Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Roles of Cannabidiol in the Treatment and Prevention of Alzheimer’s Disease by Multi-target Actions

Author(s): Xiao- Bei Zhang, Jintao Li, Juanhua Gu and Yue-Qin Zeng*

Volume 22, Issue 1, 2022

Published on: 31 March, 2021

Page: [43 - 51] Pages: 9

DOI: 10.2174/1389557521666210331162857

Price: $65

Abstract

Abstract: Alzheimer’s Disease (AD) is one of the most common neurodegenerative diseases with chronic, progressive, and irreversible characteristics, affecting nearly 50 million older adults worldwide. The pathogenesis of AD includes the formation of senile plaques, the abnormal aggregation of tau protein and the gradual degeneration and death of cerebral cortical cells. The main symptoms are memory loss, cognitive decline and behavioral disorders. Studies indicate that cannabidiol (CBD) possesses various pharmacological activities, including anti-inflammatory, anti-oxidation and neuroprotective activities. It has been suggested as a potential multi-target medicine for the treatment of AD. In this review, we aim to summarize the underlying mechanisms and protective effects of CBD on signaling pathways and central receptors involved in the pathogenesis of AD, including the endocannabinoid system (eCBs), the Transient receptor potential vanilloid type 1(TRPV1) receptor, and the Peroxisome Proliferator-Activated Receptor (PPAR) receptor.

Keywords: Alzheimer’s Disease, Cannabidiol, Endocannabinoid system, TRPV1 receptor, PPAR receptor.

Graphical Abstract

Animated Abstract
[1]
2016 Alzheimer’s disease facts and figures. Alzheimers Dement., 2016, 12(4), 459-509.
[http://dx.doi.org/10.1016/j.jalz.2016.03.001] [PMID: 27570871]
[2]
van Dyck, C.H. Anti-Amyloid-β Monoclonal Antibodies for Alzheimer’s Disease: Pitfalls and Promise. Biol. Psychiatry, 2018, 83(4), 311-319.
[http://dx.doi.org/10.1016/j.biopsych.2017.08.010] [PMID: 28967385]
[3]
Sun, Z.W.; Hwang, E.; Lee, H.J.; Lee, T.Y.; Song, H.G.; Park, S.Y.; Shin, H.S.; Lee, D.G.; Yi, T.H. Effects of Galla chinensis extracts on UVB-irradiated MMP-1 production in hairless mice. J. Nat. Med., 2015, 69(1), 22-34.
[http://dx.doi.org/10.1007/s11418-014-0856-6] [PMID: 25227288]
[4]
Strömberg, K.; Eketjäll, S.; Georgievska, B.; Tunblad, K.; Eliason, K.; Olsson, F.; Radesäter, A.C.; Klintenberg, R.; Arvidsson, P.I.; von Berg, S.; Fälting, J.; Cowburn, R.F.; Dabrowski, M. Combining an amyloid-beta (Aβ) cleaving enzyme inhibitor with a γ-secretase modulator results in an additive reduction of Aβ production. FEBS J., 2015, 282(1), 65-73.
[http://dx.doi.org/10.1111/febs.13103] [PMID: 25303711]
[5]
Serý, O.; Povová, J.; Míšek, I.; Pešák, L.; Janout, V. Molecular mechanisms of neuropathological changes in Alzheimer’s disease: A review. Folia Neuropathol., 2013, 51(1), 1-9.
[http://dx.doi.org/10.5114/fn.2013.34190] [PMID: 23553131]
[6]
Qiu, T.; Liu, Q.; Chen, Y.X.; Zhao, Y.F.; Li, Y.M. Aβ42 and Aβ40: Similarities and differences. J. Pept. Sci., 2015, 21(7), 522-529.
[http://dx.doi.org/10.1002/psc.2789] [PMID: 26018760]
[7]
Santacruz, K.; Lewis, J.; Spires, T.; Paulson, J.; Kotilinek, L.; Ingelsson, M.; Guimaraes, A.; DeTure, M.; Ramsden, M.; McGowan, E.; Forster, C.; Yue, M.; Orne, J.; Janus, C.; Mariash, A.; Kuskowski, M.; Hyman, B.; Hutton, M.; Ashe, K.H. Tau suppression in a neurodegenerative mouse model improves memory function. Science, 2005, 309(5733), 476-481.
[http://dx.doi.org/10.1126/science.1113694] [PMID: 16020737]
[8]
Oddo, S.; Vasilevko, V.; Caccamo, A.; Kitazawa, M.; Cribbs, D.H.; LaFerla, F.M. Reduction of soluble Abeta and tau, but not soluble Abeta alone, ameliorates cognitive decline in transgenic mice with plaques and tangles. J. Biol. Chem., 2006, 281(51), 39413-39423.
[http://dx.doi.org/10.1074/jbc.M608485200] [PMID: 17056594]
[9]
Khlistunova, I.; Biernat, J.; Wang, Y.; Pickhardt, M.; von Bergen, M.; Gazova, Z.; Mandelkow, E.; Mandelkow, E.M. Inducible expression of Tau repeat domain in cell models of tauopathy: aggregation is toxic to cells but can be reversed by inhibitor drugs. J. Biol. Chem., 2006, 281(2), 1205-1214.
[http://dx.doi.org/10.1074/jbc.M507753200] [PMID: 16246844]
[10]
Querfurth, H.W.; LaFerla, F.M. Alzheimer’s disease. N. Engl. J. Med., 2010, 362(4), 329-344.
[http://dx.doi.org/10.1056/NEJMra0909142] [PMID: 20107219]
[11]
Mangialasche, F.; Solomon, A.; Winblad, B.; Mecocci, P.; Kivipelto, M. Alzheimer’s disease: clinical trials and drug development. Lancet Neurol., 2010, 9(7), 702-716.
[http://dx.doi.org/10.1016/S1474-4422(10)70119-8] [PMID: 20610346]
[12]
Mancuso, C.; Siciliano, R.; Barone, E.; Butterfield, D.A.; Preziosi, P. Pharmacologists and Alzheimer disease therapy: to boldly go where no scientist has gone before. Expert Opin. Investig. Drugs, 2011, 20(9), 1243-1261.
[http://dx.doi.org/10.1517/13543784.2011.601740] [PMID: 21810032]
[13]
Kaur, R.; Ambwani, S.R.; Singh, S. Endocannabinoid System: A Multi-Facet Therapeutic Target. Curr. Clin. Pharmacol., 2016, 11(2), 110-117.
[http://dx.doi.org/10.2174/1574884711666160418105339] [PMID: 27086601]
[14]
Van der Schyf, C.J.; Geldenhuys, W.J. Multimodal drugs and their future for Alzheimer’s and Parkinson’s disease. Int. Rev. Neurobiol., 2011, 100, 107-125.
[http://dx.doi.org/10.1016/B978-0-12-386467-3.00006-6] [PMID: 21971005]
[15]
Bedse, G.; Romano, A.; Lavecchia, A.M.; Cassano, T.; Gaetani, S. The role of endocannabinoid signaling in the molecular mechanisms of neurodegeneration in Alzheimer’s disease. J. Alzheimers Dis., 2015, 43(4), 1115-1136.
[http://dx.doi.org/10.3233/JAD-141635] [PMID: 25147120]
[16]
Andre, C.M.; Hausman, J.F.; Guerriero, G. Cannabis sativa: The Plant of the Thousand and One Molecules. Front. Plant Sci., 2016, 7, 19.
[http://dx.doi.org/10.3389/fpls.2016.00019] [PMID: 26870049]
[17]
Baron, E.P. Comprehensive review of medicinal marijuana, cannabinoids, and therapeutic implications in medicine and headache: what a long strange trip it’s been…. Headache, 2015, 55(6), 885-916.
[http://dx.doi.org/10.1111/head.12570] [PMID: 26015168]
[18]
Kim, S.H.; Yang, J.W.; Kim, K.H.; Kim, J.U.; Yook, T.H. A review on studies of marijuana for Alzheimer’s disease - Focusing on CBD, THC. J. Pharmacopuncture, 2019, 22(4), 225-230.
[PMID: 31970019]
[19]
Mukhopadhyay, P.; Rajesh, M.; Horváth, B.; Bátkai, S.; Park, O.; Tanchian, G.; Gao, R.Y.; Patel, V.; Wink, D.A.; Liaudet, L.; Haskó, G.; Mechoulam, R.; Pacher, P. Cannabidiol protects against hepatic ischemia/reperfusion injury by attenuating inflammatory signaling and response, oxidative/nitrative stress, and cell death. Free Radic. Biol. Med., 2011, 50(10), 1368-1381.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.02.021] [PMID: 21362471]
[20]
Esposito, G.; De Filippis, D.; Maiuri, M.C.; De Stefano, D.; Carnuccio, R.; Iuvone, T. Cannabidiol inhibits inducible nitric oxide synthase protein expression and nitric oxide production in beta-amyloid stimulated PC12 neurons through p38 MAP kinase and NF-kappaB involvement. Neurosci. Lett., 2006, 399(1-2), 91-95.
[http://dx.doi.org/10.1016/j.neulet.2006.01.047] [PMID: 16490313]
[21]
Martín-Moreno, A.M.; Reigada, D.; Ramírez, B.G.; Mechoulam, R.; Innamorato, N.; Cuadrado, A.; de Ceballos, M.L. Cannabidiol and other cannabinoids reduce microglial activation in vitro and in vivo: relevance to Alzheimer’s disease. Mol. Pharmacol., 2011, 79(6), 964-973.
[http://dx.doi.org/10.1124/mol.111.071290] [PMID: 21350020]
[22]
Janefjord, E.; Mååg, J.L.; Harvey, B.S.; Smid, S.D. Cannabinoid effects on β amyloid fibril and aggregate formation, neuronal and microglial-activated neurotoxicity in vitro. Cell. Mol. Neurobiol., 2014, 34(1), 31-42.
[http://dx.doi.org/10.1007/s10571-013-9984-x] [PMID: 24030360]
[23]
Calapai, F.; Cardia, L.; Sorbara, E.E.; Navarra, M.; Gangemi, S.; Calapai, G.; Mannucci, C. Cannabinoids, Blood-Brain Barrier, and Brain Disposition. Pharmaceutics, 2020, 12(3), E265.
[http://dx.doi.org/10.3390/pharmaceutics12030265] [PMID: 32183416]
[24]
Talarico, G.; Trebbastoni, A.; Bruno, G.; de Lena, C. Modulation of the Cannabinoid System: A New Perspective for the Treatment of the Alzheimer’s Disease. Curr. Neuropharmacol., 2019, 17(2), 176-183.
[http://dx.doi.org/10.2174/1570159X16666180702144644] [PMID: 29962346]
[25]
Mackie, K.; Stella, N. Cannabinoid receptors and endocannabinoids: evidence for new players. AAPS J., 2006, 8(2), E298-E306.
[http://dx.doi.org/10.1007/BF02854900] [PMID: 16796380]
[26]
Ying, S.W.; Futter, M.; Rosenblum, K.; Webber, M.J.; Hunt, S.P.; Bliss, T.V.; Bramham, C.R. Brain-derived neurotrophic factor induces long-term potentiation in intact adult hippocampus: requirement for ERK activation coupled to CREB and upregulation of Arc synthesis. J. Neurosci., 2002, 22(5), 1532-1540.
[http://dx.doi.org/10.1523/JNEUROSCI.22-05-01532.2002] [PMID: 11880483]
[27]
Autry, A.E.; Monteggia, L.M. Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol. Rev., 2012, 64(2), 238-258.
[http://dx.doi.org/10.1124/pr.111.005108] [PMID: 22407616]
[28]
Park, H.; Poo, M.M. Neurotrophin regulation of neural circuit development and function. Nat. Rev. Neurosci., 2013, 14(1), 7-23.
[http://dx.doi.org/10.1038/nrn3379] [PMID: 23254191]
[29]
He, J.C.; Neves, S.R.; Jordan, J.D.; Iyengar, R. Role of the Go/i signaling network in the regulation of neurite outgrowth. Can. J. Physiol. Pharmacol., 2006, 84(7), 687-694.
[http://dx.doi.org/10.1139/y06-025] [PMID: 16998532]
[30]
Cabral, G.A.; Griffin-Thomas, L. Emerging role of the cannabinoid receptor CB2 in immune regulation: therapeutic prospects for neuroinflammation. Expert Rev. Mol. Med., 2009.11e3
[http://dx.doi.org/10.1017/S1462399409000957] [PMID: 19152719]
[31]
Benito, C.; Núñez, E.; Tolón, R.M.; Carrier, E.J.; Rábano, A.; Hillard, C.J.; Romero, J. Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer’s disease brains. J. Neurosci., 2003, 23(35), 11136-11141.
[http://dx.doi.org/10.1523/JNEUROSCI.23-35-11136.2003] [PMID: 14657172]
[32]
Mecha, M.; Feliú, A.; Carrillo-Salinas, F.J.; Rueda-Zubiaurre, A.; Ortega-Gutiérrez, S.; de Sola, R.G.; Guaza, C. Endocannabinoids drive the acquisition of an alternative phenotype in microglia. Brain Behav. Immun., 2015, 49, 233-245.
[http://dx.doi.org/10.1016/j.bbi.2015.06.002] [PMID: 26086345]
[33]
Rodríguez-Cueto, C.; Benito, C.; Fernández-Ruiz, J.; Romero, J.; Hernández-Gálvez, M.; Gómez-Ruiz, M. Changes in CB(1) and CB(2) receptors in the post-mortem cerebellum of humans affected by spinocerebellar ataxias. Br. J. Pharmacol., 2014, 171(6), 1472-1489.
[http://dx.doi.org/10.1111/bph.12283] [PMID: 23808969]
[34]
Pertwee, R.G. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: delta9-tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabivarin. Br. J. Pharmacol., 2008, 153(2), 199-215.
[http://dx.doi.org/10.1038/sj.bjp.0707442] [PMID: 17828291]
[35]
Aso, E.; Ferrer, I. Cannabinoids for treatment of Alzheimer’s disease: moving toward the clinic. Front. Pharmacol., 2014, 5, 37.
[http://dx.doi.org/10.3389/fphar.2014.00037] [PMID: 24634659]
[36]
Lu, H.C.; Mackie, K. An Introduction to the Endogenous Cannabinoid System. Biol. Psychiatry, 2016, 79(7), 516-525.
[http://dx.doi.org/10.1016/j.biopsych.2015.07.028] [PMID: 26698193]
[37]
Pertwee, R.G. Endocannabinoids and Their Pharmacological Actions. Handb. Exp. Pharmacol., 2015, 231, 1-37.
[http://dx.doi.org/10.1007/978-3-319-20825-1_1] [PMID: 26408156]
[38]
Howlett, A.C.; Reggio, P.H.; Childers, S.R.; Hampson, R.E.; Ulloa, N.M.; Deutsch, D.G. Endocannabinoid tone versus constitutive activity of cannabinoid receptors. Br. J. Pharmacol., 2011, 163(7), 1329-1343.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01364.x] [PMID: 21545414]
[39]
Lu, Y.; Anderson, H.D. Cannabinoid signaling in health and disease. Can. J. Physiol. Pharmacol., 2017, 95(4), 311-327.
[http://dx.doi.org/10.1139/cjpp-2016-0346] [PMID: 28263083]
[40]
Núñez, E.; Benito, C.; Tolón, R.M.; Hillard, C.J.; Griffin, W.S.; Romero, J. Glial expression of cannabinoid CB(2) receptors and fatty acid amide hydrolase are beta amyloid-linked events in Down’s syndrome. Neuroscience, 2008, 151(1), 104-110.
[http://dx.doi.org/10.1016/j.neuroscience.2007.10.029] [PMID: 18068305]
[41]
Koppel, J.; Davies, P. Targeting the endocannabinoid system in Alzheimer’s disease. J. Alzheimers Dis., 2008, 15(3), 495-504.
[http://dx.doi.org/10.3233/JAD-2008-15315] [PMID: 18997302]
[42]
Pazos, M.R.; Núñez, E.; Benito, C.; Tolón, R.M.; Romero, J. Role of the endocannabinoid system in Alzheimer’s disease: new perspectives. Life Sci., 2004, 75(16), 1907-1915.
[http://dx.doi.org/10.1016/j.lfs.2004.03.026] [PMID: 15306158]
[43]
Fogaça, M.V.; Campos, A.C.; Coelho, L.D.; Duman, R.S.; Guimarães, F.S. The anxiolytic effects of cannabidiol in chronically stressed mice are mediated by the endocannabinoid system: Role of neurogenesis and dendritic remodeling. Neuropharmacology, 2018, 135, 22-33.
[http://dx.doi.org/10.1016/j.neuropharm.2018.03.001] [PMID: 29510186]
[44]
Hill, M.N.; Hillard, C.J.; McEwen, B.S. Alterations in corticolimbic dendritic morphology and emotional behavior in cannabinoid CB1 receptor-deficient mice parallel the effects of chronic stress. Cereb. Cortex, 2011, 21(9), 2056-2064.
[http://dx.doi.org/10.1093/cercor/bhq280] [PMID: 21263035]
[45]
Monory, K.; Polack, M.; Remus, A.; Lutz, B.; Korte, M. Cannabinoid CB1 receptor calibrates excitatory synaptic balance in the mouse hippocampus. J. Neurosci., 2015, 35(9), 3842-3850.
[http://dx.doi.org/10.1523/JNEUROSCI.3167-14.2015] [PMID: 25740514]
[46]
Li, Y.; Kim, J. Deletion of CB2 cannabinoid receptors reduces synaptic transmission and long-term potentiation in the mouse hippocampus. Hippocampus, 2016, 26(3), 275-281.
[http://dx.doi.org/10.1002/hipo.22558] [PMID: 26663094]
[47]
Kozela, E.; Juknat, A.; Vogel, Z. Modulation of Astrocyte Activity by Cannabidiol, a Nonpsychoactive Cannabinoid. Int. J. Mol. Sci., 2017, 18(8), E1669.
[http://dx.doi.org/10.3390/ijms18081669] [PMID: 28788104]
[48]
Wu, J.; Bie, B.; Yang, H.; Xu, J.J.; Brown, D.L.; Naguib, M. Activation of the CB2 receptor system reverses amyloid-induced memory deficiency. Neurobiol. Aging, 2013, 34(3), 791-804.
[http://dx.doi.org/10.1016/j.neurobiolaging.2012.06.011] [PMID: 22795792]
[49]
Juknat, A.; Pietr, M.; Kozela, E.; Rimmerman, N.; Levy, R.; Gao, F.; Coppola, G.; Geschwind, D.; Vogel, Z. Microarray and pathway analysis reveal distinct mechanisms underlying cannabinoid-mediated modulation of LPS-induced activation of BV-2 microglial cells. PLoS One, 2013, 8(4), e61462.
[http://dx.doi.org/10.1371/journal.pone.0061462] [PMID: 23637839]
[50]
Giudetti, A.M.; Salzet, M.; Cassano, T. Oxidative stress in aging brain: nutritional and pharmacological interventions for neurodegenerative disorders. Oxid. Med. Cell. Longev., 2018., 20183416028.
[http://dx.doi.org/10.1155/2018/3416028] [PMID: 29785243]
[51]
Vallée, A.; Lecarpentier, Y.; Guillevin, R.; Vallée, J.N. Effects of cannabidiol interactions with Wnt/β-catenin pathway and PPARγ on oxidative stress and neuroinflammation in Alzheimer’s disease. Acta Biochim. Biophys. Sin. (Shanghai), 2017, 49(10), 853-866.
[http://dx.doi.org/10.1093/abbs/gmx073] [PMID: 28981597]
[52]
Vendel, E.; de Lange, E.C. Functions of the CB1 and CB 2 receptors in neuroprotection at the level of the blood-brain barrier. Neuromolecular Med., 2014, 16(3), 620-642.
[http://dx.doi.org/10.1007/s12017-014-8314-x] [PMID: 24929655]
[53]
Zenaro, E.; Piacentino, G.; Constantin, G. The blood-brain barrier in Alzheimer’s disease. Neurobiol. Dis., 2017, 107, 41-56.
[http://dx.doi.org/10.1016/j.nbd.2016.07.007] [PMID: 27425887]
[54]
Persidsky, Y.; Ramirez, S.H.; Haorah, J.; Kanmogne, G.D. Blood-brain barrier: structural components and function under physiologic and pathologic conditions. J. Neuroimmune Pharmacol., 2006, 1(3), 223-236.
[http://dx.doi.org/10.1007/s11481-006-9025-3] [PMID: 18040800]
[55]
Pytel, P.; Alexander, J.J. Pathogenesis of septic encephalopathy. Curr. Opin. Neurol., 2009, 22(3), 283-287.
[http://dx.doi.org/10.1097/WCO.0b013e32832b3101] [PMID: 19387342]
[56]
Nieto-Posadas, A.; Jara-Oseguera, A.; Rosenbaum, T. TRP channel gating physiology. Curr. Top. Med. Chem., 2011, 11(17), 2131-2150.
[http://dx.doi.org/10.2174/156802611796904870] [PMID: 21671880]
[57]
Doñate-Macián, P.; Perálvarez-Marín, A. Dissecting domain-specific evolutionary pressure profiles of transient receptor potential vanilloid subfamily members 1 to 4. PLoS One, 2014, 9(10), e110715.
[http://dx.doi.org/10.1371/journal.pone.0110715] [PMID: 25333484]
[58]
Kim, J.; Lee, S.; Kim, J.; Ham, S.; Park, J.H.Y.; Han, S.; Jung, Y.K.; Shim, I.; Han, J.S.; Lee, K.W.; Kim, J. Ca2+-permeable TRPV1 pain receptor knockout rescues memory deficits and reduces amyloid-β and tau in a mouse model of Alzheimer’s disease. Hum. Mol. Genet., 2020, 29(2), 228-237.
[http://dx.doi.org/10.1093/hmg/ddz276] [PMID: 31814000]
[59]
Edwards, J.G. TRPV1 in the central nervous system: synaptic plasticity, function, and pharmacological implications. Prog. Drug Res., 2014, 68, 77-104.
[http://dx.doi.org/10.1007/978-3-0348-0828-6_3] [PMID: 24941665]
[60]
Martins, D.; Tavares, I.; Morgado, C. “Hotheaded”: the role OF TRPV1 in brain functions. Neuropharmacology, 2014, 85, 151-157.
[http://dx.doi.org/10.1016/j.neuropharm.2014.05.034] [PMID: 24887171]
[61]
Gupta, S.; Sharma, B. Pharmacological benefits of agomelatine and vanillin in experimental model of Huntington’s disease. Pharmacol. Biochem. Behav., 2014, 122, 122-135.
[http://dx.doi.org/10.1016/j.pbb.2014.03.022] [PMID: 24704436]
[62]
Borghi, S.M.; Carvalho, T.T.; Staurengo-Ferrari, L.; Hohmann, M.S.; Pinge-Filho, P.; Casagrande, R.; Verri, W.A. Jr Vitexin inhibits inflammatory pain in mice by targeting TRPV1, oxidative stress, and cytokines. J. Nat. Prod., 2013, 76(6), 1141-1149.
[http://dx.doi.org/10.1021/np400222v] [PMID: 23742617]
[63]
Gupta, S.; Sharma, B.; Singh, P.; Sharma, B.M. Modulation of transient receptor potential vanilloid subtype 1 (TRPV1) and norepinephrine transporters (NET) protect against oxidative stress, cellular injury, and vascular dementia. Curr. Neurovasc. Res., 2014, 11(2), 94-106.
[http://dx.doi.org/10.2174/1567202611666140305221854] [PMID: 24597602]
[64]
Wanner, S.P.; Garami, A.; Pakai, E.; Oliveira, D.L.; Gavva, N.R.; Coimbra, C.C.; Romanovsky, A.A. Aging reverses the role of the transient receptor potential vanilloid-1 channel in systemic inflammation from anti-inflammatory to proinflammatory. Cell Cycle, 2012, 11(2), 343-349.
[http://dx.doi.org/10.4161/cc.11.2.18772] [PMID: 22214765]
[65]
Chen, L.; Huang, Z.; Du, Y.; Fu, M.; Han, H.; Wang, Y.; Dong, Z. Capsaicin Attenuates Amyloid-β-Induced Synapse Loss and Cognitive Impairments in Mice. J. Alzheimers Dis., 2017, 59(2), 683-694.
[http://dx.doi.org/10.3233/JAD-170337] [PMID: 28671132]
[66]
Du, Y.; Fu, M.; Huang, Z.; Tian, X.; Li, J.; Pang, Y.; Song, W.; Tian, Wang Y.; Dong, Z. TRPV1 activation alleviates cognitive and synaptic plasticity impairments through inhibiting AMPAR endocytosis in APP23/PS45 mouse model of Alzheimer’s disease. Aging Cell, 2020, 19(3), e13113.
[http://dx.doi.org/10.1111/acel.13113] [PMID: 32061032]
[67]
Takahashi, N.; Mori, Y. TRP channels as sensors and signal integrators of redox status changes. Front. Pharmacol., 2011, 2, 58.
[http://dx.doi.org/10.3389/fphar.2011.00058] [PMID: 22016736]
[68]
Libro, R.; Diomede, F.; Scionti, D.; Piattelli, A.; Grassi, G.; Pollastro, F.; Bramanti, P.; Mazzon, E.; Trubiani, O. cannabidiol modulates the expression of Alzheimer’s disease-related genes in mesenchymal stem cells. Int. J. Mol. Sci., 2016, 18(1), E26.
[http://dx.doi.org/10.3390/ijms18010026] [PMID: 28025562]
[69]
Gouras, G.K.; Almeida, C.G.; Takahashi, R.H. Intraneuronal Abeta accumulation and origin of plaques in Alzheimer’s disease. Neurobiol. Aging, 2005, 26(9), 1235-1244.
[http://dx.doi.org/10.1016/j.neurobiolaging.2005.05.022] [PMID: 16023263]
[70]
Selkoe, D.J. Alzheimer’s disease results from the cerebral accumulation and cytotoxicity of amyloid beta-protein. J. Alzheimers Dis., 2001, 3(1), 75-80.
[http://dx.doi.org/10.3233/JAD-2001-3111] [PMID: 12214075]
[71]
Hooper, C.; Killick, R.; Lovestone, S. The GSK3 hypothesis of Alzheimer’s disease. J. Neurochem., 2008, 104(6), 1433-1439.
[http://dx.doi.org/10.1111/j.1471-4159.2007.05194.x] [PMID: 18088381]
[72]
Cassano, T.; Villani, R.; Pace, L.; Carbone, A.; Bukke, V.N.; Orkisz, S.; Avolio, C.; Serviddio, G. From Cannabis sativa to cannabidiol: promising therapeutic candidate for the treatment of neurodegenerative diseases. Front. Pharmacol., 2020, 11, 124.
[http://dx.doi.org/10.3389/fphar.2020.00124] [PMID: 32210795]
[73]
Heneka, M.T.; Landreth, G.E. PPARs in the brain. Biochim. Biophys. Acta, 2007, 1771(8), 1031-1045.
[http://dx.doi.org/10.1016/j.bbalip.2007.04.016] [PMID: 17569578]
[74]
Yu, X.H.; Zheng, X.L.; Tang, C.K. Peroxisome proliferator-activated receptor α in lipid metabolism and atherosclerosis. Adv. Clin. Chem., 2015, 71, 171-203.
[http://dx.doi.org/10.1016/bs.acc.2015.06.005] [PMID: 26411415]
[75]
Basu-Modak, S.; Braissant, O.; Escher, P.; Desvergne, B.; Honegger, P.; Wahli, W. Peroxisome proliferator-activated receptor beta regulates acyl-CoA synthetase 2 in reaggregated rat brain cell cultures. J. Biol. Chem., 1999, 274(50), 35881-35888.
[http://dx.doi.org/10.1074/jbc.274.50.35881] [PMID: 10585473]
[76]
Santos, M.J.; Quintanilla, R.A.; Toro, A.; Grandy, R.; Dinamarca, M.C.; Godoy, J.A.; Inestrosa, N.C. Peroxisomal proliferation protects from beta-amyloid neurodegeneration. J. Biol. Chem., 2005, 280(49), 41057-41068.
[http://dx.doi.org/10.1074/jbc.M505160200] [PMID: 16204253]
[77]
Heneka, M.T.; Landreth, G.E.; Hüll, M. Drug insight: effects mediated by peroxisome proliferator-activated receptor-gamma in CNS disorders. Nat. Clin. Pract. Neurol., 2007, 3(9), 496-504.
[http://dx.doi.org/10.1038/ncpneuro0586] [PMID: 17805244]
[78]
Kanakasabai, S.; Pestereva, E.; Chearwae, W.; Gupta, S.K.; Ansari, S.; Bright, J.J. PPARγ agonists promote oligodendrocyte differentiation of neural stem cells by modulating stemness and differentiation genes. PLoS One, 2012, 7(11), e50500.
[http://dx.doi.org/10.1371/journal.pone.0050500] [PMID: 23185633]
[79]
Zolezzi, J.M.; Santos, M.J.; Bastías-Candia, S.; Pinto, C.; Godoy, J.A.; Inestrosa, N.C. PPARs in the central nervous system: roles in neurodegeneration and neuroinflammation. Biol. Rev. Camb. Philos. Soc., 2017, 92(4), 2046-2069.
[http://dx.doi.org/10.1111/brv.12320] [PMID: 28220655]
[80]
Chen, Z.; Zhong, C. Decoding Alzheimer’s disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies. Prog. Neurobiol., 2013, 108, 21-43.
[http://dx.doi.org/10.1016/j.pneurobio.2013.06.004] [PMID: 23850509]
[81]
Skerrett, R.; Pellegrino, M.P.; Casali, B.T.; Taraboanta, L.; Landreth, G.E. Combined Liver X Receptor/Peroxisome Proliferator-activated Receptor γ Agonist Treatment Reduces Amyloid β Levels and Improves Behavior in Amyloid Precursor Protein/Presenilin 1 Mice. J. Biol. Chem., 2015, 290(35), 21591-21602.
[http://dx.doi.org/10.1074/jbc.M115.652008] [PMID: 26163517]
[82]
Yamanaka, M.; Ishikawa, T.; Griep, A.; Axt, D.; Kummer, M.P.; Heneka, M.T. PPARγ/RXRα-induced and CD36-mediated microglial amyloid-β phagocytosis results in cognitive improvement in amyloid precursor protein/presenilin 1 mice. J. Neurosci., 2012, 32(48), 17321-17331.
[http://dx.doi.org/10.1523/JNEUROSCI.1569-12.2012] [PMID: 23197723]
[83]
Combs, C.K.; Johnson, D.E.; Karlo, J.C.; Cannady, S.B.; Landreth, G.E. Inflammatory mechanisms in Alzheimer’s disease: inhibition of beta-amyloid-stimulated proinflammatory responses and neurotoxicity by PPARgamma agonists. J. Neurosci., 2000, 20(2), 558-567.
[http://dx.doi.org/10.1523/JNEUROSCI.20-02-00558.2000] [PMID: 10632585]
[84]
Heneka, M.T.; O’Banion, M.K.; Terwel, D.; Kummer, M.P. Neuroinflammatory processes in Alzheimer’s disease. J. Neural Transm. (Vienna), 2010, 117(8), 919-947.
[http://dx.doi.org/10.1007/s00702-010-0438-z] [PMID: 20632195]
[85]
Inestrosa, N.C.; Carvajal, F.J.; Zolezzi, J.M.; Tapia-Rojas, C.; Serrano, F.; Karmelic, D.; Toledo, E.M.; Toro, A.; Toro, J.; Santos, M.J. Peroxisome proliferators reduce spatial memory impairment, synaptic failure, and neurodegeneration in brains of a double transgenic mice model of Alzheimer’s disease. J. Alzheimers Dis., 2013, 33(4), 941-959.
[http://dx.doi.org/10.3233/JAD-2012-120397] [PMID: 23109558]
[86]
Esposito, G.; Scuderi, C.; Valenza, M.; Togna, G.I.; Latina, V.; De Filippis, D.; Cipriano, M.; Carratù, M.R.; Iuvone, T.; Steardo, L. Cannabidiol reduces Aβ-induced neuroinflammation and promotes hippocampal neurogenesis through PPARγ involvement. PLoS One, 2011, 6(12), e28668.
[http://dx.doi.org/10.1371/journal.pone.0028668] [PMID: 22163051]
[87]
Hughes, B.; Herron, C.E. Cannabidiol Reverses Deficits in Hippocampal LTP in a Model of Alzheimer’s Disease. Neurochem. Res., 2019, 44(3), 703-713.
[http://dx.doi.org/10.1007/s11064-018-2513-z] [PMID: 29574668]
[88]
Ryan, D.; Drysdale, A.J.; Lafourcade, C.; Pertwee, R.G.; Platt, B. Cannabidiol targets mitochondria to regulate intracellular Ca2+ levels. J. Neurosci., 2009, 29(7), 2053-2063.
[http://dx.doi.org/10.1523/JNEUROSCI.4212-08.2009] [PMID: 19228959]
[89]
Scuderi, C.; Steardo, L.; Esposito, G. Cannabidiol promotes amyloid precursor protein ubiquitination and reduction of beta amyloid expression in SHSY5YAPP+ cells through PPARγ involvement. Phytother. Res., 2014, 28(7), 1007-1013.
[http://dx.doi.org/10.1002/ptr.5095] [PMID: 24288245]
[90]
Aso, E.; Fernández-Dueñas, V.; López-Cano, M.; Taura, J.; Watanabe, M.; Ferrer, I.; Luján, R.; Ciruela, F. Adenosine A2A-cannabinoid CB1 receptor heteromers in the hippocampus: cannabidiol blunts Δ9-Tetrahydrocannabinol-induced cognitive impairment. Mol. Neurobiol., 2019, 56(8), 5382-5391.
[http://dx.doi.org/10.1007/s12035-018-1456-3] [PMID: 30610611]
[91]
Wu, Y.C.; Hill, R.A.; Klug, M.; van den Buuse, M. Sex-specific and region-specific changes in BDNF-TrkB signalling in the hippocampus of 5-HT1A receptor and BDNF single and double mutant mice. Brain Res., 2012, 1452, 10-17.
[http://dx.doi.org/10.1016/j.brainres.2012.03.011] [PMID: 22464183]
[92]
Giacoppo, S.; Pollastro, F.; Grassi, G.; Bramanti, P.; Mazzon, E. Target regulation of PI3K/Akt/mTOR pathway by cannabidiol in treatment of experimental multiple sclerosis. Fitoterapia, 2017, 116, 77-84.
[http://dx.doi.org/10.1016/j.fitote.2016.11.010] [PMID: 27890794]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy