Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

COVID-19 and ARDS: Update on Preventive and Therapeutic Venues

Author(s): Arun Narota, Gayatri Puri, Vikram P. Singh, Ashwani Kumar and Amarjit S. Naura*

Volume 22, Issue 4, 2022

Published on: 08 April, 2021

Page: [312 - 324] Pages: 13

DOI: 10.2174/1566524021666210408103921

Price: $65

Abstract

A novel coronavirus SARS-CoV-2, which initially originated in China, has outstretched to all nations and turned out to be an intense global concern for both the governments and the public. In addition to the health concerns, the COVID-19 pandemic has caused a tremendous impact on the economic and political conditions of every nation. Ever since the start of the pandemic, the physicians were constrained to rely on the management strategies due to a lack of clear understanding of the disease pathogenesis caused by SARS-CoV-2 infection. Scientists are working tirelessly to gather maximum information about the deadly virus and come up with various strategies, which can be used against COVID-19 infection in terms of therapeutics and vaccine development. It is quite evident that the virus infection leads to acute respiratory distress syndrome (ARDS), and most of the deaths occur due to respiratory failure. As the virus spreads through respiratory droplets, the strenuous exercise of preventive measures and diagnosis at a large scale has been in practice across the globe to prevent transmission. This review amalgamates the various updates and acts as an umbrella to provide insights on SARS-CoV-2 mediated ARDS pathogenesis, the impact of co-morbidities, diagnostics, current progress in vaccine development, and promising therapeutics and immuno-modulatory strategies, highlighting various concerns and gaps that need to be addressed to fight current and future pandemics effectively.

Keywords: COVID-19, SARS-CoV-2, Pandemic, ARDS, Treatment, Prevention.

[1]
WHO Director-General's opening remarks at the media briefing on COVID-19. 11 March 2020. 2020. Available from: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020
[2]
Burki TK. Coronavirus in China. Lancet Respir Med 2020; 8(3): 238.
[http://dx.doi.org/10.1016/S2213-2600(20)30056-4] [PMID: 32027848]
[3]
Gorbalenya AE, Baker SC, Baric RS, et al. Severe acute respiratory syndrome-related coronavirus: The species and its viruses – a statement of the Coronavirus Study Group bioRxiv 2020; 2020 02.07.937862.
[4]
Su S, Wong G, Shi W, et al. Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses. Trends Microbiol 2016; 24(6): 490-502.
[http://dx.doi.org/10.1016/j.tim.2016.03.003] [PMID: 27012512]
[5]
Dong N, Yang X, Ye L, et al. Genomic and protein structure modelling analysis depicts the origin and infectivity of 2019- nCoV, a new coronavirus which caused a pneumonia outbreak in Wuhan, China bioRxiv 2020; 2020 01.20.913368.
[6]
Xu X, Chen P, Wang J, et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci 2020; 63(3): 457-60.
[http://dx.doi.org/10.1007/s11427-020-1637-5] [PMID: 32009228]
[7]
Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020; 395(10224): 565-74.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[8]
Zhou P, Yang X-L, Wang X-G, et al. Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin bioRxiv 2020 2020 01.22.914952.
[9]
Zhang T, Wu Q, Zhang Z. Probable pangolin origin of SARS-CoV-2 associated with the covid-19 outbreak Current Biology 2020 30(7): 1346-51. e2.
[10]
Zhao J, Cui W, Tian BP. The Potential Intermediate Hosts for SARS-CoV-2. Front Microbiol 2020; 11: 580137.
[http://dx.doi.org/10.3389/fmicb.2020.580137] [PMID: 33101254]
[11]
Riley S, Fraser C, Donnelly CA, et al. Transmission dynamics of the etiological agent of SARS in Hong Kong: impact of public health interventions. Science 2003; 300(5627): 1961-6.
[http://dx.doi.org/10.1126/science.1086478] [PMID: 12766206]
[12]
Eifan SA, Nour I, Hanif A, Zamzam AMM, AlJohani SM. A pandemic risk assessment of middle east respiratory syndrome coronavirus (MERS-CoV) in Saudi Arabia Saudi Journal of Biological Sciences 2017; 24(7): 1631-8.
[13]
Stadler K, Rappuoli R. SARS: understanding the virus and development of rational therapy. Curr Mol Med 2005; 5(7): 677-97.
[http://dx.doi.org/10.2174/156652405774641124] [PMID: 16305493]
[14]
Viceconte G, Petrosillo N. COVID-19 R0: Magic number or conundrum? Infect Dis Rep 2020; 12(1): 8516.
[http://dx.doi.org/10.4081/idr.2020.8516] [PMID: 32201554]
[15]
Liu J, Liao X, Qian S, et al. Community Transmission of Severe Acute Respiratory Syndrome Coronavirus 2, Shenzhen, China, 2020. Emerg Infect Dis 2020; 26(6): 1320-3.
[http://dx.doi.org/10.3201/eid2606.200239] [PMID: 32125269]
[16]
Chan JF-W, Yuan S, Kok K-H, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 2020; 395(10223): 514-23.
[http://dx.doi.org/10.1016/S0140-6736(20)30154-9] [PMID: 31986261]
[17]
Tong ZD, Tang A, Li KF, et al. Potential Presymptomatic Transmission of SARS-CoV-2, Zhejiang Province, China, 2020. Emerg Infect Dis 2020; 26(5): 1052-4.
[http://dx.doi.org/10.3201/eid2605.200198] [PMID: 32091386]
[18]
Wei WE, Li Z, Chiew CJ, Yong SE, Toh MP, Lee VJ. Presymptomatic Transmission of SARS-CoV-2 - Singapore, January 23-March 16, 2020. MMWR Morb Mortal Wkly Rep 2020; 69(14): 411-5.
[http://dx.doi.org/10.15585/mmwr.mm6914e1] [PMID: 32271722]
[19]
Kimball A, Hatfield KM, Arons M, et al. Asymptomatic and Presymptomatic SARS-CoV-2 Infections in Residents of a Long-Term Care Skilled Nursing Facility - King County, Washington, March 2020. MMWR Morb Mortal Wkly Rep 2020; 69(13): 377-81.
[http://dx.doi.org/10.15585/mmwr.mm6913e1] [PMID: 32240128]
[20]
Cheung KS, Hung IFN, Chan PPY, et al. Gastrointestinal Manifestations of SARS-CoV-2 Infection and Virus Load in Fecal Samples From a Hong Kong Cohort: Systematic Review and Meta-analysis. Gastroenterology 2020; 159(1): 81-95.
[http://dx.doi.org/10.1053/j.gastro.2020.03.065] [PMID: 32251668]
[21]
Guan WJ, Ni ZY, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med 2020; 382(18): 1708-20.
[http://dx.doi.org/10.1056/NEJMoa2002032] [PMID: 32109013]
[22]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[23]
Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China JAMA 2020.
[24]
Zhu Z, Lian X, Su X, Wu W, Marraro GA, Zeng Y. From SARS and MERS to COVID-19: a brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. Respir Res 2020; 21(1): 224.
[http://dx.doi.org/10.1186/s12931-020-01479-w] [PMID: 32854739]
[25]
Sheikhzadeh E, Eissa S, Ismail A, Zourob M. Diagnostic techniques for COVID-19 and new developments. Talanta 2020; 220: 121392.
[http://dx.doi.org/10.1016/j.talanta.2020.121392] [PMID: 32928412]
[26]
Ziehr DR, Alladina J, Petri CR, et al. Respiratory Pathophysiology of Mechanically Ventilated Patients with COVID-19: A Cohort Study. Am J Respir Crit Care Med 2020; 201(12): 1560-4.
[http://dx.doi.org/10.1164/rccm.202004-1163LE] [PMID: 32348678]
[27]
Mason RJ. Pathogenesis of COVID-19 from a cell biology perspective. Eur Respir J 2020; 55(4): 2000607.
[http://dx.doi.org/10.1183/13993003.00607-2020] [PMID: 32269085]
[28]
Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA 2020; 323(13): 1239-42.
[http://dx.doi.org/10.1001/jama.2020.2648] [PMID: 32091533]
[29]
Kakodkar P, Kaka N, Baig MN. A Comprehensive Literature Review on the Clinical Presentation, and Management of the Pandemic Coronavirus Disease 2019 (COVID-19). Cureus 2020; 12(4): e7560.
[PMID: 32269893]
[30]
Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 2020; 8(4): 420-2.
[http://dx.doi.org/10.1016/S2213-2600(20)30076-X] [PMID: 32085846]
[31]
Hanley B, Lucas SB, Youd E, Swift B, Osborn M. Autopsy in suspected COVID-19 cases. J Clin Pathol 2020; 73(5): 239-42.
[http://dx.doi.org/10.1136/jclinpath-2020-206522] [PMID: 32198191]
[32]
Ye Q, Wang B, Mao J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J Infect 2020.
[http://dx.doi.org/10.1016/j.jinf.2020.03.037]
[33]
Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 2020; 395(10229): 1033-4.
[http://dx.doi.org/10.1016/S0140-6736(20)30628-0] [PMID: 32192578]
[34]
Wu C, Chen X, Cai Y, et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med 2020; 180(7): 934-43.
[http://dx.doi.org/10.1001/jamainternmed.2020.0994] [PMID: 32167524]
[35]
Zuo Y, Yalavarthi S, Shi H, et al. Neutrophil extracellular traps in COVID-19. JCI Insight 2020; 5(11): 138999.
[PMID: 32329756]
[36]
Wang H, Ma S. The cytokine storm and factors determining the sequence and severity of organ dysfunction in multiple organ dysfunction syndrome. Am J Emerg Med 2008; 26(6): 711-5.
[http://dx.doi.org/10.1016/j.ajem.2007.10.031] [PMID: 18606328]
[37]
Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med 2020; 8(5): 475-81.
[http://dx.doi.org/10.1016/S2213-2600(20)30079-5] [PMID: 32105632]
[38]
Wang W, Xu Y, Gao R, et al. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA 2020; 323(18): 1843-4.
[http://dx.doi.org/10.1001/jama.2020.3786] [PMID: 32159775]
[39]
Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China Clinical Infectious Diseases 2020; (ciaa248):
[40]
Shi Y, Tan M, Chen X, et al. Immunopathological characteristics of coronavirus disease 2019 cases in Guangzhou, China medRxiv 2020; 2020 03.12.20034736
[41]
Baradaran A, Ebrahimzadeh MH, Baradaran A, Kachooei AR. Prevalence of comorbidities in COVID-19 patients: A systematic review and meta-analysis. The Archives of Bone and Joint Surgery 2020; 8(Covid-19 Special Issue): 247-55.
[42]
Guan W-J, Liang W-H, Zhao Y, et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur Respir J 2020; 55(5): 2000547.
[http://dx.doi.org/10.1183/13993003.00547-2020] [PMID: 32217650]
[43]
Puri G, Pal Singh V, Naura AS. COVID-19 Severity: Lung-Heart Interplay. Curr Cardiol Rev 2021; 17(4): e230421189016.
[http://dx.doi.org/10.2174/1573403X16999201210200614] [PMID: 33305712]
[44]
Patell R, Bogue T, Koshy A, et al. Postdischarge thrombosis and hemorrhage in patients with COVID-19. Blood 2020; 136(11): 1342-6.
[http://dx.doi.org/10.1182/blood.2020007938] [PMID: 32766883]
[45]
Vadukul P, Sharma DS, Vincent P. Massive pulmonary embolism following recovery from COVID-19 infection: inflammation, thrombosis and the role of extended thromboprophylaxis. BMJ Case Rep 2020; 13(9): e238168.
[http://dx.doi.org/10.1136/bcr-2020-238168] [PMID: 32928824]
[46]
Garrigues E, Janvier P, Kherabi Y, et al. Post-discharge persistent symptoms and health-related quality of life after hospitalization for COVID-19. J Infect 2020; 81(6): e4-6.
[http://dx.doi.org/10.1016/j.jinf.2020.08.029] [PMID: 32853602]
[47]
Liang L, Yang B, Jiang N, et al. Three-month Follow-up Study of Survivors of Coronavirus Disease 2019 after Discharge. J Korean Med Sci 2020; 35(47): e418.
[http://dx.doi.org/10.3346/jkms.2020.35.e418] [PMID: 33289374]
[48]
Hays P. Clinical sequelae of the novel coronavirus: does COVID-19 infection predispose patients to cancer? Future Oncol 2020; 16(20): 1463-74.
[http://dx.doi.org/10.2217/fon-2020-0300] [PMID: 32456461]
[49]
Kupferschmidt K, Cohen J. Race to find COVID-19 treatments accelerates. Science 2020; 367(6485): 1412-3.
[http://dx.doi.org/10.1126/science.367.6485.1412] [PMID: 32217705]
[50]
Hinton DM. Request for emergency use authorization for use of chloroquine phosphate or hydroxychloroquine sulfate supplied from the strategic national stockpile for treatment of 2019 coronavirus disease US food and drug administration 2020. Available from: https://www.fda.gov/media/136534/download
[51]
WHO discontinues hydroxychloroquine and lopinavir/ritonavir treatment arms for COVID-19. 2020. Available from: https://www.who.int/news-room/detail/04-07-2020-who-discontinues-hydroxychloroquine-and-lopinavir-ritonavir-treatment-arms-for-covid-19
[52]
Cao B, Wang Y, Wen D, et al. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N Engl J Med 2020; 382(19): 1787-99.
[http://dx.doi.org/10.1056/NEJMoa2001282] [PMID: 32187464]
[53]
Li G, De Clercq E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat Rev Drug Discov 2020; 19(3): 149-50.
[http://dx.doi.org/10.1038/d41573-020-00016-0] [PMID: 32127666]
[54]
Chaccour C, Casellas A, Blanco-Di Matteo A, et al. The effect of early treatment with ivermectin on viral load, symptoms and humoral response in patients with non-severe COVID-19: A pilot, double-blind, placebo-controlled, randomized clinical trial. E Clinical Medicine 2021; 100720.
[55]
Rodgers F, Pepperrell T, Keestra S, Pilkington V. Missing clinical trial data: the evidence gap in primary data for potential COVID-19 drugs. Trials 2021; 22(1): 59.
[http://dx.doi.org/10.1186/s13063-021-05024-y] [PMID: 33451350]
[56]
Salvarani C, Dolci G, Massari M, et al. Effect of Tocilizumab vs Standard Care on Clinical Worsening in Patients Hospitalized With COVID-19 Pneumonia: A Randomized Clinical Trial. JAMA Intern Med 2021; 181(1): 24-31.
[http://dx.doi.org/10.1001/jamainternmed.2020.6615] [PMID: 33080005]
[57]
Luo P, Liu Y, Qiu L, Liu X, Liu D, Li J. Tocilizumab treatment in COVID-19: A single center experience. J Med Virol 2020; 92(7): 814-8.
[http://dx.doi.org/10.1002/jmv.25801] [PMID: 32253759]
[58]
Pontali E, Volpi S, Signori A, et al. Efficacy of early antiinflammatory treatment with high doses IV Anakinra with or without glucocorticoids in patients with severe COVID-19 pneumonia. J Allergy Clin Immunol 2021; S0091-6749(21): 00171-8.
[PMID: 33556464]
[59]
Temesgen Z, Assi M, Shweta FNU, et al. GM-CSF Neutralization With Lenzilumab in Severe COVID-19 Pneumonia: A Case-Cohort Study. Mayo Clin Proc 2020; 95(11): 2382-94.
[http://dx.doi.org/10.1016/j.mayocp.2020.08.038] [PMID: 33153629]
[60]
Cangemi R, Falcone M, Taliani G, et al. Corticosteroid Use and Incident Myocardial Infarction in Adults Hospitalized for Community-acquired Pneumonia. Ann Am Thorac Soc 2019; 16(1): 91-8.
[http://dx.doi.org/10.1513/AnnalsATS.201806-419OC] [PMID: 30188173]
[61]
Horby P, Lim WS, Emberson JR, et al. Dexamethasone in Hospitalized Patients with Covid-19 - Preliminary Report. N Engl J Med 2021; 384(8): 693-704.
[PMID: 32678530]
[62]
Casadevall A, Pirofski LA. The convalescent sera option for containing COVID-19. J Clin Invest 2020; 130(4): 1545-8.
[http://dx.doi.org/10.1172/JCI138003] [PMID: 32167489]
[63]
Cheng Y, Wong R, Soo YO, et al. Use of convalescent plasma therapy in SARS patients in Hong Kong. Eur J Clin Microbiol Infect Dis 2005; 24(1): 44-6.
[http://dx.doi.org/10.1007/s10096-004-1271-9] [PMID: 15616839]
[64]
Zhou B, Zhong N, Guan Y. Treatment with convalescent plasma for influenza A (H5N1) infection. N Engl J Med 2007; 357(14): 1450-1.
[http://dx.doi.org/10.1056/NEJMc070359] [PMID: 17914053]
[65]
Hung IF, To KK, Lee CK, et al. Convalescent plasma treatment reduced mortality in patients with severe pandemic influenza A (H1N1) 2009 virus infection. Clin Infect Dis 2011; 52(4): 447-56.
[http://dx.doi.org/10.1093/cid/ciq106] [PMID: 21248066]
[66]
Ko JH, Seok H, Cho SY, et al. Challenges of convalescent plasma infusion therapy in Middle East respiratory coronavirus infection: A single centre experience. Antivir Ther 2018; 23(7): 617-22.
[http://dx.doi.org/10.3851/IMP3243] [PMID: 29923831]
[67]
Lee PI, Hsueh PR. Emerging threats from zoonotic coronaviruses-from SARS and MERS to 2019-nCoV. J Microbiol Immunol Infect 2020; 53(3): 365-7.
[http://dx.doi.org/10.1016/j.jmii.2020.02.001] [PMID: 32035811]
[68]
Galván CA, Toribio-Dionicio C, Álvarez-Ángeles M, Alama-Bazán O, Sánchez-Ramírez L. Transfusion of convalescent plasma from patients with COVID -19. Rev Peru Med Exp Salud Publica 2020; 37(4): 746-54. [Transfusion of convalescent plasma from patients with COVID -19].
[PMID: 33566918]
[69]
Jenner E. Dr. Jenner, on the Vaccine Inoculation. Med Phys J 1800; 3(16): 502-3.
[PMID: 30490323]
[70]
Thanh Le T, Andreadakis Z, Kumar A, et al. The COVID-19 vaccine development landscape. Nat Rev Drug Discov 2020; 19(5): 305-6.
[http://dx.doi.org/10.1038/d41573-020-00073-5] [PMID: 32273591]
[71]
Kleinnijenhuis J, van Crevel R, Netea MG. Trained immunity: consequences for the heterologous effects of BCG vaccination. Trans R Soc Trop Med Hyg 2015; 109(1): 29-35.
[http://dx.doi.org/10.1093/trstmh/tru168] [PMID: 25573107]
[72]
Hegarty P, Kamat A, Zafirakis H, Dinardo A. BCG vaccination may be protective against Covid-192020
[73]
Pronker ES, Weenen TC, Commandeur H, Claassen EH, Osterhaus AD. Risk in vaccine research and development quantified. PLoS One 2013; 8(3): e57755.
[http://dx.doi.org/10.1371/journal.pone.0057755] [PMID: 23526951]
[74]
Ilie PC, Stefanescu S, Smith L. The role of Vitamin D in the prevention of Coronavirus Disease 2019 infection and mortality. Research Square 2020.
[http://dx.doi.org/10.1007/s40520-020-01570-8]
[75]
Daneshkhah A, Agrawal V, Eshein A, Subramanian H, Roy HK, Backman V. The possible role of Vitamin D in suppressing cytokine storm and associated mortality in COVID-19 Patients medRxiv 2020 2020 04.08.20058578.
[76]
Fowler Iii AA, Kim C, Lepler L, et al. Intravenous vitamin C as adjunctive therapy for enterovirus/rhinovirus induced acute respiratory distress syndrome. World J Crit Care Med 2017; 6(1): 85-90.
[http://dx.doi.org/10.5492/wjccm.v6.i1.85] [PMID: 28224112]
[77]
Li J. Evidence is stronger than you think: a meta-analysis of vitamin C use in patients with sepsis. Crit Care 2018; 22(1): 258.
[http://dx.doi.org/10.1186/s13054-018-2191-x] [PMID: 30305111]
[78]
Maggini S, Pierre A, Calder PC. Immune Function and Micronutrient Requirements Change over the Life Course. Nutrients 2018; 10(10): E1531.
[http://dx.doi.org/10.3390/nu10101531] [PMID: 30336639]
[79]
Syal K. COVID-19: Herd immunity and convalescent plasma transfer therapy. J Med Virol 2020; 92(9): 1380-2.
[http://dx.doi.org/10.1002/jmv.25870] [PMID: 32281679]
[80]
Shi H, Han X, Zheng C. Evolution of CT Manifestations in a Patient Recovered from 2019 Novel Coronavirus (2019-nCoV) Pneumonia in Wuhan, China. Radiology 2020; 295(1): 20.
[http://dx.doi.org/10.1148/radiol.2020200269] [PMID: 32032497]
[81]
Pan Y, Guan H, Zhou S, et al. Initial CT findings and temporal changes in patients with the novel coronavirus pneumonia (2019-nCoV): a study of 63 patients in Wuhan, China. Eur Radiol 2020; 30(6): 3306-9.
[http://dx.doi.org/10.1007/s00330-020-06731-x] [PMID: 32055945]
[82]
Bustin SA, Nolan T. RT-qPCR Testing of SARS-CoV-2: A Primer. Int J Mol Sci 2020; 21(8): E3004.
[http://dx.doi.org/10.3390/ijms21083004] [PMID: 32344568]
[83]
Xie X, Zhong Z, Zhao W, Zheng C, Wang F, Liu J. Chest CT for Typical Coronavirus Disease 2019 (COVID-19) Pneumonia: Relationship to Negative RT-PCR Testing. Radiology 2020; 296(2): E41-5.
[http://dx.doi.org/10.1148/radiol.2020200343] [PMID: 32049601]
[84]
Das Mukhopadhyay C, Sharma P, Sinha K, Rajarshi K. Recent trends in analytical and digital techniques for the detection of the SARS-Cov-2. Biophys Chem 2021; 270: 106538.
[http://dx.doi.org/10.1016/j.bpc.2020.106538] [PMID: 33418105]
[85]
Augustine R, Hasan A, Das S, et al. Loop-Mediated Isothermal Amplification (LAMP): A Rapid, Sensitive, Specific, and Cost-Effective Point-of-Care Test for Coronaviruses in the Context of COVID-19 Pandemic. Biology (Basel) 2020; 9(8): E182.
[http://dx.doi.org/10.3390/biology9080182] [PMID: 32707972]
[86]
Hu X, Deng Q, Li J, et al. Development and Clinical Application of a Rapid and Sensitive Loop-Mediated Isothermal Amplification Test for SARS-CoV-2 Infection. MSphere 2020; 5(4): e00808-20.
[http://dx.doi.org/10.1128/mSphere.00808-20] [PMID: 32848011]
[87]
Kumar R, Nagpal S, Kaushik S, Mendiratta S. COVID-19 diagnostic approaches: different roads to the same destination. Virusdisease 2020; 31(2): 97-105.
[http://dx.doi.org/10.1007/s13337-020-00599-7] [PMID: 32656306]
[88]
Ding X, Yin K, Li Z, Liu C. All-in-One Dual CRISPR-Cas12a (AIOD-CRISPR) Assay: A Case for Rapid, Ultrasensitive and Visual Detection of Novel Coronavirus SARS-CoV-2 and HIV virus. bioRxiv 2020; 2020.03.19.998724.
[PMID: 32511323]
[89]
Xiang X, Qian K, Zhang Z, et al. CRISPR-cas systems based molecular diagnostic tool for infectious diseases and emerging 2019 novel coronavirus (COVID-19) pneumonia. J Drug Target 2020; 28(7-8): 727-31.
[http://dx.doi.org/10.1080/1061186X.2020.1769637] [PMID: 32401064]
[90]
Younes N, Al-Sadeq DW, Al-Jighefee H, et al. Challenges in Laboratory Diagnosis of the Novel Coronavirus SARS-CoV-2. Viruses 2020; 12(6): E582.
[http://dx.doi.org/10.3390/v12060582] [PMID: 32466458]
[91]
La Marca A, Capuzzo M, Paglia T, Roli L, Trenti T, Nelson SM. Testing for SARS-CoV-2 (COVID-19): a systematic review and clinical guide to molecular and serological in-vitro diagnostic assays. Reprod Biomed Online 2020; 41(3): 483-99.
[http://dx.doi.org/10.1016/j.rbmo.2020.06.001] [PMID: 32651106]
[92]
Touma M. COVID-19: molecular diagnostics overview. J Mol Med (Berl) 2020; 98(7): 947-54.
[http://dx.doi.org/10.1007/s00109-020-01931-w] [PMID: 32535768]
[93]
Hardick J, Metzgar D, Risen L, et al. Initial performance evaluation of a spotted array Mobile Analysis Platform (MAP) for the detection of influenza A/B, RSV, and MERS coronavirus. Diagn Microbiol Infect Dis 2018; 91(3): 245-7.
[http://dx.doi.org/10.1016/j.diagmicrobio.2018.02.011] [PMID: 29550057]
[94]
Mavrikou S, Moschopoulou G, Tsekouras V, Kintzios S. Development of a Portable, Ultra-Rapid and Ultra-Sensitive Cell-Based Biosensor for the Direct Detection of the SARS-CoV-2 S1 Spike Protein Antigen. Sensors (Basel) 2020; 20(11): E3121.
[http://dx.doi.org/10.3390/s20113121] [PMID: 32486477]
[95]
Torabi R, Ranjbar R, Halaji M, Heiat M. Aptamers, the bivalent agents as probes and therapies for coronavirus infections: A systematic review. Mol Cell Probes 2020; 53: 101636.
[http://dx.doi.org/10.1016/j.mcp.2020.101636] [PMID: 32634550]
[96]
Sengupta J, Hussain CM. Graphene-based field-effect transistor biosensors for the rapid detection and analysis of viruses: A perspective in view of COVID-19 2021 100011.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy