Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

General Research Article

Thioacetamide-Induced Norepinephrine Production by Hepatocytes is Associated with Hepatic Stellate Cell Activation and Liver Fibrosis

Author(s): Wei-Chien Tang, Ya-Wen Chang, Mingtian Che, Mei-Hui Wang, Keith K. Lai, Patrick T. Fueger, Wendong Huang, Shwu-Bin Lin* and Keane K. Y. Lai*

Volume 15, Issue 2, 2022

Published on: 12 April, 2021

Article ID: e120421192793 Pages: 8

DOI: 10.2174/1874467214666210412144416

Abstract

Background: Collagen production by activated hepatic stellate cells (HSCs) to encapsulate injury is part of the natural wound-healing response in injured liver. However, persistent activation of HSCs can lead to pathological fibrogenesis. Such persistent HSC activation could be mediated by norepinephrine (NE), a reaction product of dopamine beta-hydroxylase (DBH).

Objective: To investigate the potential paracrine role of NE in hepatotoxin thioacetamide (TAA)-induced liver fibrosis.

Methods: In TAA-treated mice, fibrotic liver tissue showed significant increases in the mRNA expression of DBH up to 14-fold and collagen up to 7-fold. Immunohistochemical staining showed increased DBH protein expression in fibrotic liver tissue. Parenchymal hepatocyte cell line HepG2 expressed DBH and secreted NE, and the conditioned medium of HepG2 cells promoted collagenesis in nonparenchymal HSC cell line LX-2. TAA treatment increased DBH expression by 170% in HepG2 cells, as well as increased NE by 120% in the conditioned medium of HepG2 cells. The conditioned medium of TAA-treated HepG2 cells was used to culture LX-2 cells, and was found to increase collagen expression by 80% in LX-2 cells. Collagen expression was reduced by pre-treating HepG2 cells with siRNA targeting DBH or by adding NE antagonists to the conditioned medium.

Results: Finally, TAA-induced oxidative stress in HepG2 cells was associated with induction of DBH expression. Collectively, our results suggest a potential role for DBH/NE-mediated crosstalk between hepatocytes and HSCs in fibrogenesis.

Conclusion: From a therapeutic standpoint, antagonism of DBH/NE induction in hepatocytes might be a useful strategy to suppress pathological fibrogenesis.

Keywords: Liver fibrosis, collagenesis, dopamine beta-hydroxylase, norepinephrine, thioacetamide, HSCs.

Graphical Abstract

[1]
Sasse, D.; Spornitz, U.M.; Maly, I.P. Liver architecture. Enzyme, 1992, 46(1-3), 8-32.
[http://dx.doi.org/10.1159/000468776] [PMID: 1289084]
[2]
Gómez-Lechón, M.J.; Donato, M.T.; Castell, J.V.; Jover, R. Human hepatocytes as a tool for studying toxicity and drug metabolism. Curr. Drug Metab., 2003, 4(4), 292-312.
[http://dx.doi.org/10.2174/1389200033489424] [PMID: 12871046]
[3]
Friedman, S.L. Liver fibrosis - from bench to bedside. J. Hepatol., 2003, 38(Suppl. 1), S38-S53.
[http://dx.doi.org/10.1016/S0168-8278(02)00429-4] [PMID: 12591185]
[4]
Benyon, R.C.; Arthur, M.J. Extracellular matrix degradation and the role of hepatic stellate cells. Semin. Liver Dis., 2001, 21(3), 373-384.
[http://dx.doi.org/10.1055/s-2001-17552] [PMID: 11586466]
[5]
de Oliveira da Silva, B.; Ramos, L.F.; Moraes, K.C.M. Molecular interplays in hepatic stellate cells: apoptosis, senescence, and phenotype reversion as cellular connections that modulate liver fibrosis. Cell Biol. Int., 2017, 41(9), 946-959.
[http://dx.doi.org/10.1002/cbin.10790] [PMID: 28498509]
[6]
Roth, S.; Michel, K.; Gressner, A.M. (Latent) transforming growth factor beta in liver parenchymal cells, its injury-dependent release, and paracrine effects on rat hepatic stellate cells. Hepatology, 1998, 27(4), 1003-1012.
[http://dx.doi.org/10.1002/hep.510270416] [PMID: 9537440]
[7]
Rachfal, A.W.; Brigstock, D.R. Connective tissue growth factor (CTGF/CCN2) in hepatic fibrosis. Hepatol. Res., 2003, 26(1), 1-9.
[http://dx.doi.org/10.1016/S1386-6346(03)00115-3] [PMID: 12787797]
[8]
Canbay, A.; Higuchi, H.; Bronk, S.F.; Taniai, M.; Sebo, T.J.; Gores, G.J. Fas enhances fibrogenesis in the bile duct ligated mouse: a link between apoptosis and fibrosis. Gastroenterology, 2002, 123(4), 1323-1330.
[http://dx.doi.org/10.1053/gast.2002.35953] [PMID: 12360492]
[9]
Canbay, A.; Taimr, P.; Torok, N.; Higuchi, H.; Friedman, S.; Gores, G.J. Apoptotic body engulfment by a human stellate cell line is profibrogenic. Lab. Invest., 2003, 83(5), 655-663.
[http://dx.doi.org/10.1097/01.LAB.0000069036.63405.5C] [PMID: 12746475]
[10]
Eng, F.J.; Friedman, S.L.; Fibrogenesis, I. Fibrogenesis I. New insights into hepatic stellate cell activation: the simple becomes complex. Am. J. Physiol. Gastrointest. Liver Physiol., 2000, 279(1), G7-G11.
[http://dx.doi.org/10.1152/ajpgi.2000.279.1.G7] [PMID: 10898741]
[11]
Athari, A.; Hänecke, K.; Jungermann, K. Prostaglandin F2 alpha and D2 release from primary Ito cell cultures after stimulation with noradrenaline and ATP but not adenosine. Hepatology, 1994, 20(1 Pt 1), 142-148.
[http://dx.doi.org/10.1016/0270-9139(94)90146-5] [PMID: 8020883]
[12]
Oben, J.A.; Roskams, T.; Yang, S.; Lin, H.; Sinelli, N.; Torbenson, M.; Smedh, U.; Moran, T.H.; Li, Z.; Huang, J.; Thomas, S.A.; Diehl, A.M. Hepatic fibrogenesis requires sympathetic neurotransmitters. Gut, 2004, 53(3), 438-445.
[http://dx.doi.org/10.1136/gut.2003.026658] [PMID: 14960531]
[13]
Oben, J.A.; Diehl, A.M. Sympathetic nervous system regulation of liver repair. Anat. Rec. A Discov. Mol. Cell. Evol. Biol., 2004, 280(1), 874-883.
[http://dx.doi.org/10.1002/ar.a.20081] [PMID: 15382023]
[14]
Honda, H.; Ikejima, K.; Hirose, M.; Yoshikawa, M.; Lang, T.; Enomoto, N.; Kitamura, T.; Takei, Y.; Sato, N. Leptin is required for fibrogenic responses induced by thioacetamide in the murine liver. Hepatology, 2002, 36(1), 12-21.
[http://dx.doi.org/10.1053/jhep.2002.33684] [PMID: 12085344]
[15]
Kornek, M.; Raskopf, E.; Guetgemann, I.; Ocker, M.; Gerceker, S.; Gonzalez-Carmona, M.A.; Rabe, C.; Sauerbruch, T.; Schmitz, V. Combination of systemic thioacetamide (TAA) injections and ethanol feeding accelerates hepatic fibrosis in C3H/He mice and is associated with intrahepatic up regulation of MMP-2, VEGF and ICAM-1. J. Hepatol., 2006, 45(3), 370-376.
[http://dx.doi.org/10.1016/j.jhep.2006.03.017] [PMID: 16780996]
[16]
Delire, B.; Stärkel, P.; Leclercq, I. Animal models for fibrotic liver diseases: what we have, what we need, and what is under development. J. Clin. Transl. Hepatol., 2015, 3(1), 53-66.
[http://dx.doi.org/10.14218/JCTH.2014.00035] [PMID: 26357635]
[17]
Li, X.; Benjamin, I.S.; Alexander, B. Reproducible production of thioacetamide-induced macronodular cirrhosis in the rat with no mortality. J. Hepatol., 2002, 36(4), 488-493.
[http://dx.doi.org/10.1016/S0168-8278(02)00011-9] [PMID: 11943419]
[18]
Xu, L.; Hui, A.Y.; Albanis, E.; Arthur, M.J.; O’Byrne, S.M.; Blaner, W.S.; Mukherjee, P.; Friedman, S.L.; Eng, F.J. Human hepatic stellate cell lines, LX-1 and LX-2: new tools for analysis of hepatic fibrosis. Gut, 2005, 54(1), 142-151.
[http://dx.doi.org/10.1136/gut.2004.042127] [PMID: 15591520]
[19]
Dashti, H.; Jeppsson, B.; Hägerstrand, I.; Hultberg, B.; Srinivas, U.; Abdulla, M.; Bengmark, S. Thioacetamide- and carbon tetrachloride-induced liver cirrhosis. Eur. Surg. Res., 1989, 21(2), 83-91.
[http://dx.doi.org/10.1159/000129007] [PMID: 2767088]
[20]
Müller, A.; Machnik, F.; Zimmermann, T.; Schubert, H. Thioacetamide-induced cirrhosis-like liver lesions in rats- usefulness and reliability of this animal model. Exp. Pathol., 1988, 34(4), 229-236.
[http://dx.doi.org/10.1016/S0232-1513(88)80155-5] [PMID: 2853079]
[21]
Hunter, A.L.; Holscher, M.A.; Neal, R.A. Thioacetamide-induced hepatic necrosis. I. Involvement of the mixed-function oxidase enzyme system. J. Pharmacol. Exp. Ther., 1977, 200(2), 439-448.
[PMID: 839448]
[22]
Staňková, P.; Kučera, O.; Lotková, H.; Roušar, T.; Endlicher, R.; Cervinková, Z. The toxic effect of thioacetamide on rat liver in vitro. Toxicol. In Vitro, 2010, 24(8), 2097-2103.
[http://dx.doi.org/10.1016/j.tiv.2010.06.011] [PMID: 20600801]
[23]
Albano, E.; Clot, P.; Morimoto, M.; Tomasi, A.; Ingelman-Sundberg, M.; French, S.W. Role of cytochrome P4502E1-dependent formation of hydroxyethyl free radical in the development of liver damage in rats intragastrically fed with ethanol. Hepatology, 1996, 23(1), 155-163.
[http://dx.doi.org/10.1002/hep.510230121] [PMID: 8550035]
[24]
Bondy, S.C. Ethanol toxicity and oxidative stress. Toxicol. Lett., 1992, 63(3), 231-241.
[http://dx.doi.org/10.1016/0378-4274(92)90086-Y] [PMID: 1488774]
[25]
Kisseleva, T.; Brenner, D.A. Role of hepatic stellate cells in fibrogenesis and the reversal of fibrosis. J. Gastroenterol. Hepatol., 2007, 22(Suppl. 1), S73-S78.
[http://dx.doi.org/10.1111/j.1440-1746.2006.04658.x] [PMID: 17567473]
[26]
Thibault, C.; Lai, C.; Wilke, N.; Duong, B.; Olive, M.F.; Rahman, S.; Dong, H.; Hodge, C.W.; Lockhart, D.J.; Miles, M.F. Expression profiling of neural cells reveals specific patterns of ethanol-responsive gene expression. Mol. Pharmacol., 2000, 58(6), 1593-1600.
[http://dx.doi.org/10.1124/mol.58.6.1593] [PMID: 11093800]
[27]
Hassan, S.; Duong, B.; Kim, K.S.; Miles, M.F. Pharmacogenomic analysis of mechanisms mediating ethanol regulation of dopamine beta-hydroxylase. J. Biol. Chem., 2003, 278(40), 38860-38869.
[http://dx.doi.org/10.1074/jbc.M305040200] [PMID: 12842874]
[28]
Jaeschke, H.; Gores, G.J.; Cederbaum, A.I.; Hinson, J.A.; Pessayre, D.; Lemasters, J.J. Mechanisms of hepatotoxicity. Toxicol. Sci., 2002, 65(2), 166-176.
[http://dx.doi.org/10.1093/toxsci/65.2.166] [PMID: 11812920]

© 2024 Bentham Science Publishers | Privacy Policy