Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Review Article

Prevention of Vancomycin-Induced Nephrotoxicity; An Updated Review of Clinical and Preclinical Studies

Author(s): Hamid Rahmani and Hossein Khalili*

Volume 22, Issue 2, 2022

Published on: 31 March, 2021

Article ID: e310321192584 Pages: 6

DOI: 10.2174/1871526521666210331164552

Price: $65

Abstract

Purpose: This paper aims to review clinical and preclinical evidence regarding new strategies for the prevention of vancomycin-induced nephrotoxicity.

Methods: Evidence from 2014 to the end of 2019 was included. Twelve animal studies and one clinical trial were evaluated.

Results: Although the incidence of vancomycin-induced nephrotoxicity was not reduced significantly in the clinical trial, antioxidants reduced the incidence of vancomycin-induced nephrotoxicity in preclinical studies.

Conclusion: Antioxidants including vitamin C, vitamin E, cilastatin, melatonin, zingerone, rutin, naringenin, saffron, silymarin, and dexmedetomidine were nephroprotective against vancomycininduced nephrotoxicity in preclinical studies. The nephroprotective effects of these antioxidants must be confirmed before routine use in clinical practice.

Keywords: Vancomycin, nephrotoxicity, prevention, renal damage, nephroprotective, renoprotective, kidney injury.

Graphical Abstract

[1]
Bruniera, F.R.; Ferreira, F.M.; Saviolli, L.R.; Bacci, M.R.; Feder, D.; da Luz Gonçalves Pedreira, M.; Sorgini Peterlini, M.A.; Azzalis, L.A.; Campos Junqueira, V.B.; Fonseca, F.L. The use of vancomycin with its therapeutic and adverse effects: a review. Eur. Rev. Med. Pharmacol. Sci., 2015, 19(4), 694-700.
[PMID: 25753888]
[2]
Elyasi, S.; Khalili, H.; Hatamkhani, S.; Dashti-Khavidaki, S. Prevention of vancomycin induced nephrotoxicity: a review of preclinical data. Eur. J. Clin. Pharmacol., 2013, 69(4), 747-754.
[http://dx.doi.org/10.1007/s00228-012-1406-3] [PMID: 22996076]
[3]
Rutter, W.C.; Cox, J.N.; Martin, C.A.; Burgess, D.R.; Burgess, D.S. Nephrotoxicity during Vancomycin Therapy in Combination with Piperacillin-Tazobactam or Cefepime. Antimicrob. Agents Chemother., 2017, 61(2), e02089-e16.
[http://dx.doi.org/10.1128/AAC.02089-16] [PMID: 27895019]
[4]
Elyasi, S.; Khalili, H.; Dashti-Khavidaki, S.; Mohammadpour, A. Vancomycin-induced nephrotoxicity: mechanism, incidence, risk factors and special populations. A literature review. Eur. J. Clin. Pharmacol., 2012, 68(9), 1243-1255.
[http://dx.doi.org/10.1007/s00228-012-1259-9] [PMID: 22411630]
[5]
Zamoner, W.; Prado, I.R.S.; Balbi, A.L.; Ponce, D. Vancomycin dosing, monitoring and toxicity: Critical review of the clinical practice. Clin. Exp. Pharmacol. Physiol., 2019, 46(4), 292-301.
[http://dx.doi.org/10.1111/1440-1681.13066] [PMID: 30623980]
[6]
Bamgbola, O. Review of vancomycin-induced renal toxicity: an update. Ther. Adv. Endocrinol. Metab., 2016, 7(3), 136-147.
[http://dx.doi.org/10.1177/2042018816638223] [PMID: 27293542]
[7]
Yousef, J.M.; Chen, G.; Hill, P.A.; Nation, R.L.; Li, J. Ascorbic acid protects against the nephrotoxicity and apoptosis caused by colistin and affects its pharmacokinetics. J. Antimicrob. Chemother., 2012, 67(2), 452-459.
[http://dx.doi.org/10.1093/jac/dkr483] [PMID: 22127588]
[8]
Akundi, S.; Lee, Y.R.; Perry, G.K.; Fike, D.S.; Mnjoyan, S. Nephrotoxicity in Recipients of Vancomycin vs. Vancomycin with Vitamin C. Int. J. Med. Pharm., 2015, 3, 1-15.
[http://dx.doi.org/10.15640/ijmp.v3n2a1]
[9]
Takigawa, M.; Yatsu, T.; Takino, Y.; Matsumoto, S.; Kitano, T.; Lee, J.; Arai, T.; Tanaka, H.; Ishii, T.; Mori, Y.; Ishigami, A. High-Dose Vitamin C Preadministration Reduces Vancomycin-Associated Nephrotoxicity in Mice. J. Nutr. Sci. Vitaminol. (Tokyo), 2019, 65(5), 399-404.
[http://dx.doi.org/10.3177/jnsv.65.399] [PMID: 31666476]
[10]
Selim, A. Evaluation of the possible nephroprotective effects of vitamin e and rosuvastatin in amikacin-induced renal injury in rats. J. Biochem. Mol. Toxicol., 2017.
[11]
Cervato, G.; Carabelli, M.; Gervasio, S.; Cittera, A.; Cazzola, R. antioxidant properties of oregano (Origanum Vulgare) leaf extracts. J. Food Biochem., 2000, 24, 453-465.
[http://dx.doi.org/10.1111/j.1745-4514.2000.tb00715.x]
[12]
Abd, A.H.; Qasim, B.J.; Sahib, H.B.; Raheem, H. Nephroprotective Effect of Vitamin E and Origanum vulgare Extracts against Vancomycin Induced Nephrotoxicity in Rats. Int. J. Pharma Sci., 2016, 36, 89-96.
[13]
Humanes, B.; Camaño, S.; Lara, J.M.; Sabbisetti, V.; González-Nicolás, M.Á.; Bonventre, J.V.; Tejedor, A.; Lázaro, A. Cisplatin-induced renal inflammation is ameliorated by cilastatin nephroprotection. Nephrol. Dial. Transplant., 2017, 32(10), 1645-1655.
[http://dx.doi.org/10.1093/ndt/gfx005] [PMID: 28340076]
[14]
Toyoguchi, T.; Takahashi, S.; Hosoya, J.; Nakagawa, Y.; Watanabe, H. Nephrotoxicity of vancomycin and drug interaction study with cilastatin in rabbits. Antimicrob. Agents Chemother., 1997, 41(9), 1985-1990.
[http://dx.doi.org/10.1128/AAC.41.9.1985] [PMID: 9303398]
[15]
Im, D.S.; Shin, H.J.; Yang, K.J.; Jung, S.Y.; Song, H.Y.; Hwang, H.S.; Gil, H.W. Cilastatin attenuates vancomycin-induced nephrotoxicity via P-glycoprotein. Toxicol. Lett., 2017, 277, 9-17.
[http://dx.doi.org/10.1016/j.toxlet.2017.05.023] [PMID: 28549670]
[16]
Shi, H.; Zou, J.; Zhang, T.; Che, H.; Gao, X.; Wang, C.; Wang, Y.; Xue, C. Protective Effects of DHA-PC against Vancomycin-Induced Nephrotoxicity through the Inhibition of Oxidative Stress and Apoptosis in BALB/c Mice. J. Agric. Food Chem., 2018, 66(2), 475-484.
[http://dx.doi.org/10.1021/acs.jafc.7b04565] [PMID: 29254330]
[17]
Raza, Z.; Naureen, Z. Melatonin ameliorates the drug induced nephrotoxicity: Molecular insights. Nefrologia, 2019.
[18]
Ali, S.; Qaisarani, M.; Farhat, K.; Waheed, A. study of preventive effect of melatonin on high dose vancomycin induced nephrotoxicity in rabbits. Pak. Armed Forces Med. J., 2018, 68, 1625-1629.
[19]
Kandemir, F.M.; Yildirim, S.; Kucukler, S.; Caglayan, C.; Mahamadu, A.; Dortbudak, M.B. Therapeutic efficacy of zingerone against vancomycin-induced oxidative stress, inflammation, apoptosis and aquaporin 1 permeability in rat kidney. Biomed. Pharmacother., 2018, 105, 981-991.
[http://dx.doi.org/10.1016/j.biopha.2018.06.048] [PMID: 30021393]
[20]
Qu, S.; Dai, C.; Lang, F.; Hu, L.; Tang, Q.; Wang, H.; Zhang, Y.; Hao, Z. Rutin Attenuates Vancomycin-Induced Nephrotoxicity by Ameliorating Oxidative Stress, Apoptosis, and Inflammation in Rats. Antimicrob. Agents Chemother., 2018, 63(1), e01545-e18.
[http://dx.doi.org/10.1128/AAC.01545-18] [PMID: 30397060]
[21]
Uckun, Z.; Guzel, S.; Canacankatan, N.; Yalaza, C.; Kibar, D. Potential protective effects of naringenin against vancomycin-induced nephrotoxicity via reduction on apoptotic and oxidative stress markers in rats. Drug Chem. Toxicol., 2018, 27, 1-8.
[PMID: 30257567]
[22]
Wen, S.; Wang, C.; Huo, X.; Meng, Q.; Liu, Z.; Yang, S.; Zhu, Y.; Sun, H.; Ma, X.; Liu, K. JBP485 attenuates vancomycin-induced nephrotoxicity by regulating the expressions of organic anion transporter (Oat) 1, Oat3, organic cation transporter 2 (Oct2), multidrug resistance-associated protein 2 (Mrp2) and P-glycoprotein (P-gp) in rats. Toxicol. Lett., 2018, 295, 195-204.
[http://dx.doi.org/10.1016/j.toxlet.2018.06.1220] [PMID: 29964132]
[23]
Jenabi, M.; Hemmati, A.A.; Hafezi, K.; Mansouri, E. Saffron extract prevents vancomycin-induced nephrotoxicity. Imaging Med., 2019, 11.
[24]
Kuo, Y.J.; Chang, H.P.; Chang, Y.J.; Wu, H.H.; Chen, C.H. Evaluation of nephroprotection of silymarin on contrast-induced nephropathy in liver cirrhosis patients: A population-based cohort study. Medicine (Baltimore), 2018, 97(37), e12243.
[http://dx.doi.org/10.1097/MD.0000000000012243] [PMID: 30212956]
[25]
Guzel, S.; Sahinogullari, Z.U.; Canacankatan, N.; Antmen, S.E.; Kibar, D. Potential renoprotective effects of silymarin against vancomycin-induced nephrotoxicity in rats. Drug Chem. Toxicol., 2019, 12, 1-7.
[http://dx.doi.org/10.1080/01480545.2019.1584208] [PMID: 30862206]
[26]
Bayram, A.; Erkan, G.N.; Talih, G.; Baskol, G.; Deniz, K.; Yildiz, K.; Esmaoglu, A. The alpha-2 receptor agonist dexmedetomidine attenuates vancomycin induced acute kidney injury. Bratisl. Lek Listy, 2019, 120(6), 429-433.
[http://dx.doi.org/10.4149/BLL_2019_069] [PMID: 31223023]
[27]
Molina, K.C.; Barletta, J.F.; Hall, S.T.; Yazdani, C.; Huang, V. The Risk of Acute Kidney Injury in Critically Ill Patients Receiving Concomitant Vancomycin with Piperacillin-Tazobactam or Cefepime. J. Intensive Care Med., 2019, 10, 885066619828290.
[http://dx.doi.org/10.1177/0885066619828290] [PMID: 30741072]
[28]
Blevins, A.M.; Lashinsky, J.N.; McCammon, C.; Kollef, M.; Micek, S.; Juang, P. Incidence of Acute Kidney Injury in Critically Ill Patients Receiving Vancomycin with Concomitant Piperacillin-Tazobactam, Cefepime, or Meropenem. Antimicrob. Agents Chemother., 2019, 63(5), e02658-e18.
[http://dx.doi.org/10.1128/AAC.02658-18] [PMID: 30782987]
[29]
Karino, S.; Kaye, K.S.; Navalkele, B.; Nishan, B.; Salim, M.; Solanki, S.; Pervaiz, A.; Tashtoush, N.; Shaikh, H.; Koppula, S.; Martin, E.T.; Mynatt, R.P.; Murray, K.P.; Rybak, M.J.; Pogue, J.M. Epidemiology of Acute Kidney Injury among Patients Receiving Concomitant Vancomycin and Piperacillin-Tazobactam: Opportunities for Antimicrobial Stewardship. Antimicrob. Agents Chemother., 2016, 60(6), 3743-3750.
[http://dx.doi.org/10.1128/AAC.03011-15] [PMID: 27067325]
[30]
Navalkele, B.; Pogue, J.M.; Karino, S.; Nishan, B.; Salim, M.; Solanki, S.; Pervaiz, A.; Tashtoush, N.; Shaikh, H.; Koppula, S.; Koons, J.; Hussain, T.; Perry, W.; Evans, R.; Martin, E.T.; Mynatt, R.P.; Murray, K.P.; Rybak, M.J.; Kaye, K.S. Risk of Acute Kidney Injury in Patients on Concomitant Vancomycin and Piperacillin-Tazobactam Compared to Those on Vancomycin and Cefepime. Clin. Infect. Dis., 2017, 64(2), 116-123.
[http://dx.doi.org/10.1093/cid/ciw709] [PMID: 27986669]
[31]
Hammond, D.A.; Smith, M.N.; Li, C.; Hayes, S.M.; Lusardi, K.; Bookstaver, P.B. Systematic Review and Meta-Analysis of Acute Kidney Injury Associated with Concomitant Vancomycin and Piperacillin/tazobactam. Clin. Infect. Dis., 2017, 64(5), 666-674.
[PMID: 27940946]
[32]
Rebholz, C.M.; Tin, A.; Liu, Y.; Kuczmarski, M.F.; Evans, M.K.; Zonderman, A.B.; Crews, D.C. Dietary Magnesium and Kidney Function Decline: The Healthy Aging in Neighborhoods of Diversity across the Life Span Study. Am. J. Nephrol., 2016, 44(5), 381-387.
[http://dx.doi.org/10.1159/000450861] [PMID: 27771720]
[33]
Maier, J.A.; Malpuech-Brugère, C.; Zimowska, W.; Rayssiguier, Y.; Mazur, A. Low magnesium promotes endothelial cell dysfunction: implications for atherosclerosis, inflammation and thrombosis. Biochim. Biophys. Acta, 2004, 1689(1), 13-21.
[http://dx.doi.org/10.1016/j.bbadis.2004.01.002] [PMID: 15158909]
[34]
Nielsen, F.H. Magnesium deficiency and increased inflammation: current perspectives. J. Inflamm. Res., 2018, 11, 25-34.
[http://dx.doi.org/10.2147/JIR.S136742] [PMID: 29403302]
[35]
Almoznino-Sarafian, D.; Berman, S.; Mor, A.; Shteinshnaider, M.; Gorelik, O.; Tzur, I.; Alon, I.; Modai, D.; Cohen, N. Magnesium and C-reactive protein in heart failure: an anti-inflammatory effect of magnesium administration? Eur. J. Nutr., 2007, 46(4), 230-237.
[http://dx.doi.org/10.1007/s00394-007-0655-x] [PMID: 17479208]
[36]
Rochelson, B.; Dowling, O.; Schwartz, N.; Metz, C.N. Magnesium sulfate suppresses inflammatory responses by human umbilical vein endothelial cells (HuVECs) through the NFkappaB pathway. J. Reprod. Immunol., 2007, 73(2), 101-107.
[http://dx.doi.org/10.1016/j.jri.2006.06.004] [PMID: 16952401]
[37]
Shcharbina, Natallia; Nechipurenko, Natallia; Matusevich, Ludmila; Anatskaia, Ludmila The Antioxidant Effect of Magnesium and Its Protective Role for Blood-Brain Barrier in Acute Stroke - Model and Clinical Studies 2014.
[38]
Weglicki, W.B.; Phillips, T.M.; Mak, I.T.; Cassidy, M.M.; Dickens, B.F.; Stafford, R.; Kramer, J.H. Cytokines, neuropeptides, and reperfusion injury during magnesium deficiency. Ann. N. Y. Acad. Sci., 1994, 723, 246-257.
[http://dx.doi.org/10.1111/j.1749-6632.1994.tb36731.x] [PMID: 7518201]
[39]
Akan, M.; Ozbilgin, S.; Boztas, N.; Celik, A.; Ozkardesler, S.; Ergur, B.U.; Guneli, E.; Sisman, A.R.; Akokay, P.; Meseri, R. Effect of magnesium sulfate on renal ischemia-reperfusion injury in streptozotocin-induced diabetic rats. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(8), 1642-1655.
[PMID: 27160141]
[40]
Zhou, H.; Ma, Y.; Zhou, Y.; Liu, Z.; Wang, K.; Chen, G. Effects of magnesium sulfate on neuron apoptosis and expression of caspase-3, bax and bcl-2 after cerebral ischemia-reperfusion injury. Chin. Med. J. (Engl.), 2003, 116(10), 1532-1534.
[PMID: 14570617]
[41]
Kim, J.E.; Jeon, J.P.; No, H.C.; Choi, J.H.; Lee, S.H.; Ryu, K.H.; Kim, E.S. The effects of magnesium pretreatment on reperfusion injury during living donor liver transplantation. Korean J. Anesthesiol., 2011, 60(6), 408-415.
[http://dx.doi.org/10.4097/kjae.2011.60.6.408] [PMID: 21738843]
[42]
Ryan, M.F. The role of magnesium in clinical biochemistry: an overview. Ann. Clin. Biochem., 1991, 28(Pt 1), 19-26.
[http://dx.doi.org/10.1177/000456329102800103] [PMID: 2024929]
[43]
Fawcett, W.J.; Haxby, E.J.; Male, D.A. Magnesium: physiology and pharmacology. Br. J. Anaesth., 1999, 83(2), 302-320.
[http://dx.doi.org/10.1093/bja/83.2.302] [PMID: 10618948]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy