeting a highly conserved sequence. J. Virol., 2011, 85(19), 10154-10166.
[http://dx.doi.org/10.1128/JVI.05298-11] [PMID: 21795337]
[44]
World Health Organization. Hepatitis C, https://www.who.int/news-room/fact-sheets/detail/hepatitis-c/
[45]
Shin, D.; Lee, H.; Kim, S.I.; Yoon, Y.; Kim, M. Optimization of linear double-stranded RNA for the production of multiple siRNAs targeting hepatitis C virus. RNA, 2009, 15(5), 898-910.
[http://dx.doi.org/10.1261/rna.1268209] [PMID: 19324960]
[46]
World Health Organization. Ebola virus disease. Available from: http://www.who.int/news-room/fact-sheets/detail/ebola-virus-disease/ (Accessed on October 1, 2020).
[47]
Dyer, O. Two Ebola treatments halve deaths in trial in DRC outbreak. BMJ, 2019, 366, l5140.
[http://dx.doi.org/10.1136/bmj.l5140] [PMID: 31409588]
[48]
Mateo, M.; Carbonnelle, C.; Martinez, M.J.; Reynard, O.; Page, A.; Volchkova, V.A.; Volchkov, V.E. Knockdown of Ebola virus VP24 impairs viral nucleocapsid assembly and prevents virus replication. J Infect Dis., 2011, 204(3), S892-S896.
[http://dx.doi.org/10.1093/infdis/jir311]
[49]
Saunders-Hastings, P.R.; Krewski, D. Reviewing the history of pandemic influenza: understanding patterns of emergence and transmission. Pathogens, 2016, 5(4), 66.
[http://dx.doi.org/10.3390/pathogens5040066] [PMID: 27929449]
[50]
World Health Organization. Influenza (Seasonal), 2018. Available from: https://www.who.int/en/news-room/fact-sheets/detail/influenza-(seasonal) (Accessed on October 1, 2020).
[51]
Ge, Q.; McManus, M.T.; Nguyen, T.; Shen, C-H.; Sharp, P.A.; Eisen, H.N.; Chen, J. RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proc. Natl. Acad. Sci. USA, 2003, 100(5), 2718-2723.
[http://dx.doi.org/10.1073/pnas.0437841100] [PMID: 12594334]
[52]
Ge, Q.; Filip, L.; Bai, A.; Nguyen, T.; Eisen, H.N.; Chen, J. Inhibition of influenza virus production in virus-infected mice by RNA interference. Proc. Natl. Acad. Sci. USA, 2004, 101(23), 8676-8681.
[http://dx.doi.org/10.1073/pnas.0402486101] [PMID: 15173599]
[53]
DeVincenzo, J.P. The promise, pitfalls and progress of RNA-interference-based antiviral therapy for respiratory viruses. Antivir. Ther., 2012, 17(1 Pt B), 213-225.
[http://dx.doi.org/10.3851/IMP2064] [PMID: 22311654]
[54]
Barik, S. siRNA for Influenza therapy. Viruses, 2010, 2(7), 1448-1457.
[http://dx.doi.org/10.3390/v2071448] [PMID: 21994689]
[55]
Thi, E.P.; Mire, C.E.; Ursic-Bedoya, R.; Geisbert, J.B.; Lee, A.C.H.; Agans, K.N.; Robbins, M.; Deer, D.J.; Fenton, K.A.; MacLachlan, I.; Geisbert, T.W. Marburg virus infection in nonhuman primates: Therapeutic treatment by lipid-encapsulated siRNA. Sci. Transl. Med., 2014, 6(250), 250ra116.
[http://dx.doi.org/10.1126/scitranslmed.3009706] [PMID: 25143366]
[56]
World Health Organization. Marburg Virus, https://www.who.int/csr/disease/marburg/en/
[57]
Thi, E.P.; Mire, C.E.; Lee, A.C.; Geisbert, J.B.; Ursic-Bedoya, R.; Agans, K.N.; Robbins, M.; Deer, D.J.; Cross, R.W.; Kondratowicz, A.S.; Fenton, K.A.; MacLachlan, I.; Geisbert, T.W. siRNA rescues nonhuman primates from advanced Marburg and Ravn virus disease. J. Clin. Invest., 2017, 127(12), 4437-4448.
[http://dx.doi.org/10.1172/JCI96185] [PMID: 29106386]
[58]
World Health Organization. Rabies, https://www.who.int/rabies/epidemiology/en/
[59]
Appolinario, C.M.; Allendorf, S.D.; Peres, M.G.; Fonseca, C.R.; Vicente, A.F.; Antunes, J.M.A.P.; Pantoja, J.C.F.; Megid, J. Evaluation of short-interfering RNAs treatment in experimental rabies due to wild-type virus. Braz. J. Infect. Dis., 2015, 19(5), 453-458.
[http://dx.doi.org/10.1016/j.bjid.2015.05.008] [PMID: 26254692]
[60]
Zhang, W.; Tripp, R.A. RNA interference inhibits respiratory syncytial virus replication and disease pathogenesis without inhibiting priming of the memory immune response. J. Virol., 2008, 82(24), 12221-12231.
[http://dx.doi.org/10.1128/JVI.01557-08] [PMID: 18818323]
[61]
Bitko, V.; Barik, S. Phenotypic silencing of cytoplasmic genes using sequence-specific double-stranded short interfering RNA and its application in the reverse genetics of wild type negative-strand RNA viruses. BMC Microbiol., 2001, 1, 34-34.
[http://dx.doi.org/10.1186/1471-2180-1-34] [PMID: 11801185]
[62]
World Health Organization. HIV/AIDS, 2019. Available from: https://www.who.int/en/news-room/fact-sheets/detail/hiv-aids (Accessed on October 1, 2020).
[63]
Morris, K.V.; Chung, C.H.; Witke, W.; Looney, D.J. Inhibition of HIV-1 replication by siRNA targeting conserved regions of gag/pol. RNA Biol., 2005, 2(1), 17-20.
[http://dx.doi.org/10.4161/rna.2.1.1198] [PMID: 17132935]
[64]
Jureka, A.; Simon, P.; Jackson, W. siRNA-mediated inhibition of the HIV-1 transactivator of transcription. J. S. C. Acad. Sci., 2011, 9(2), 4.
[65]
German Advisory Committee Blood (Arbeitskreis Blut), Subgroup ‘Assessment of Pathogens Transmissible by Blood’. Human Immunodeficiency Virus (HIV). Transfus. Med. Hemother., 2016, 43(3), 203-222.
[http://dx.doi.org/10.1159/000445852] [PMID: 27403093]
[66]
Zhou, J.; Neff, C.P.; Swiderski, P.; Li, H.; Smith, D.D.; Aboellail, T.; Remling-Mulder, L.; Akkina, R.; Rossi, J.J. Functional in vivo delivery of multiplexed anti-HIV-1 siRNAs via a chemically synthesized aptamer with a sticky bridge. Mol. Ther., 2013, 21(1), 192-200.
[http://dx.doi.org/10.1038/mt.2012.226] [PMID: 23164935]
[67]
Das, A.T.; Brummelkamp, T.R.; Westerhout, E.M.; Vink, M.; Madiredjo, M.; Bernards, R.; Berkhout, B. Human immunodeficiency virus type 1 escapes from RNA interference-mediated inhibition. J. Virol., 2004, 78(5), 2601-2605.
[http://dx.doi.org/10.1128/JVI.78.5.2601-2605.2004] [PMID: 14963165]
[68]
Rodriguez, M.; Lapierre, J.; Ojha, C.R.; Kaushik, A.; Batrakova, E.; Kashanchi, F.; Dever, S.M.; Nair, M.; El-Hage, N. Intranasal drug delivery of small interfering RNA targeting Beclin1 encapsulated with polyethylenimine (PEI) in mouse brain to achieve HIV attenuation. Sci. Rep., 2017, 7(1), 1862.
[http://dx.doi.org/10.1038/s41598-017-01819-9] [PMID: 28500326]
[69]
World Health Organization. Hepatitis B, 2019. Available from: https://www.who.int/news-room/fact-sheets/detail/hepatitis-b (Accessed on October 1, 2020).
[70]
Giladi, H.; Ketzinel-Gilad, M.; Rivkin, L.; Felig, Y.; Nussbaum, O.; Galun, E. Small interfering RNA inhibits hepatitis B virus replication in mice. Mol. Ther., 2003, 8(5), 769-776.
[http://dx.doi.org/10.1016/S1525-0016(03)00244-2] [PMID: 14599810]
[71]
Mishra, V.; Kesharwani, P.; Jain, N.K. siRNA nanotherapeutics: a Trojan horse approach against HIV. Drug Discov. Today, 2014, 19(12), 1913-1920.
[http://dx.doi.org/10.1016/j.drudis.2014.09.019] [PMID: 25281591]
[72]
Thi, E.P.; Mire, C.E.; Lee, A.C.H.; Geisbert, J.B.; Zhou, J.Z.; Agans, K.N.; Snead, N.M.; Deer, D.J.; Barnard, T.R.; Fenton, K.A.; MacLachlan, I.; Geisbert, T.W. Lipid nanoparticle siRNA treatment of Ebola-virus-Makona-infected nonhuman primates. Nature, 2015, 521(7552), 362-365.
[http://dx.doi.org/10.1038/nature14442] [PMID: 25901685]
[73]
Bian, Z.; Xiao, A.; Cao, M.; Liu, M.; Liu, S.; Jiao, Y.; Yan, W.; Qi, Z.; Zheng, Z. Anti-HBV efficacy of combined siRNAs targeting viral gene and heat shock cognate 70. Virol. J., 2012, 9(1), 275.
[http://dx.doi.org/10.1186/1743-422X-9-275] [PMID: 23158906]
[74]
Braga, A.C.S.; Carneiro, B.M.; Batista, M.N.; Akinaga, M.M.; Rahal, P. Inhibition of hepatitis C virus using siRNA targeted to the virus and Hsp90. Cell Stress Chaperones, 2017, 22(1), 113-122.
[http://dx.doi.org/10.1007/s12192-016-0747-8] [PMID: 27858224]
[75]
Weber, N.; Ortega, P.; Clemente, M.I.; Shcharbin, D.; Bryszewska, M.; de la Mata, F.J.; Gómez, R.; Muñoz-Fernández, M.A. Characterization of carbosilane dendrimers as effective carriers of siRNA to HIV-infected lymphocytes. J. Control. Release, 2008, 132(1), 55-64.
[http://dx.doi.org/10.1016/j.jconrel.2008.07.035] [PMID: 18727943]
[76]
Perisé-Barrios, A.J.; Jiménez, J.L.; Domínguez-Soto, A.; de la Mata, F.J.; Corbí, A.L.; Gomez, R.; Muñoz-Fernandez, M.Á. Carbosilane dendrimers as gene delivery agents for the treatment of HIV infection. J. Control. Release, 2014, 184, 51-57.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.048] [PMID: 24721235]
[77]
Weber, N.D.; Merkel, O.M.; Kissel, T.; Muñoz-Fernández, M.Á. PEGylated poly(ethylene imine) copolymer-delivered siRNA inhibits HIV replication in vitro. J. Control. Release, 2012, 157(1), 55-63.
[http://dx.doi.org/10.1016/j.jconrel.2011.09.059] [PMID: 21930169]
[78]
Zhou, J.; Neff, C.P.; Liu, X.; Zhang, J.; Li, H.; Smith, D.D.; Swiderski, P.; Aboellail, T.; Huang, Y.; Du, Q.; Liang, Z.; Peng, L.; Akkina, R.; Rossi, J.J. Systemic administration of combinatorial dsiRNAs via nanoparticles efficiently suppresses HIV-1 infection in humanized mice. Mol. Ther., 2011, 19(12), 2228-2238.
[http://dx.doi.org/10.1038/mt.2011.207] [PMID: 21952167]
[79]
Spanevello, F.; Calistri, A.; Del Vecchio, C.; Mantelli, B.; Frasson, C.; Basso, G.; Palù, G.; Cavazzana, M.; Parolin, C. Development of lentiviral vectors simultaneously expressing multiple siRNAs against CCR5, vif and tat/rev genes for an HIV-1 gene therapy approach. Mol. Ther. Nucleic Acids, 2016, 5(4), e312.
[http://dx.doi.org/10.1038/mtna.2016.24] [PMID: 27093170]
[80]
Chang, L.J.; Liu, X.; He, J. Lentiviral siRNAs targeting multiple highly conserved RNA sequences of human immunodeficiency virus type 1. Gene Ther., 2005, 12(14), 1133-1144.
[http://dx.doi.org/10.1038/sj.gt.3302509] [PMID: 15750613]
[81]
Serramía, M.J.; Álvarez, S.; Fuentes-Paniagua, E.; Clemente, M.I.; Sánchez-Nieves, J.; Gómez, R.; de la Mata, J.; Muñoz-Fernández, M.Á. In vivo delivery of siRNA to the brain by carbosilane dendrimer. J. Control. Release, 2015, 200, 60-70.
[http://dx.doi.org/10.1016/j.jconrel.2014.12.042] [PMID: 25559178]
[82]
Boyapalle, S.; Xu, W.; Raulji, P.; Mohapatra, S.; Mohapatra, S.S. A Multiple siRNA-Based Anti-HIV/SHIV Microbicide Shows Protection in Both In Vitro and In Vivo Models. PLoS One, 2015, 10(9), e0135288.
[http://dx.doi.org/10.1371/journal.pone.0135288] [PMID: 26407080]
[83]
Eszterhas, S.K.; Ilonzo, N.O.; Crozier, J.E.; Celaj, S.; Howell, A.L. Nanoparticles containing siRNA to silence CD4 and CCR5 reduce expression of these receptors and inhibit HIV-1 infection in human female reproductive tract tissue explants. Infect. Dis. Rep., 2011, 3(2), e11.
[http://dx.doi.org/10.4081/idr.2011.2370] [PMID: 24470908]
[84]
Kim, S-S.; Peer, D.; Kumar, P.; Subramanya, S.; Wu, H.; Asthana, D.; Habiro, K.; Yang, Y-G.; Manjunath, N.; Shimaoka, M.; Shankar, P. RNAi-mediated CCR5 silencing by LFA-1-targeted nanoparticles prevents HIV infection in BLT mice. Mol. Ther., 2010, 18(2), 370-376.
[http://dx.doi.org/10.1038/mt.2009.271] [PMID: 19997090]
[85]
Ye, Y.; De Leon, J.; Yokoyama, N.; Naidu, Y.; Camerini, D. DBR1 siRNA inhibition of HIV-1 replication. Retrovirology, 2005, 2(1), 63.
[http://dx.doi.org/10.1186/1742-4690-2-63] [PMID: 16232320]
[86]
Yamato, K.; Yamada, T.; Kizaki, M.; Ui-Tei, K.; Natori, Y.; Fujino, M.; Nishihara, T.; Ikeda, Y.; Nasu, Y.; Saigo, K.; Yoshinouchi, M. New highly potent and specific E6 and E7 siRNAs for treatment of HPV16 positive cervical cancer. Cancer Gene Ther., 2008, 15(3), 140-153.
[http://dx.doi.org/10.1038/sj.cgt.7701118] [PMID: 18157144]
[87]
Timin, A.S.; Muslimov, A.R.; Petrova, A.V.; Lepik, K.V.; Okilova, M.V.; Vasin, A.V.; Afanasyev, B.V.; Sukhorukov, G.B. Hybrid inorganic-organic capsules for efficient intracellular delivery of novel siRNAs against influenza A (H1N1) virus infection. Sci. Rep., 2017, 7(1), 102.
[http://dx.doi.org/10.1038/s41598-017-00200-0] [PMID: 28273907]
[88]
Malekshahi, S.S.; Salimi, V.; Arefian, E.; Fatemi-Nasab, G.; Adjaminejad-Fard, S.; Yavarian, J.; Mokhtari-Azad, T. Inhibition of respiratory syncytial virus replication by simultaneous targeting of mRNA and genomic RNA using dual-targeting siRNAs. Mol. Biotechnol., 2016, 58(11), 767-775.
[http://dx.doi.org/10.1007/s12033-016-9976-4] [PMID: 27766578]
[89]
Kanasty, R.; Dorkin, J.R.; Vegas, A.; Anderson, D. Delivery materials for siRNA therapeutics. Nat. Mater., 2013, 12(11), 967-977.
[http://dx.doi.org/10.1038/nmat3765] [PMID: 24150415]
[90]
Han, W.; Wind-Rotolo, M.; Kirkman, R.L.; Morrow, C.D. Inhibition of human immunodeficiency virus type 1 replication by siRNA targeted to the highly conserved primer binding site. Virology, 2004, 330(1), 221-232.
[http://dx.doi.org/10.1016/j.virol.2004.09.027] [PMID: 15527848]
[91]
Principi, N.; Camilloni, B.; Alunno, A.; Polinori, I.; Argentiero, A.; Esposito, S. Drugs for Influenza Treatment: Is There Significant News? Front. Med. (Lausanne), 2019, 6(109), 109.
[http://dx.doi.org/10.3389/fmed.2019.00109] [PMID: 31192211]
[92]
Hayden, F.G. Advances in antivirals for non-influenza respiratory virus infections. Influenza Other Respir. Viruses, 2013, 7(Suppl. 3), 36-43.
[http://dx.doi.org/10.1111/irv.12173] [PMID: 24215380]
[93]
Chernikov, I.V.; Vlassov, V.V.; Chernolovskaya, E.L. Current Development of siRNA Bioconjugates: From Research to the Clinic. Front. Pharmacol., 2019, 10(444), 444.
[http://dx.doi.org/10.3389/fphar.2019.00444] [PMID: 31105570]
[94]
Tatiparti, K.; Sau, S.; Kashaw, S.K.; Iyer, A.K. siRNA delivery strategies: a comprehensive review of recent developments. Nanomaterials (Basel), 2017, 7(4), 77.
[http://dx.doi.org/10.3390/nano7040077] [PMID: 28379201]
[95]
Selvam, C.; Mutisya, D.; Prakash, S.; Ranganna, K.; Thilagavathi, R. Therapeutic potential of chemically modified siRNA: Recent trends. Chem. Biol. Drug Des., 2017, 90(5), 665-678.
[http://dx.doi.org/10.1111/cbdd.12993] [PMID: 28378934]
[96]
Deleavey, G. F.; Watts, J. K.; Damha, M. J. Chemical Modification of siRNA. Curr. Protoc. Nucleic Acid Chem., 2009, 39(1), 16.3.1-16.3.22.
[http://dx.doi.org/10.1002/0471142700.nc1603s39]
[97]
Jiménez, J.L.; Gómez, R.; Briz, V.; Madrid Gonzalez, R.; Bryszewska, M.; de la Mata, F.J.; Muñoz-Fernández, M.A. Carbosilane dendrimers as carriers of siRNA. J. Drug Deliv. Technol., 2012, 22, 75-82.
[http://dx.doi.org/10.1016/S1773-2247(12)50007-9]
[98]
Huang, D.T-N.; Lu, C-Y.; Shao, P-L.; Chang, L-Y.; Wang, J-Y.; Chang, Y-H.; Lai, M-J.; Chi, Y-H.; Huang, L-M. In vivo inhibition of influenza A virus replication by RNA interference targeting the PB2 subunit via intratracheal delivery. PLoS One, 2017, 12(4), e0174523.
[http://dx.doi.org/10.1371/journal.pone.0174523] [PMID: 28380007]
[99]
Marquez, A.R.; Madu, C.O.; Lu, Y. An overview of various carriers for siRNA delivery. Target., 2018, 1, 2.
[http://dx.doi.org/10.7150/oncm.25785]
[100]
Singh, T.; Murthy, A.S.N.; Yang, H-J.; Im, J. Versatility of cell-penetrating peptides for intracellular delivery of siRNA. Drug Deliv., 2018, 25(1), 1996-2006.
[http://dx.doi.org/10.1080/10717544.2018.1543366] [PMID: 30799658]
[101]
Cao, Y.; Tan, Y.F.; Wong, Y.S.; Liew, M.W.J.; Venkatraman, S. Recent advances in chitosan-based carriers for gene delivery. Mar. Drugs, 2019, 17(6), 381.
[http://dx.doi.org/10.3390/md17060381] [PMID: 31242678]
[102]
Shim, M.S.; Kwon, Y.J. Efficient and targeted delivery of siRNA in vivo. FEBS J., 2010, 277(23), 4814-4827.
[http://dx.doi.org/10.1111/j.1742-4658.2010.07904.x] [PMID: 21078116]
[103]
Tripathy, S.; Das, M. Dendrimers and their applications as novel drug delivery carriers. J. Appl. Pharm. Sci., 2013, 3, 142-149.
[104]
Yeh, Y-C.; Creran, B.; Rotello, V.M. Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale, 2012, 4(6), 1871-1880.
[http://dx.doi.org/10.1039/C1NR11188D] [PMID: 22076024]
[105]
Tros de Ilarduya, C.; Sun, Y.; Düzgüneş, N. Gene delivery by lipoplexes and polyplexes. Eur. J. Pharm. Sci., 2010, 40(3), 159-170.
[http://dx.doi.org/10.1016/j.ejps.2010.03.019] [PMID: 20359532]
[106]
Sharma, A.; Gupta, L.; Gupta, U. Nanoparticles as nucleic acid delivery vectors. In: Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids; , 2017; p. 2.
[107]
Williford, J-M.; Wu, J.; Ren, Y.; Archang, M.M.; Leong, K.W.; Mao, H-Q. Recent advances in nanoparticle-mediated siRNA delivery. Annu. Rev. Biomed. Eng., 2014, 16, 347-370.
[http://dx.doi.org/10.1146/annurev-bioeng-071813-105119] [PMID: 24905873]
[108]
Lukashev, A.N.; Zamyatnin, A.A., Jr Viral vectors for gene therapy: current state and clinical perspectives. Biochemistry (Mosc.), 2016, 81(7), 700-708.
[http://dx.doi.org/10.1134/S0006297916070063] [PMID: 27449616]
[109]
Dunbar, C.E.; High, K.A.; Joung, J.K.; Kohn, D.B.; Ozawa, K.; Sadelain, M. Gene therapy comes of age. Science, 2018, 359(6372), eaan4672.
[http://dx.doi.org/10.1126/science.aan4672] [PMID: 29326244]
[110]
Milone, M.C.; O’Doherty, U. Clinical use of lentiviral vectors. Leukemia, 2018, 32(7), 1529-1541.
[http://dx.doi.org/10.1038/s41375-018-0106-0] [PMID: 29654266]
[111]
Scarborough, R.J.; Gatignol, A. RNA Interference Therapies for an HIV-1 Functional Cure. Viruses, 2017, 10(1), 8.
[http://dx.doi.org/10.3390/v10010008] [PMID: 29280961]
[112]
Hu, B.; Weng, Y.; Xia, X-H.; Liang, X.J.; Huang, Y. Clinical advances of siRNA therapeutics. J. Gene Med., 2019, 21(7), e3097.
[http://dx.doi.org/10.1002/jgm.3097] [PMID: 31069898]
[113]
Benitez-Del-Castillo, J.M.; Moreno-Montañés, J.; Jiménez-Alfaro, I.; Muñoz-Negrete, F.J.; Turman, K.; Palumaa, K.; Sádaba, B.; González, M.V.; Ruz, V.; Vargas, B.; Pañeda, C.; Martínez, T.; Bleau, A.M.; Jimenez, A.I. Safety and efficacy clinical trials for SYL1001, a novel short interfering RNA for the treatment of dry eye disease. Invest. Ophthalmol. Vis. Sci., 2016, 57(14), 6447-6454.
[http://dx.doi.org/10.1167/iovs.16-20303] [PMID: 27893109]
[114]
Thompson, J.D.; Kornbrust, D.J.; Foy, J.W.; Solano, E.C.; Schneider, D.J.; Feinstein, E.; Molitoris, B.A.; Erlich, S. Toxicological and pharmacokinetic properties of chemically modified siRNAs targeting p53 RNA following intravenous administration. Nucleic Acid Ther., 2012, 22(4), 255-264.
[http://dx.doi.org/10.1089/nat.2012.0371] [PMID: 22913596]
[115]
Demirjian, S.; Ailawadi, G.; Polinsky, M.; Bitran, D.; Silberman, S.; Shernan, S.K.; Burnier, M.; Hamilton, M.; Squiers, E.; Erlich, S.; Rothenstein, D.; Khan, S.; Chawla, L.S. Safety and tolerability study of an intravenously administered Small Interfering Ribonucleic Acid (siRNA) post on-pump cardiothoracic surgery in patients at risk of acute kidney injury. Kidney Int. Rep., 2017, 2(5), 836-843.
[http://dx.doi.org/10.1016/j.ekir.2017.03.016] [PMID: 29270490]
[116]
Titze-de-Almeida, R.; David, C.; Titze-de-Almeida, S.S. The race of 10 synthetic RNAi-based drugs to the pharmaceutical market. Pharm. Res., 2017, 34(7), 1339-1363.
[http://dx.doi.org/10.1007/s11095-017-2134-2] [PMID: 28389707]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy