Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Pyrazoles and Fused Pyrimidines: Synthesis, Structure Elucidation, Antitubercular Activity and Molecular Docking Study

Author(s): Amerah M. Al-Soliemy, Rehab Sabour and Thoraya A. Farghaly*

Volume 18, Issue 2, 2022

Published on: 24 March, 2021

Page: [181 - 198] Pages: 18

DOI: 10.2174/1573406417666210324131951

Abstract

Background: Synthesis of new heterocyclic drugs in short reaction time with sufficient quantity is considered as a target for several pharmaceutical scientists. Thus, organic reactions proceeded on the surface of nano-sized catalysts to speed up the stimulation process.

Objective: We aimed in this research to synthesize a new series of heterocyclic compounds carrying pyrazole moiety in the presence of ZnO nano-catalyst to investigate their anti-tubercular activity.

Methods: ZnO(NPs) were used in the synthesis of novel series of thienylpyrazolopyrimidines bearing arylazo group by the reaction of thiophene-enaminone and the amino-arylazopyrazoles in excellent yield. On the other hand, another series of theinyl-pyrazoles was synthesized through the reaction of the same enaminone with hydrazonoyl chlorides, but the usage of ZnO(NPs) failed in such reactions.

Results: The proposed structures of the products and the mechanistic pathways of the reactions were assured based on the spectral data and chemical evidences. Thienylpyrazole derivatives were assessed for their activity as Mycobacterium tuberculosis inhibitor and their results revealed that two thienylpyrazole derivatives 24d & 24f showed the most significant anti-mycobacterial activity with MIC values 0.70 & 1.29 μM/mL, respectively comparing with the MIC value = 0.60 μM/mL of the standard drug Rifampicin. Furthermore, the most active thienylpyrazole derivatives were investigated for their cytotoxic impact versus normal cells WI-38 (Normal human Lung fibroblast cells) using MTT assay. These thienylpyrazole derivatives exhibited good selective index profile. Moreover, 1,3,4-trisubstituted pyrazole analogs showed good interaction with the active site of enoyl-acyl carrier protein reductase (Mt InhA) through molecular docking studies.

Conclusion: We synthesized a new series of heterocyclic compounds carrying pyrazole moiety in the presence of ZnO nano-catalyst as anti-tubercular agents.

Keywords: Pyazoles, fused pyrimidines, antitubercular activity, enaminones, hydrazonoyl halides, Molecular docking.

Graphical Abstract

[1]
Alegaon, S.G.; Hirpara, M.B.; Alagawadi, K.R.; Jalalpure, S.S.; Rasal, V.P.; Salve, P.S.; Kumbar, V.M. Synthesis and biological evaluation of 1,3,4-trisubstituted pyrazole analogues as anti-mycobacterial agents. Med. Chem. Res., 2017, 26, 1127-1138.
[http://dx.doi.org/10.1007/s00044-017-1821-1]
[2]
WHO Report Global Tuberculosis Report, 2019.
[3]
Shaikh, S.I.; Zaheer, Z.; Mokale, S.N.; Lokwani, D.K. Development of new pyrazole hybrids as antitubercular agents: synthesis, biological evaluation and molecular docking study. Int. J. Pharm. Pharm. Sci., 2017, 9, 50-56.
[http://dx.doi.org/10.22159/ijpps.2017v9i11.20469]
[4]
Abubakar, I.; Zignol, M.; Falzon, D.; Raviglione, M.; Ditiu, L.; Masham, S.; Adetifa, I.; Ford, N.; Cox, H.; Lawn, S.D.; Marais, B.J.; McHugh, T.D.; Mwaba, P.; Bates, M.; Lipman, M.; Zijenah, L.; Logan, S.; McNerney, R.; Zumla, A.; Sarda, K.; Nahid, P.; Hoelscher, M.; Pletschette, M.; Memish, Z.A.; Kim, P.; Hafner, R.; Cole, S.; Migliori, G.B.; Maeurer, M.; Schito, M.; Zumla, A. Drug-resistant tuberculosis: time for visionary political leadership. Lancet Infect. Dis., 2013, 13(6), 529-539.
[http://dx.doi.org/10.1016/S1473-3099(13)70030-6] [PMID: 23531391]
[5]
Lawn, S.D.; Mwaba, P.; Bates, M.; Piatek, A.; Alexander, H.; Marais, B.J.; Cuevas, L.E.; McHugh, T.D.; Zijenah, L.; Kapata, N.; Abubakar, I.; McNerney, R.; Hoelscher, M.; Memish, Z.A.; Migliori, G.B.; Kim, P.; Maeurer, M.; Schito, M.; Zumla, A. Advances in tuberculosis diagnostics: the Xpert MTB/RIF assay and future prospects for a point-of-care test. Lancet Infect. Dis., 2013, 13(4), 349-361.
[http://dx.doi.org/10.1016/S1473-3099(13)70008-2] [PMID: 23531388]
[6]
Ballell, L.; Field, R.A.; Duncan, K.; Young, R.J. New small-molecule synthetic antimycobacterials. Antimicrob. Agents Chemother., 2005, 49(6), 2153-2163.
[http://dx.doi.org/10.1128/AAC.49.6.2153-2163.2005] [PMID: 15917508]
[7]
Janin, Y.L. Antituberculosis drugs: ten years of research. Bioorg. Med. Chem., 2007, 15(7), 2479-2513.
[http://dx.doi.org/10.1016/j.bmc.2007.01.030] [PMID: 17291770]
[8]
Xu, Z.; Gao, C.; Ren, Q.C.; Song, X.F.; Feng, L.S.; Lv, Z.S. Recent advances of pyrazole-containing derivatives as anti-tubercular agents. Eur. J. Med. Chem., 2017, 139, 429-440.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.059] [PMID: 28818767]
[9]
Harikrishna, N.; Isloora, A.M.; Ananda, K.; Obaid, A.; Fun, H. 1,3,4-Trisubstituted pyrazole bearing 4-(chromen-2-one) thiazole: Synthesis, characterization and its biological studies. RSC Advances, 2015, 5, 43648-43659.
[http://dx.doi.org/10.1039/C5RA04995D]
[10]
Bhatt, J.D.; Chudasama, C.J.; Patel, K.D. Pyrazole clubbed triazolo[1,5-a]pyrimidine hybrids as an anti-tubercular agents: Synthesis, in vitro screening and molecular docking study. Bioorg. Med. Chem., 2015, 23(24), 7711-7716.
[http://dx.doi.org/10.1016/j.bmc.2015.11.018] [PMID: 26631439]
[11]
Sapkal, S.B.; Shelke, K.F.; Shingate, B.B.; Shingare, M.S. Nickel nanoparticle-catalyzed facile and efficient one-pot synthesis of polyhydroquinoline derivatives via Hantzsch condensation under solvent-free conditions. Tetrahedron Lett., 2009, 50, 1754-1756.
[http://dx.doi.org/10.1016/j.tetlet.2009.01.140]
[12]
Banerjee, S.; Payra, S.; Saha, A.; Sereda, G. ZnO nanoparticles: a green efficient catalyst for the room temperature synthesis of biologically active 2-aryl-1,3-benzothiazole and 1,3-benzoxazole derivatives. Tetrahedron Lett., 2014, 55, 5515-5520.
[http://dx.doi.org/10.1016/j.tetlet.2014.07.123]
[13]
Modi, P.; Patel, S.; Chhabria, M. Structure-based design, synthesis and biological evaluation of a newer series of pyrazolo[1,5-a]pyrimidine analogues as potential anti-tubercular agents. Bioorg. Chem., 2019, 87, 240-251.
[http://dx.doi.org/10.1016/j.bioorg.2019.02.044] [PMID: 30908967]
[14]
Modi, P.; Patel, S.; Chhabria, M.T. Identification of some novel pyrazolo[1,5-a]pyrimidine derivatives as InhA inhibitors through pharmacophore-based virtual screening and molecular docking. J. Biomol. Struct. Dyn., 2019, 37(7), 1736-1749.
[http://dx.doi.org/10.1080/07391102.2018.1465852] [PMID: 29663870]
[15]
Albadi, J.; Keshavarz, M.; Abedini, M.; Khoshakhlagh, M. Copper iodide nanoparticles on poly(4-vinylpyridine): A new and efficient catalyst for the synthesis of 1,8-dioxooctahydroxanthenes under solvent-free conditions. J. Chem. Sci., 2013, 125, 295-298.
[http://dx.doi.org/10.1007/s12039-013-0368-z]
[16]
Sarode, S.A.; Bhojane, J.M.; Nagarkar, J.M. An efficient magnetic copper ferrite nanoparticle: for one pot synthesis of 2-substituted benzoxazole via redox reactions. Tetrahedron Lett., 2015, 56, 206-210.
[http://dx.doi.org/10.1016/j.tetlet.2014.11.065]
[17]
MaGee D.I.; Dabiri, M.; Salehi, P.; Torkian, L. Highly efficient one-pot three-component Mannich reaction catalyzed by ZnO-nanoparticles in water. ARKIVOC, 2011, 11, 156-164.
[18]
Dawood, D.H.; Abbas, E.M.H.; Farghaly, T.A.; Ali, M.M.; Ibrahim, M.F. ZnO Nanoparticles catalyst in the synthesis of bioactive fused pyrimidines as anti-breast cancer agents targeting VEGFR-2. Med. Chem., 2019, 15(3), 277-286.
[http://dx.doi.org/10.2174/1573406414666180912113226] [PMID: 30207239]
[19]
Safaei-Ghomi, J.; Ghasemzadeh, M.A.; Zahedi, S. ZnO Nanoparticles: A highly effective and readily recyclable catalyst for the one-pot synthesis of 1,8-dioxo-decahydroacridine and 1,8-dioxooctahydro-xanthene derivatives. J. Mex. Chem. Soc., 2013, 57(1), 1-7.
[20]
Farghaly, T.A.; Masaret, G.S.; Muhammad, Z.A.; Harras, M.F. Discovery of thiazole-based-chalcones and 4-hetarylthiazoles as potent anticancer agents: Synthesis, docking study and anticancer activity. Bioorg. Chem., 2020, 98103761
[http://dx.doi.org/10.1016/j.bioorg.2020.103761] [PMID: 32200332]
[21]
El-Metwaly, N.; Farghaly, T.A.; Elghalban, M.G. Synthesis, analytical and spectral characterization for new VO (II)-triazole complexes; conformational study beside MOE docking simulation features. Appl. Organomet. Chem., 2020, 34e5505
[http://dx.doi.org/10.1002/aoc.5505]
[22]
Alsaedi, A.M.R.; Farghaly, T.A.; Shaaban, M.R. Synthesis and antimicrobial evaluation of novel pyrazolopyrimidines incorporated with mono- and diphenylsulfonyl groups. Molecules, 2019, 24(21), 4009.
[http://dx.doi.org/10.3390/molecules24214009] [PMID: 31694325]
[23]
Althagafi, I.; El-Metwaly, N.; Farghaly, T.A. New series of thiazole derivatives: Synthesis, structural elucidation, antimicrobial activity, molecular modeling and MOE docking. Molecules, 2019, 24(9), 1741.
[http://dx.doi.org/10.3390/molecules24091741] [PMID: 31060260]
[24]
Masaret, G.S.; Farghaly, T.A. Synthesis of 8,10-disubstituted-triazoloperimidines from (E)-3-(dimethylamino)-1-(8-phenyl-8H-[1,2,4]triazolo[4,3-a]perimidin-10-yl)prop-2-en-1-one and their antimicrobial activity. Curr. Org. Synth., 2018, 15(1), 126-136.
[http://dx.doi.org/10.2174/1570179414666170601121137]
[25]
Gouda, A.M.; El-Ghamry, H.A.; Bawazeer, T.M.; Farghaly, T.A.; Abdalla, A.N.; Aslam, A. Antitumor activity of pyrrolizines and their Cu(II) complexes: Design, synthesis and cytotoxic screening with potential apoptosis-inducing activity. Eur. J. Med. Chem., 2018, 145, 350-359.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.009] [PMID: 29335201]
[26]
Mahmoud, H.K.; Abdallah, M.A.; Farghaly, T.A. The utility of hydrazonoyl halides in the synthesis of bioactive heterocyclic compounds. Curr. Org. Synth., 2017, 14, 430-461.
[http://dx.doi.org/10.2174/1570179413666160624105624]
[27]
Hassaneen, H.M.; Eid, E.M.; Eid, H.A.; Farghaly, T.A.; Mabkhot, Y.N. Facial regioselective synthesis of novel bioactive spiropyrrolidine/pyrrolizine-oxindole derivatives via a three components reaction as potential antimicrobial agents. Molecules, 2017, 22(3), 357.
[http://dx.doi.org/10.3390/molecules22030357] [PMID: 28245641]
[28]
Farghaly, T.A.; Abdallah, M.A.; Masaret, G.S.; Muhammad, Z.A. New and efficient approach for synthesis of novel bioactive [1,3,4]thiadiazoles incorporated with 1,3-thiazole moiety. Eur. J. Med. Chem., 2015, 97, 320-333.
[http://dx.doi.org/10.1016/j.ejmech.2015.05.009] [PMID: 26055810]
[29]
Green, J.; Cao, J.; Bandarage, U.K.; Gao, H.; Court, J.; Marhefka, C.; Jacobs, M.; Taslimi, P.; Newsome, D.; Nakayama, T.; Shah, S.; Rodems, S. Design, synthesis, and structure-activity relationships of pyridine-based rho kinase (ROCK) inhibitors. J. Med. Chem., 2015, 58(12), 5028-5037.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00424] [PMID: 26039570]
[30]
Farghaly, T.A.; Abdel Hafez, N.A.; Ragab, E.A.; Awad, H.M.; Abdalla, M.M. Synthesis, anti-HCV, antioxidant, and peroxynitrite inhibitory activity of fused benzosuberone derivatives. Eur. J. Med. Chem., 2010, 45(2), 492-500.
[http://dx.doi.org/10.1016/j.ejmech.2009.10.033] [PMID: 19913334]
[31]
Gaber, H.M.; Muhammad, Z.A.; Gomha, S.M.; Farghaly, T.A.; Bagley, M.C. Recent synthetic approaches to N,N-dimethyl-β-ketoenamines. Curr. Org. Chem., 2017, 21(21), 2168-2195.
[http://dx.doi.org/10.2174/1385272821666170523115019]
[32]
Riyadh, S.M.; Farghaly, T.A.; Abdallah, M.A.; Abdalla, M.M.; Abd El-Aziz, M.R. New pyrazoles incorporating pyrazolylpyrazole moiety: synthesis, anti-HCV and antitumor activity. Eur. J. Med. Chem., 2010, 45(3), 1042-1050.
[http://dx.doi.org/10.1016/j.ejmech.2009.11.050] [PMID: 20022411]
[33]
Shawali, A.S.; Farghaly, T.A.; Al-Dahshoury, A.R. Synthesis, reactions and antitumor activity of new β-aminovinyl 3- pyrazolyl ketones. ARKIVOC, 2009, (14), 88-99.
[34]
He, F.Q.; Liu, X.H.; Wang, B.L.; Li, Z.M. Synthesis and biological activities of novel bis‐heterocyclic pyrrodiazole derivatives. Heteroatom Chem., 2008, 19(1), 21.
[http://dx.doi.org/10.1002/hc.20369]
[35]
Amer, F.A.; Hammouda, M.; El-Ahl, A.S.; Abdelwahab, B.F. Synthesis of important new pyrrolo [3, 4‐c] pyrazoles and pyrazolyl‐pyrrolines from heterocyclic β‐ketonitriles. J. Chin. Chem. Soc. (Taipei), 2007, 54(6), 1543.
[http://dx.doi.org/10.1002/jccs.200700217]
[36]
Komarova, E.S.; Makarov, V.A.; Alekseeva, G.V.; Granik, V.G. Synthesis of derivatives of a new heterocyclic system pyrazolo[3,4-b]pyrido[1′,2′: 1,2]imidazo[4,5-d]pyridine. Russian Chem. Bull. Int. Ed., 2006, 55, 735-740.
[http://dx.doi.org/10.1007/s11172-006-0322-z]
[37]
Molecular Operating Environment (MOE). Chemical Computing Group Inc., 1010 Sherbrooke Street West, Suite 910, Montréal, H3A 2R7, Canada, 2014. Available from:. http://www.chemcomp.com
[38]
Nayak, N.; Ramprasad, J.; Dalimba, U. New INH-pyrazole analogs: Design, synthesis and evaluation of antitubercular and antibacterial activity. Bioorg. Med. Chem. Lett., 2015, 25(23), 5540-5545.
[http://dx.doi.org/10.1016/j.bmcl.2015.10.057] [PMID: 26520663]
[39]
Hassan, N.W.; Saudi, M.N.; Abdel-Ghany, Y.S.; Ismail, A.; Elzahhar, P.A.; Sriram, D.; Nassra, R.; Abdel-Aziz, M.M.; El-Hawash, S.A. Novel pyrazine based anti-tubercular agents: Design, synthesis, biological evaluation and in silico studies. Bioorg. Chem., 2020, 96103610
[http://dx.doi.org/10.1016/j.bioorg.2020.103610] [PMID: 32028062]
[40]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[41]
Scudiero, D.A.; Shoemaker, R.H.; Paull, K.D.; Monks, A.; Tierney, S.; Nofziger, T.H.; Currens, M.J.; Seniff, D.; Boyd, M.R. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res., 1988, 48(17), 4827-4833.
[PMID: 3409223]
[42]
Hartkoorn, R.C.; Chandler, B.; Owen, A.; Ward, S.A.; Bertel Squire, S.; Back, D.J.; Khoo, S.H. Differential drug susceptibility of intracellular and extracellular tuberculosis, and the impact of P-glycoprotein. Tuberculosis (Edinb.), 2007, 87(3), 248-255.
[http://dx.doi.org/10.1016/j.tube.2006.12.001] [PMID: 17258938]
[43]
Subhedar, D.D.; Shaikh, M.H.; Nawale, L.; Yeware, A.; Sarkar, D.; Khan, F.A.; Sangshetti, J.N.; Shingate, B.B. Novel tetrazoloquinoline-rhodanine conjugates: Highly efficient synthesis and biological evaluation. Bioorg. Med. Chem. Lett., 2016, 26(9), 2278-2283.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.045] [PMID: 27013391]
[44]
Shaikh, M.H.; Subhedar, D.D.; Nawale, L.; Sarkar, D.; Kalam Khan, F.A.; Sangshetti, J.N. 1,2,3-Triazole derivatives as antitubercular agents: synthesis, biological evaluation and molecular docking study. MedChemComm, 2015, 6, 1104-1116.
[http://dx.doi.org/10.1039/C5MD00057B]
[45]
Jamloki, A.; Karthikeyan, C.; Hari Narayana Moorthy, N.S.; Trivedi, P. QSAR analysis of some 5-amino-2-mercapto-1,3,4-thiadiazole based inhibitors of matrix metalloproteinases and bacterial collagenase. Bioorg. Med. Chem. Lett., 2006, 16(14), 3847-3854.
[http://dx.doi.org/10.1016/j.bmcl.2006.04.014] [PMID: 16682189]
[46]
Golbraikh, A.; Tropsha, A. Beware of q2! J. Mol. Graph. Model., 2002, 20(4), 269-276.
[http://dx.doi.org/10.1016/S1093-3263(01)00123-1] [PMID: 11858635]
[47]
Shawali, A.S.; Albar, H.A. Kinetics and mechanism of dehydrochlorination of N-aryl-C-ethoxycarbonylformohydrazidoylc hlorides. Can. J. Chem., 1986, 64, 871-875.
[http://dx.doi.org/10.1139/v86-144]
[48]
Liu, J.; Wu, J.; Li, Z. Enoyl acyl carrier protein reductase (FabI) catalyzed asymmetric reduction of the C [double bond, length as m-dash] C double bond of α, β-unsaturated ketones: preparation of (R)-2-alkyl-cyclopentanones. Chem. Commun. (Camb.), 2014, 68, 9729-9732.
[http://dx.doi.org/10.1039/C4CC04150J] [PMID: 25019575]
[49]
Kapoor, M.; Dar, M.J.; Surolia, A.; Surolia, N. Kinetic determinants of the interaction of enoyl-ACP reductase from Plasmodium falciparum with its substrates and inhibitors. Biochem. Biophys. Res. Commun., 20014(289), 832-837.
[http://dx.doi.org/10.1006/bbrc.2001.6061]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy