Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Chemotherapeutic Strategies for Combating Staphylococcus aureus Infections

Author(s): Namita Sharma, Anil Kumar Chhillar*, Sweety Dahiya, Aruna Punia, Pooja Choudhary, Prity Gulia, Akanksha Behl and Mehak Dangi

Volume 22, Issue 1, 2022

Published on: 02 April, 2021

Page: [26 - 42] Pages: 17

DOI: 10.2174/1389557521666210402150325

Price: $65

Abstract

Abstract: Staphylococcus aureus is a prominent human pathogen that causes nosocomial and community acquired infections. The accelerating emergence and prevalence of staphylococcal infections have grotesque health consequences which are mostly due to its anomalous capability to acquire drug resistance and scarcity of novel classes of antibacterials. Many combating therapies are centered on primary targets of S. aureus which are cell envelope, ribosomes and nucleic acids. This review describes various chemotherapeutic strategies for combating S. aureus infections including monotherapy, combination drug therapy, phage endolysin therapy, lysostaphins and antibacterial drones. Monotherapy has dwindled in due course of time, but combination therapy, endolysin therapy, lysostaphin and antibacterial drones are emerging alternatives which efficiently conquer the shortcomings of monotherapy. Combinations of more than one antibiotic agents or combination of adjuvant with antibiotics provide a synergistic approach to combat infections causing pathogenic strains. Phage endolysin therapy and lysostaphin are also presented as possible alternatives to conventional antibiotic therapies. Antibacterial Drones go a step further by specifically targeting the virulence genes in bacteria, giving them a certain advantage over existing antibacterial strategies. But the challenge remains on the better understanding of these strategies for executing and implementing them in the health sector. In this day and age, most of the S. aureus strains are resistant to an ample number of antibiotics, so there is an urgent need to overcome such multidrug-resistant strains for the welfare of our community.

Keywords: Staphylococcus aureus, antibiotics, monotherapy, combination drug therapy, phage endolysin therapy, lysostaphin, antibacterial drones.

Graphical Abstract

[1]
Szweda, P.; Schielmann, M.; Kotlowski, R.; Gorczyca, G.; Zalewska, M.; Milewski, S. Peptidoglycan hydrolases-potential weapons against Staphylococcus aureus. Appl. Microbiol. Biotechnol., 2012, 96(5), 1157-1174.
[http://dx.doi.org/10.1007/s00253-012-4484-3] [PMID: 23076591]
[2]
Johnston, S.L. Clinical immunology review series: an approach to the patient with recurrent superficial abscesses. Clin. Exp. Immunol., 2008, 152(3), 397-405.
[http://dx.doi.org/10.1111/j.1365-2249.2008.03640.x] [PMID: 18422735]
[3]
Sakr, A.; Brégeon, F.; Mège, J-L.; Rolain, J-M.; Blin, O. Staphylococcus aureus Nasal Colonization: An Update on Mechanisms, Epidemiology, Risk Factors, and Subsequent Infections. Front. Microbiol., 2018, 9, 2419.
[http://dx.doi.org/10.3389/fmicb.2018.02419] [PMID: 30349525]
[4]
Diekema, D.J.; Pfaller, M.A.; Schmitz, F.J.; Smayevsky, J.; Bell, J.; Jones, R.N.; Beach, M. SENTRY Partcipants Group. Survey of infections due to Staphylococcus species: frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, Latin America, Europe, and the Western Pacific region for the SENTRY Antimicrobial Surveillance Program, 1997-1999. Clin. Infect. Dis., 2001, 32(2)(Suppl. 2), S114-S132.
[http://dx.doi.org/10.1086/320184] [PMID: 11320452]
[5]
Cooper, B.S.; Stone, S.P.; Kibbler, C.C.; Cookson, B.D.; Roberts, J.A.; Medley, G.F.; Duckworth, G.; Lai, R.; Ebrahim, S. Isolation measures in the hospital management of methicillin resistant Staphylococcus aureus (MRSA): systematic review of the literature. BMJ, 2004, 329(7465), 533.
[http://dx.doi.org/10.1136/bmj.329.7465.533] [PMID: 15345626]
[6]
Lowy, F.D. Antimicrobial resistance: the example of Staphylococcus aureus. J. Clin. Invest., 2003, 111(9), 1265-1273.
[http://dx.doi.org/10.1172/JCI18535] [PMID: 12727914]
[7]
Khameneh, B.; Diab, R.; Ghazvini, K.; Fazly Bazzaz, B.S. Breakthroughs in bacterial resistance mechanisms and the potential ways to combat them. Microb. Pathog., 2016, 95, 32-42.
[http://dx.doi.org/10.1016/j.micpath.2016.02.009] [PMID: 26911646]
[8]
Cho, H.; Uehara, T.; Bernhardt, T.G. Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell, 2014, 159(6), 1300-1311.
[http://dx.doi.org/10.1016/j.cell.2014.11.017] [PMID: 25480295]
[9]
Foster, T.J. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiol. Rev., 2017, 41(3), 430-449.
[http://dx.doi.org/10.1093/femsre/fux007] [PMID: 28419231]
[10]
Rayner, C.; Munckhof, W.J. Antibiotics currently used in the treatment of infections caused by Staphylococcus aureus. Intern. Med. J., 2005, 35(2)(Suppl. 2), S3-S16.
[http://dx.doi.org/10.1111/j.1444-0903.2005.00976.x] [PMID: 16271060]
[11]
Bassetti, M.; Nicolini, L.; Esposito, S.; Righi, E.; Viscoli, C. Current status of newer carbapenems. Curr. Med. Chem., 2009, 16(5), 564-575.
[http://dx.doi.org/10.2174/092986709787458498] [PMID: 19199922]
[12]
Stapleton, P.D.; Taylor, P.W. Methicillin resistance in Staphylococcus aureus: mechanisms and modulation. Sci. Prog., 2002, 85(Pt 1), 57-72.
[http://dx.doi.org/10.3184/003685002783238870] [PMID: 11969119]
[13]
Mitchell, M.O. Antibacterial Agents Against Methicillin-Resistant Staphylococcus Aureus (MRSA) and Vancomycin-Resistant Enterococci (VRE). Antiinfect. Agents Med. Chem., 2007, 6, 243-247.
[http://dx.doi.org/10.2174/187152107782023114]
[14]
Yan, X.; Tao, X.; He, L.; Cui, Z.; Zhang, J. Increasing resistance in multiresistant methicillin-resistant Staphylococcus aureus clones isolated from a Chinese hospital over a 5-year period. Microb. Drug Resist., 2011, 17(2), 235-239.
[http://dx.doi.org/10.1089/mdr.2010.0029] [PMID: 21235386]
[15]
Sieradzki, K.; Roberts, R.B.; Haber, S.W.; Tomasz, A. The development of vancomycin resistance in a patient with methicillin-resistant Staphylococcus aureus infection. N. Engl. J. Med., 1999, 340(7), 517-523.
[http://dx.doi.org/10.1056/NEJM199902183400704] [PMID: 10021472]
[16]
Howden, B.P.; Davies, J.K.; Johnson, P.D.R.; Stinear, T.P.; Grayson, M.L. Reduced vancomycin susceptibility in Staphylococcus aureus, including vancomycin-intermediate and heterogeneous vancomycin-intermediate strains: resistance mechanisms, laboratory detection, and clinical implications. Clin. Microbiol. Rev., 2010, 23(1), 99-139.
[http://dx.doi.org/10.1128/CMR.00042-09] [PMID: 20065327]
[17]
Centers for Disease Control and Prevention (CDC) Staphylococcus Aureus Resistant to Vancomycin--United States. United States; , 2002, 51, .
[18]
Chang, S.; Sievert, D.M.; Hageman, J.C.; Boulton, M.L.; Tenover, F.C.; Downes, F.P.; Shah, S.; Rudrik, J.T.; Pupp, G.R.; Brown, W.J.; Cardo, D.; Fridkin, S.K. Vancomycin-Resistant Staphylococcus aureus Investigative Team. Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. N. Engl. J. Med., 2003, 348(14), 1342-1347.
[http://dx.doi.org/10.1056/NEJMoa025025] [PMID: 12672861]
[19]
Crotty, M.P.; Krekel, T.; Burnham, C.A.; Ritchie, D.J. New Gram-Positive Agents: the Next Generation of Oxazolidinones and Lipoglycopeptides. J. Clin. Microbiol., 2016, 54(9), 2225-2232.
[http://dx.doi.org/10.1128/JCM.03395-15] [PMID: 26962092]
[20]
Pan, A.; Lorenzotti, S.; Zoncada, A. Registered and investigational drugs for the treatment of methicillin-resistant Staphylococcus aureus infection. Recent Pat Antiinfect Drug Discov, 2008, 3(1), 10-33.
[http://dx.doi.org/10.2174/157489108783413173] [PMID: 18221183]
[21]
Giannakaki, V.; Miyakis, S. Novel antimicrobial agents against multi-drug-resistant gram-positive bacteria: an overview. Recent Pat Antiinfect Drug Discov, 2012, 7(3), 182-188.
[http://dx.doi.org/10.2174/157489112803521959] [PMID: 23016758]
[22]
Vilhena, C.; Bettencourt, A. Daptomycin: a review of properties, clinical use, drug delivery and resistance. Mini Rev. Med. Chem., 2012, 12(3), 202-209.
[http://dx.doi.org/10.2174/1389557511209030202] [PMID: 22356191]
[23]
Arbeit, R.D.; Maki, D.; Tally, F.P.; Campanaro, E.; Eisenstein, B.I. Daptomycin 98-01 and 99-01 Investigators. The safety and efficacy of daptomycin for the treatment of complicated skin and skin-structure infections. Clin. Infect. Dis., 2004, 38(12), 1673-1681.
[http://dx.doi.org/10.1086/420818] [PMID: 15227611]
[24]
Bayer, A.S.; Schneider, T.; Sahl, H-G. Mechanisms of daptomycin resistance in Staphylococcus aureus: role of the cell membrane and cell wall. Ann. N. Y. Acad. Sci., 2013, 1277(1), 139-158.
[http://dx.doi.org/10.1111/j.1749-6632.2012.06819.x] [PMID: 23215859]
[25]
Miller, W.R.; Bayer, A.S.; Arias, C.A. Mechanism of Action and Resistance to Daptomycin in Staphylococcus aureus and Enterococci. Cold Spring Harb. Perspect. Med., 2016, 6(11), a026997.
[http://dx.doi.org/10.1101/cshperspect.a026997] [PMID: 27580748]
[26]
Nguyen, F.; Starosta, A.L.; Arenz, S.; Sohmen, D.; Dönhöfer, A.; Wilson, D.N. Tetracycline antibiotics and resistance mechanisms. Biol. Chem., 2014, 395(5), 559-575.
[http://dx.doi.org/10.1515/hsz-2013-0292] [PMID: 24497223]
[27]
Manfredi, R.; Calza, L. Novel Therapeutic Agents for Resistant Gram-Positive Infections. Curr. Drug Ther., 2008, 3(2), 98-110.
[http://dx.doi.org/10.2174/157488508784221226]
[28]
Jensen, S.O.; Lyon, B.R. Genetics of antimicrobial resistance in Staphylococcus aureus. Future Microbiol., 2009, 4(5), 565-582.
[http://dx.doi.org/10.2217/fmb.09.30] [PMID: 19492967]
[29]
McCarter, Y.S. Antibiotics: Challenges; Mechanisms, Opportunities Written by Christopher Walsh, PhD and Timothy Wencewicz, PhD: Washing, DC, 2007, 48, .
[30]
Brickner, S.J.; Barbachyn, M.R.; Hutchinson, D.K.; Manninen, P.R. Linezolid (ZYVOX), the first member of a completely new class of antibacterial agents for treatment of serious gram-positive infections. J. Med. Chem., 2008, 51(7), 1981-1990.
[http://dx.doi.org/10.1021/jm800038g] [PMID: 18338841]
[31]
Velissariou, I.M. Linezolid in children: recent patents and advances. Recent Pat Antiinfect Drug Discov, 2007, 2(1), 73-77.
[http://dx.doi.org/10.2174/157489107779561689] [PMID: 18221164]
[32]
Wilson, D.N. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat. Rev. Microbiol., 2014, 12(1), 35-48.
[http://dx.doi.org/10.1038/nrmicro3155] [PMID: 24336183]
[33]
Long, K.S.; Vester, B. Resistance to linezolid caused by modifications at its binding site on the ribosome. Antimicrob. Agents Chemother., 2012, 56(2), 603-612.
[http://dx.doi.org/10.1128/AAC.05702-11] [PMID: 22143525]
[34]
Locke, J.B.; Zurenko, G.E.; Shaw, K.J.; Bartizal, K. Tedizolid for the management of human infections: in vitro characteristics. Clin. Infect. Dis., 2014, 58(1)(Suppl. 1), S35-S42.
[http://dx.doi.org/10.1093/cid/cit616] [PMID: 24343830]
[35]
Bozdogan, B.; Appelbaum, P.C. Oxazolidinones: activity, mode of action, and mechanism of resistance. Int. J. Antimicrob. Agents, 2004, 23(2), 113-119.
[http://dx.doi.org/10.1016/j.ijantimicag.2003.11.003] [PMID: 15013035]
[36]
Shaw, K.J.; Barbachyn, M.R. The oxazolidinones: past, present, and future. Ann. N. Y. Acad. Sci., 2011, 1241, 48-70.
[http://dx.doi.org/10.1111/j.1749-6632.2011.06330.x] [PMID: 22191526]
[37]
Schwarz, S.; Kehrenberg, C.; Doublet, B.; Cloeckaert, A. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol. Rev., 2004, 28(5), 519-542.
[http://dx.doi.org/10.1016/j.femsre.2004.04.001] [PMID: 15539072]
[38]
Smilack, J.D.; Wilson, W.R.; Cockerill, F.R. III Tetracyclines, chloramphenicol, erythromycin, clindamycin, and metronidazole. Mayo Clin. Proc., 1991, 66(12), 1270-1280.
[http://dx.doi.org/10.1016/S0025-6196(12)62479-3] [PMID: 1749296]
[39]
Birdane, Y.O.; Birdane, F.M. Pharmacokinetics of Florfenicol Following Intravenous and Intramuscular Administration in Dogs. Vet. Med. (Praha), 2015, 60(6), 323-329.
[http://dx.doi.org/10.17221/8247-VETMED]
[40]
Schwarz, S.; Shen, J.; Kadlec, K.; Wang, Y.; Brenner Michael, G.; Feßler, A.T.; Vester, B. Lincosamides, Streptogramins, Phenicols, and Pleuromutilins: Mode of Action and Mechanisms of Resistance. Cold Spring Harb. Perspect. Med., 2016, 6(11), 027037.
[http://dx.doi.org/10.1101/cshperspect.a027037] [PMID: 27549310]
[41]
Morar, M.; Bhullar, K.; Hughes, D.W.; Junop, M.; Wright, G.D. Structure and mechanism of the lincosamide antibiotic adenylyltransferase LinB. Structure, 2009, 17(12), 1649-1659.
[http://dx.doi.org/10.1016/j.str.2009.10.013] [PMID: 20004168]
[42]
Bonfiglio, G.; Furneri, P.M. Novel streptogramin antibiotics. Expert Opin. Investig. Drugs, 2001, 10(2), 185-198.
[http://dx.doi.org/10.1517/13543784.10.2.185] [PMID: 11178336]
[43]
Hershberger, E.; Donabedian, S.; Konstantinou, K.; Zervos, M.J.; Eliopoulos, G.M. Quinupristin-dalfopristin resistance in gram-positive bacteria: mechanism of resistance and epidemiology. Clin. Infect. Dis., 2004, 38(1), 92-98.
[http://dx.doi.org/10.1086/380125] [PMID: 14679454]
[44]
Allignet, J.; El Solh, N. Comparative analysis of staphylococcal plasmids carrying three streptogramin-resistance genes: vat-vgb-vga. Plasmid, 1999, 42(2), 134-138.
[http://dx.doi.org/10.1006/plas.1999.1412] [PMID: 10489330]
[45]
Haroche, J.; Morvan, A.; Davi, M.; Allignet, J.; Bimet, F.; El Solh, N. Clonal diversity among streptogramin A-resistant Staphylococcus aureus isolates collected in French hospitals. J. Clin. Microbiol., 2003, 41(2), 586-591.
[http://dx.doi.org/10.1128/JCM.41.2.586-591.2003] [PMID: 12574251]
[46]
Hooper, D.C. Fluoroquinolone resistance among Gram-positive cocci. Lancet Infect. Dis., 2002, 2(9), 530-538.
[http://dx.doi.org/10.1016/S1473-3099(02)00369-9] [PMID: 12206969]
[47]
Hooper, D.C.; Jacoby, G.A. Mechanisms of drug resistance: quinolone resistance. Ann. N. Y. Acad. Sci., 2015, 1354(1), 12-31.
[http://dx.doi.org/10.1111/nyas.12830] [PMID: 26190223]
[48]
Stefani, S. Emergence of Multi-Drug Resistant Gram-Positive Bacteria and New Active Antibiotics. Curr. Med. Anti Infect. Agents, 2005, 4(3), 235-257.
[http://dx.doi.org/10.2174/1568012054368146]
[49]
Goldberg, E.; Bishara, J. Contemporary unconventional clinical use of co-trimoxazole. Clin. Microbiol. Infect., 2012, 18(1), 8-17.
[http://dx.doi.org/10.1111/j.1469-0691.2011.03613.x] [PMID: 21851485]
[50]
Schmitz, F.J.; Fluit, A.C.; Gondolf, M.; Beyrau, R.; Lindenlauf, E.; Verhoef, J.; Heinz, H.P.; Jones, M.E. The prevalence of aminoglycoside resistance and corresponding resistance genes in clinical isolates of staphylococci from 19 European hospitals. J. Antimicrob. Chemother., 1999, 43(2), 253-259.
[http://dx.doi.org/10.1093/jac/43.2.253] [PMID: 11252331]
[51]
Mlynarczyk, A.; Mlynarczyk, B.; Kmera-Muszynska, M.; Majewski, S.; Mlynarczyk, G. Mechanisms of the resistance and tolerance to beta-lactam and glycopeptide antibiotics in pathogenic gram-positive cocci. Mini Rev. Med. Chem., 2009, 9(13), 1527-1537.
[http://dx.doi.org/10.2174/138955709790361557] [PMID: 20205634]
[52]
Huovinen, P. Resistance to trimethoprim-sulfamethoxazole. Clin. Infect. Dis., 2001, 32(11), 1608-1614.
[http://dx.doi.org/10.1086/320532] [PMID: 11340533]
[53]
Zarrouk, V.; Bozdogan, B.; Leclercq, R.; Garry, L.; Carbon, C.; Fantin, B. Influence of resistance to streptogramin A type antibiotics on the activity of quinupristin-dalfopristin in vitro and in experimental endocarditis due to Staphylococcus aureus. Antimicrob. Agents Chemother., 2000, 44(5), 1168-1173.
[http://dx.doi.org/10.1128/AAC.44.5.1168-1173.2000] [PMID: 10770747]
[54]
Ginsberg, A.M.; Spigelman, M. Challenges in tuberculosis drug research and development. Nat. Med., 2007, 13(3), 290-294.
[http://dx.doi.org/10.1038/nm0307-290] [PMID: 17342142]
[55]
Kaka, A.S.; Rueda, A.M.; Shelburne, S.A., III; Hulten, K.; Hamill, R.J.; Musher, D.M. Bactericidal activity of orally available agents against methicillin-resistant Staphylococcus aureus. J. Antimicrob. Chemother., 2006, 58(3), 680-683.
[http://dx.doi.org/10.1093/jac/dkl283] [PMID: 16840428]
[56]
Grim, S.A.; Rapp, R.P.; Martin, C.A.; Evans, M.E. Trimethoprim-sulfamethoxazole as a viable treatment option for infections caused by methicillin-resistant Staphylococcus aureus. Pharmacotherapy, 2005, 25(2), 253-264.
[http://dx.doi.org/10.1592/phco.25.2.253.56956] [PMID: 15767239]
[57]
Worthington, R.J.; Melander, C. Combination approaches to combat multidrug-resistant bacteria. Trends Biotechnol., 2013, 31(3), 177-184.
[http://dx.doi.org/10.1016/j.tibtech.2012.12.006] [PMID: 23333434]
[58]
Swoboda, J.G.; Campbell, J.; Meredith, T.C.; Walker, S. Wall teichoic acid function, biosynthesis, and inhibition. ChemBioChem, 2010, 11(1), 35-45.
[http://dx.doi.org/10.1002/cbic.200900557] [PMID: 19899094]
[59]
Weidenmaier, C.; Peschel, A. Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions. Nat. Rev. Microbiol., 2008, 6(4), 276-287.
[http://dx.doi.org/10.1038/nrmicro1861] [PMID: 18327271]
[60]
Ball, P. The clinical development and launch of amoxicillin/clavulanate for the treatment of a range of community-acquired infections. Int. J. Antimicrob. Agents, 2007, 30(2)(Suppl. 2), S113-S117.
[http://dx.doi.org/10.1016/j.ijantimicag.2007.07.037] [PMID: 17997283]
[61]
Walsh, C. Where will new antibiotics come from? Nat. Rev. Microbiol., 2003, 1(1), 65-70.
[http://dx.doi.org/10.1038/nrmicro727] [PMID: 15040181]
[62]
Lomovskaya, O.; Warren, M.S.; Lee, A.; Galazzo, J.; Fronko, R.; Lee, M.; Blais, J.; Cho, D.; Chamberland, S.; Renau, T.; Leger, R.; Hecker, S.; Watkins, W.; Hoshino, K.; Ishida, H.; Lee, V.J. Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: novel agents for combination therapy. Antimicrob. Agents Chemother., 2001, 45(1), 105-116.
[http://dx.doi.org/10.1128/AAC.45.1.105-116.2001] [PMID: 11120952]
[63]
Kalle, A.M.; Rizvi, A. Inhibition of bacterial multidrug resistance by celecoxib, a cyclooxygenase-2 inhibitor. Antimicrob. Agents Chemother., 2011, 55(1), 439-442.
[http://dx.doi.org/10.1128/AAC.00735-10] [PMID: 20937780]
[64]
Sabatini, S.; Gosetto, F.; Serritella, S.; Manfroni, G.; Tabarrini, O.; Iraci, N.; Brincat, J.P.; Carosati, E.; Villarini, M.; Kaatz, G.W.; Cecchetti, V. Pyrazolo[4,3-c][1,2]benzothiazines 5,5-dioxide: a promising new class of Staphylococcus aureus NorA efflux pump inhibitors. J. Med. Chem., 2012, 55(7), 3568-3572.
[http://dx.doi.org/10.1021/jm201446h] [PMID: 22432682]
[65]
Campbell, J.; Singh, A.K.; Santa Maria, J.P.J., Jr; Kim, Y.; Brown, S.; Swoboda, J.G.; Mylonakis, E.; Wilkinson, B.J.; Walker, S. Synthetic lethal compound combinations reveal a fundamental connection between wall teichoic acid and peptidoglycan biosyntheses in Staphylococcus aureus. ACS Chem. Biol., 2011, 6(1), 106-116.
[http://dx.doi.org/10.1021/cb100269f] [PMID: 20961110]
[66]
Farha, M.A.; Leung, A.; Sewell, E.W.; D’Elia, M.A.; Allison, S.E.; Ejim, L.; Pereira, P.M.; Pinho, M.G.; Wright, G.D.; Brown, E.D. Inhibition of WTA synthesis blocks the cooperative action of PBPs and sensitizes MRSA to β-lactams. ACS Chem. Biol., 2013, 8(1), 226-233.
[http://dx.doi.org/10.1021/cb300413m] [PMID: 23062620]
[67]
Sakoulas, G.; Olson, J.; Yim, J.; Singh, N.B.; Kumaraswamy, M.; Quach, D.T.; Rybak, M.J.; Pogliano, J.; Nizet, V. Cefazolin and Ertapenem, a Synergistic Combination Used To Clear Persistent Staphylococcus aureus Bacteremia. Antimicrob. Agents Chemother., 2016, 60(11), 6609-6618.
[http://dx.doi.org/10.1128/AAC.01192-16] [PMID: 27572414]
[68]
Barber, K.E.; Rybak, M.J.; Sakoulas, G. Vancomycin plus ceftaroline shows potent in vitro synergy and was successfully utilized to clear persistent daptomycin-non-susceptible MRSA bacteraemia. J. Antimicrob. Chemother., 2015, 70(1), 311-313.
[http://dx.doi.org/10.1093/jac/dku322] [PMID: 25125677]
[69]
Gritsenko, D.; Fedorenko, M.; Ruhe, J.J.; Altshuler, J. Combination Therapy With Vancomycin and Ceftaroline for Refractory Methicillin-resistant Staphylococcus aureus Bacteremia: A Case Series. Clin. Ther., 2017, 39(1), 212-218.
[http://dx.doi.org/10.1016/j.clinthera.2016.12.005] [PMID: 28038791]
[70]
Hagihara, M.; Wiskirchen, D.E.; Kuti, J.L.; Nicolau, D.P. In vitro pharmacodynamics of vancomycin and cefazolin alone and in combination against methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother., 2012, 56(1), 202-207.
[http://dx.doi.org/10.1128/AAC.05473-11] [PMID: 22006007]
[71]
Seibert, G.; Isert, D.; Klesel, N.; Limbert, M.; Markus, A.; Schrinner, E. The in vitro antibacterial activity of a combination of cefpirome or cefoperazone with vancomycin against enterococci and Staphylococcus aureus. J. Antimicrob. Chemother., 1992, 29(1)(Suppl. A), 25-30.
[http://dx.doi.org/10.1093/jac/29.suppl_A.25] [PMID: 1601753]
[72]
Carricajo, A.; Vermesch, R.; Aubert, G. In vitro activity of cefpirome and vancomycin in combination against gentamicin-susceptible and gentamicin-resistant Staphylococcus aureus. Clin. Microbiol. Infect., 2001, 7(4), 218-226.
[http://dx.doi.org/10.1046/j.1198-743x.2001.00238.x] [PMID: 11422245]
[73]
Leonard, S.N. Synergy between vancomycin and nafcillin against Staphylococcus aureus in an in vitro pharmacokinetic/pharmacodynamic model. PLoS One, 2012, 7(7), e42103-e42103.
[http://dx.doi.org/10.1371/journal.pone.0042103] [PMID: 22848719]
[74]
Zasowski, E.J.; Trinh, T.D.; Atwan, S.M.; Merzlyakova, M.; Langf, A.M.; Bhatia, S.; Rybak, M.J. The Impact of Concomitant Empiric Cefepime on Patient Outcomes of Methicillin-Resistant Staphylococcus aureus Bloodstream Infections Treated With Vancomycin. Open Forum Infect. Dis., 2019, 6(4), ofz079.
[http://dx.doi.org/10.1093/ofid/ofz079] [PMID: 30968053]
[75]
Lozniewski, A.; Lion, C.; Mory, F.; Weber, M. In vitro synergy between cefepime and vancomycin against methicillin-susceptible and -resistant Staphylococcus aureus and Staphylococcus epidermidis. J. Antimicrob. Chemother., 2001, 47(1), 83-86.
[http://dx.doi.org/10.1093/jac/47.1.83] [PMID: 11152435]
[76]
Nguyen, H.M.; Graber, C.J. Limitations of antibiotic options for invasive infections caused by methicillin-resistant Staphylococcus aureus: is combination therapy the answer? J. Antimicrob. Chemother., 2010, 65(1), 24-36.
[http://dx.doi.org/10.1093/jac/dkp377] [PMID: 19861337]
[77]
Rand, K.H.; Houck, H.J. Synergy of daptomycin with oxacillin and other beta-lactams against methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother., 2004, 48(8), 2871-2875.
[http://dx.doi.org/10.1128/AAC.48.8.2871-2875.2004] [PMID: 15273094]
[78]
Sakoulas, G.; Eliopoulos, G.M.; Alder, J.; Eliopoulos, C.T. Efficacy of daptomycin in experimental endocarditis due to methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother., 2003, 47(5), 1714-1718.
[http://dx.doi.org/10.1128/AAC.47.5.1714-1718.2003] [PMID: 12709345]
[79]
Silvestri, C.; Cirioni, O.; Arzeni, D.; Ghiselli, R.; Simonetti, O.; Orlando, F.; Ganzetti, G.; Staffolani, S.; Brescini, L.; Provinciali, M.; Offidani, A.; Guerrieri, M.; Giacometti, A. In vitro activity and in vivo efficacy of tigecycline alone and in combination with daptomycin and rifampin against Gram-positive cocci isolated from surgical wound infection. Eur. J. Clin. Microbiol. Infect. Dis., 2012, 31(8), 1759-1764.
[http://dx.doi.org/10.1007/s10096-011-1498-1] [PMID: 22160846]
[80]
Dhand, A.; Sakoulas, G. Daptomycin in combination with other antibiotics for the treatment of complicated methicillin-resistant Staphylococcus aureus bacteremia. Clin. Ther., 2014, 36(10), 1303-1316.
[http://dx.doi.org/10.1016/j.clinthera.2014.09.005] [PMID: 25444563]
[81]
Sakoulas, G.; Moise, P.A.; Casapao, A.M.; Nonejuie, P.; Olson, J.; Okumura, C.Y.M.; Rybak, M.J.; Kullar, R.; Dhand, A.; Rose, W.E.; Goff, D.A.; Bressler, A.M.; Lee, Y.; Pogliano, J.; Johns, S.; Kaatz, G.W.; Ebright, J.R.; Nizet, V. Antimicrobial salvage therapy for persistent staphylococcal bacteremia using daptomycin plus ceftaroline. Clin. Ther., 2014, 36(10), 1317-1333.
[http://dx.doi.org/10.1016/j.clinthera.2014.05.061] [PMID: 25017183]
[82]
Norden, C.W.; Shaffer, M. Treatment of experimental chronic osteomyelitis due to staphylococcus aureus with vancomycin and rifampin. J. Infect. Dis., 1983, 147(2), 352-357.
[http://dx.doi.org/10.1093/infdis/147.2.352] [PMID: 6827150]
[83]
Niska, J.A.; Shahbazian, J.H.; Ramos, R.I.; Francis, K.P.; Bernthal, N.M.; Miller, L.S. Vancomycin-rifampin combination therapy has enhanced efficacy against an experimental Staphylococcus aureus prosthetic joint infection. Antimicrob. Agents Chemother., 2013, 57(10), 5080-5086.
[http://dx.doi.org/10.1128/AAC.00702-13] [PMID: 23917317]
[84]
Dworkin, R.; Modin, G.; Kunz, S.; Rich, R.; Zak, O.; Sande, M. Comparative efficacies of ciprofloxacin, pefloxacin, and vancomycin in combination with rifampin in a rat model of methicillin-resistant Staphylococcus aureus chronic osteomyelitis. Antimicrob. Agents Chemother., 1990, 34(6), 1014-1016.
[http://dx.doi.org/10.1128/AAC.34.6.1014] [PMID: 2393259]
[85]
Baldoni, D.; Haschke, M.; Rajacic, Z.; Zimmerli, W.; Trampuz, A. Linezolid alone or combined with rifampin against methicillin-resistant Staphylococcus aureus in experimental foreign-body infection. Antimicrob. Agents Chemother., 2009, 53(3), 1142-1148.
[http://dx.doi.org/10.1128/AAC.00775-08] [PMID: 19075065]
[86]
Zarrouk, V.; Bozdogan, B.; Leclercq, R.; Garry, L.; Feger, C.; Carbon, C.; Fantin, B. Activities of the combination of quinupristin-dalfopristin with rifampin in vitro and in experimental endocarditis due to staphylococcus aureus strains with various phenotypes of resistance to macrolide-lincosamide-streptogramin antibiotics. Antimicrob. Agents Chemother., 2001, 45(4), 1244-1248.
[http://dx.doi.org/10.1128/AAC.45.4.1244-1248.2001] [PMID: 11257041]
[87]
Leijtens, B.; Elbers, J.B.W.; Sturm, P.D.; Kullberg, B.J.; Schreurs, B.W. Clindamycin-rifampin combination therapy for staphylococcal periprosthetic joint infections: a retrospective observational study. BMC Infect. Dis., 2017, 17(1), 321.
[http://dx.doi.org/10.1186/s12879-017-2429-2] [PMID: 28464821]
[88]
Jacqueline, C.; Caillon, J.; Grossi, O.; Le Mabecque, V.; Miegeville, A-F.; Bugnon, D.; Batard, E.; Potel, G. In vitro and in vivo assessment of linezolid combined with ertapenem: a highly synergistic combination against methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother., 2006, 50(7), 2547-2549.
[http://dx.doi.org/10.1128/AAC.01501-05] [PMID: 16801442]
[89]
Tin, S.; Lim, C.; Sakharkar, M.; Sakharkar, K. Synergistic Combinations of Chitosans and Antibiotics in Staphylococcus Aureus. Lett. Drug Des. Discov., 2009, 7(1), 31-35.
[http://dx.doi.org/10.2174/157018010789869406]
[90]
Gordillo Altamirano, F.L.; Barr, J.J. Phage Therapy in the Postantibiotic Era. Clin. Microbiol. Rev., 2019, 32(2), 1-25.
[http://dx.doi.org/10.1128/CMR.00066-18] [PMID: 30651225]
[91]
Kutateladze, M.; Adamia, R. Bacteriophages as potential new therapeutics to replace or supplement antibiotics. Trends Biotechnol., 2010, 28(12), 591-595.
[http://dx.doi.org/10.1016/j.tibtech.2010.08.001] [PMID: 20810181]
[92]
Schmelcher, M.; Donovan, D.M.; Loessner, M.J. Bacteriophage endolysins as novel antimicrobials. Future Microbiol., 2012, 7(10), 1147-1171.
[http://dx.doi.org/10.2217/fmb.12.97] [PMID: 23030422]
[93]
Young, R. Phage lysis: do we have the hole story yet? Curr. Opin. Microbiol., 2013, 16(6), 790-797.
[http://dx.doi.org/10.1016/j.mib.2013.08.008] [PMID: 24113139]
[94]
Wang, I.N.; Smith, D.L.; Young, R. Holins: The protein clocks of bacteriophage infections. Annu. Rev. Microbiol., 2000, 54, 799-825.
[http://dx.doi.org/10.1146/annurev.micro.54.1.799] [PMID: 11018145]
[95]
Lavigne, R.; Robben, J. Professor Dr. Richard Bruynoghe: A 1951 overview of his bacteriophage research spanning three decades. Bacteriophage, 2012, 2(1), 1-4.
[http://dx.doi.org/10.4161/bact.20024] [PMID: 22666651]
[96]
Becker, S.C.; Foster-Frey, J.; Stodola, A.J.; Anacker, D.; Donovan, D.M. Differentially conserved staphylococcal SH3b_5 cell wall binding domains confer increased staphylolytic and streptolytic activity to a streptococcal prophage endolysin domain. Gene, 2009, 443(1-2), 32-41.
[http://dx.doi.org/10.1016/j.gene.2009.04.023] [PMID: 19422893]
[97]
Donovan, D.M.; Foster-Frey, J.; Dong, S.; Rousseau, G.M.; Moineau, S.; Pritchard, D.G. The cell lysis activity of the Streptococcus agalactiae bacteriophage B30 endolysin relies on the cysteine, histidine-dependent amidohydrolase/peptidase domain. Appl. Environ. Microbiol., 2006, 72(7), 5108-5112.
[http://dx.doi.org/10.1128/AEM.03065-05] [PMID: 16820517]
[98]
Schmelcher, M.; Loessner, M.J. Bacteriophage endolysins: Applications for food safety. Curr. Opin. Biotechnol., 2016, 37, 76-87.
[http://dx.doi.org/10.1016/j.copbio.2015.10.005] [PMID: 26707470]
[99]
Ajuebor, J.; McAuliffe, O.; O’Mahony, J.; Ross, R.P.; Hill, C.; Coffey, A. Bacteriophage endolysins and their applications. Sci. Prog., 2016, 99(2), 183-199.
[http://dx.doi.org/10.3184/003685016X14627913637705] [PMID: 28742472]
[100]
Hosseini, E.S.; Moniri, R.; Goli, Y.D.; Kashani, H.H. Purification of Antibacterial CHAPK Protein Using a Self-Cleaving Fusion Tag and Its activity against methicillin-resistant staphylococcus aureus. Probiotics Antimicrob. Proteins, 2016, 8(4), 202-210.
[http://dx.doi.org/10.1007/s12602-016-9236-8] [PMID: 27797005]
[101]
Borysowski, J.; Weber-Dabrowska, B.; Górski, A. Bacteriophage endolysins as a novel class of antibacterial agents. Exp. Biol. Med. (Maywood), 2006, 231(4), 366-377.
[http://dx.doi.org/10.1177/153537020623100402] [PMID: 16565432]
[102]
Kusuma, C.; Jadanova, A.; Chanturiya, T.; Kokai-Kun, J.F. Lysostaphin-resistant variants of Staphylococcus aureus demonstrate reduced fitness in vitro and in vivo. Antimicrob. Agents Chemother., 2007, 51(2), 475-482.
[http://dx.doi.org/10.1128/AAC.00786-06] [PMID: 17101683]
[103]
Schmelcher, M.; Shen, Y.; Nelson, D.C.; Eugster, M.R.; Eichenseher, F.; Hanke, D.C.; Loessner, M.J.; Dong, S.; Pritchard, D.G.; Lee, J.C.; Becker, S.C.; Foster-Frey, J.; Donovan, D.M. Evolutionarily distinct bacteriophage endolysins featuring conserved peptidoglycan cleavage sites protect mice from MRSA infection. J. Antimicrob. Chemother., 2015, 70(5), 1453-1465.
[http://dx.doi.org/10.1093/jac/dku552] [PMID: 25630640]
[104]
Navarre, W.W.; Ton-That, H.; Faull, K.F.; Schneewind, O. Multiple enzymatic activities of the murein hydrolase from staphylococcal phage phi11. Identification of a D-alanyl-glycine endopeptidase activity. J. Biol. Chem., 1999, 274(22), 15847-15856.
[http://dx.doi.org/10.1074/jbc.274.22.15847] [PMID: 10336488]
[105]
Gründling, A.; Schneewind, O. Cross-linked peptidoglycan mediates lysostaphin binding to the cell wall envelope of Staphylococcus aureus. J. Bacteriol., 2006, 188(7), 2463-2472.
[http://dx.doi.org/10.1128/JB.188.7.2463-2472.2006] [PMID: 16547033]
[106]
Roach, D.R.; Donovan, D.M. Antimicrobial bacteriophage-derived proteins and therapeutic applications. Bacteriophage, 2015, 5(3), e1062590-e1062590.
[http://dx.doi.org/10.1080/21597081.2015.1062590] [PMID: 26442196]
[107]
Sanz-Gaitero, M.; Keary, R.; Garcia-Doval, C.; Coffey, A.; van Raaij, M.J. Crystal structure of the lytic CHAP(K) domain of the endolysin LysK from Staphylococcus aureus bacteriophage K. Virol. J., 2014, 11, 133.
[http://dx.doi.org/10.1186/1743-422X-11-133] [PMID: 25064136]
[108]
Becker, S.C.; Swift, S.; Korobova, O.; Schischkova, N.; Kopylov, P.; Donovan, D.M.; Abaev, I. Lytic activity of the staphylolytic Twort phage endolysin CHAP domain is enhanced by the SH3b cell wall binding domain. FEMS Microbiol. Lett., 2015, 362(1), 1-8.
[http://dx.doi.org/10.1093/femsle/fnu019] [PMID: 25790497]
[109]
Rashel, M.; Uchiyama, J.; Ujihara, T.; Uehara, Y.; Kuramoto, S.; Sugihara, S.; Yagyu, K.; Muraoka, A.; Sugai, M.; Hiramatsu, K.; Honke, K.; Matsuzaki, S. Efficient elimination of multidrug-resistant Staphylococcus aureus by cloned lysin derived from bacteriophage phi MR11. J. Infect. Dis., 2007, 196(8), 1237-1247.
[http://dx.doi.org/10.1086/521305] [PMID: 17955443]
[110]
O’Flaherty, S.; Coffey, A.; Meaney, W.; Fitzgerald, G.F.; Ross, R.P. The recombinant phage lysin LysK has a broad spectrum of lytic activity against clinically relevant staphylococci, including methicillin-resistant Staphylococcus aureus. J. Bacteriol., 2005, 187(20), 7161-7164.
[http://dx.doi.org/10.1128/JB.187.20.7161-7164.2005] [PMID: 16199588]
[111]
O’Flaherty, S.; Coffey, A.; Edwards, R.; Meaney, W.; Fitzgerald, G.F.; Ross, R.P. Genome of staphylococcal phage K: a new lineage of Myoviridae infecting gram-positive bacteria with a low G+C content. J. Bacteriol., 2004, 186(9), 2862-2871.
[http://dx.doi.org/10.1128/JB.186.9.2862-2871.2004] [PMID: 15090528]
[112]
Horgan, M.; O’Flynn, G.; Garry, J.; Cooney, J.; Coffey, A.; Fitzgerald, G.F.; Ross, R.P.; McAuliffe, O. Phage lysin LysK can be truncated to its CHAP domain and retain lytic activity against live antibiotic-resistant staphylococci. Appl. Environ. Microbiol., 2009, 75(3), 872-874.
[http://dx.doi.org/10.1128/AEM.01831-08] [PMID: 19047377]
[113]
Kashani, H.H.; Moniri, R. expression of recombinant pET22b-LysK-Cysteine/Histidine-dependent amidohydrolase/peptidase bacteriophage therapeutic protein in escherichia coli BL21 (DE3). Osong Public Health Res. Perspect., 2015, 6(4), 256-260.
[http://dx.doi.org/10.1016/j.phrp.2015.08.001] [PMID: 26473093]
[114]
Wu, J.A.; Kusuma, C.; Mond, J.J.; Kokai-Kun, J.F. Lysostaphin disrupts Staphylococcus aureus and Staphylococcus epidermidis biofilms on artificial surfaces. Antimicrob. Agents Chemother., 2003, 47(11), 3407-3414.
[http://dx.doi.org/10.1128/AAC.47.11.3407-3414.2003] [PMID: 14576095]
[115]
Dajcs, J.J.; Thibodeaux, B.A.; Girgis, D.O.; Shaffer, M.D.; Delvisco, S.M.; O’Callaghan, R.J. Immunity to lysostaphin and its therapeutic value for ocular MRSA infections in the rabbit. Invest. Ophthalmol. Vis. Sci., 2002, 43(12), 3712-3716.
[PMID: 12454041]
[116]
Zhao, H.; Brooks, S.A.; Eszterhas, S.; Heim, S.; Li, L.; Xiong, Y.Q.; Fang, Y.; Kirsch, J.R.; Verma, D.; Bailey-Kellogg, C.; Griswold, K.E. Globally deimmunized lysostaphin evades human immune surveillance and enables highly efficacious repeat dosing. Sci. Adv., 2020, 6(36), 1-12.
[http://dx.doi.org/10.1126/sciadv.abb9011] [PMID: 32917596]
[117]
Ram, G.; Ross, H.F.; Novick, R.P.; Rodriguez-Pagan, I.; Jiang, D. Conversion of staphylococcal pathogenicity islands to CRISPR-carrying antibacterial agents that cure infections in mice. Nat. Biotechnol., 2018, 36(10), 971-976.
[http://dx.doi.org/10.1038/nbt.4203] [PMID: 30247487]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy