Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

APP/PS1基因-环境噪声交互作用通过激活VDAC1正反馈环路加重海马ad样神经病理

卷 18, 期 1, 2021

发表于: 24 March, 2021

页: [14 - 24] 页: 11

弟呕挨: 10.2174/1567205018666210324114153

价格: $65

conference banner
摘要

背景:环境风险因素,包括环境噪声压力和遗传因素,已经与阿尔茨海默病(AD)的发生和发展有关。然而,环境噪声与APP/PS1基因的环境-基因相互作用导致ad样病理的确切作用和机制尚不清楚。 方法:在此,我们研究了慢性噪声暴露对APP/PS1转基因小鼠ad样神经病理的影响。Morris水迷宫(MWM)任务用于评价ad样变化。对海马磷酸化Tau蛋白、淀粉样蛋白-β (Aβ)和神经炎症进行评估。我们还评估了电压依赖的负离子通道1 (VDAC1)的正反馈环路信号的变化,以探索ad样神经病理与噪声- app /PS1相互作用的潜在机制。 结果:长期噪声暴露显著增加了MWM任务的逃逸延迟和平台跨越次数。在APP/PS1小鼠海马中诱导Aβ过量产生,同时Tau蛋白Ser396和Thr231位点磷酸化增加,小胶质细胞和星形胶质细胞标志物表达增加。此外,噪声暴露后APP/PS1小鼠海马VDAC1-AKT(蛋白激酶B)-GSK3β(糖原合酶激酶3β)-VDAC1信号通路异常激活。 结论:慢性噪声暴露和APP/PS1过表达可协同加重AD患者的认知功能损害和神经病理改变。这种相互作用可能是由VDAC1-AKT-GSK3β-VDAC1信号通路的正反馈环路介导的。

关键词: APP/PS1、慢性噪声、ad样神经病理学、协同效应、基因-环境交互作用、阿尔茨海默病

[1]
Prince M, Comas-Herrera A, Knapp M, Guerchet M, Karagiannidou M. World Alzheimer report 2016: Improving healthcare for people living with dementia 2016. Available from: http://eprints.lse.ac.uk/67858/
[2]
Duthey B. Alzheimer's disease and other dementias. A public health approach to innovation 2013; 1-74.
[3]
Cui B, Zhu L, She X, et al. Chronic noise exposure causes persistence of tau hyperphosphorylation and formation of NFT tau in the rat hippocampus and prefrontal cortex. Exp Neurol 2012; 238(2): 122-9.
[http://dx.doi.org/10.1016/j.expneurol.2012.08.028] [PMID: 22971273]
[4]
Hoeijmakers L, Lesuis SL, Krugers H, Lucassen PJ, Korosi A. A preclinical perspective on the enhanced vulnerability to Alzheimer’s disease after early-life stress. Neurobiol Stress 2018; 8: 172-85.
[http://dx.doi.org/10.1016/j.ynstr.2018.02.003] [PMID: 29888312]
[5]
Cui B, Li K, Gai Z, et al. Chronic noise exposure acts cumulatively to exacerbate Alzheimer’s disease-like amyloid-β pathology and neuroinflammation in the rat hippocampus. Sci Rep 2015; 5: 12943.
[http://dx.doi.org/10.1038/srep12943] [PMID: 26251361]
[6]
Marcello E, Gardoni F, Di Luca M. Alzheimer’s disease and modern lifestyle: What is the role of stress? J Neurochem 2015; 134(5): 795-8.
[http://dx.doi.org/10.1111/jnc.13210] [PMID: 26206000]
[7]
Li N, Hu P, Xu T, et al. iTRAQ-based proteomic analysis of APPSw, ind mice provides insights into the early changes in Alzheimer’s disease. Curr Alzheimer Res 2017; 14(10): 1109-22.
[http://dx.doi.org/10.2174/1567205014666170719165745] [PMID: 28730955]
[8]
Selkoe DJ. Alzheimer’s disease: Genes, proteins, and therapy. Physiol Rev 2001; 81(2): 741-66.
[http://dx.doi.org/10.1152/physrev.2001.81.2.741] [PMID: 11274343]
[9]
Sakakibara Y, Sekiya M, Saito T, Saido TC, Iijima KM. Amyloid-β plaque formation and reactive gliosis are required for induction of cognitive deficits in App knock-in mouse models of Alzheimer’s disease. BMC Neurosci 2019; 20(1): 13.
[http://dx.doi.org/10.1186/s12868-019-0496-6] [PMID: 30894120]
[10]
Han B, Yu L, Geng Y, et al. Chronic stress aggravates cognitive impairment and suppresses insulin associated signaling pathway in APP/PS1 mice. J Alzheimers Dis 2016; 53(4): 1539-52.
[http://dx.doi.org/10.3233/JAD-160189] [PMID: 27392857]
[11]
Su D, Li W, She X, et al. Chronic noise exposure exacerbates AD-like neuropathology in SAMP8 mice in relation to Wnt signaling in the PFC and hippocampus. Sci Rep 2018; 8(1): 14622.
[http://dx.doi.org/10.1038/s41598-018-32948-4] [PMID: 30279527]
[12]
Li W, Su D, Zhai Q, et al. Proteomes analysis reveals the involvement of autophagy in AD-like neuropathology induced by noise exposure and ApoE4. Environ Res 2019; 176: 108537.
[http://dx.doi.org/10.1016/j.envres.2019.108537] [PMID: 31228807]
[13]
Shoshan-Barmatz V, Nahon-Crystal E, Shteinfer-Kuzmine A, Gupta R. VDAC1, mitochondrial dysfunction, and Alzheimer’s disease. Pharmacol Res 2018; 131: 87-101.
[http://dx.doi.org/10.1016/j.phrs.2018.03.010] [PMID: 29551631]
[14]
Reddy PH. Amyloid beta-induced glycogen synthase kinase 3β phosphorylated VDAC1 in Alzheimer’s disease: Implications for synaptic dysfunction and neuronal damage. Biochim Biophys Acta 2013; 1832(12): 1913-21.
[http://dx.doi.org/10.1016/j.bbadis.2013.06.012] [PMID: 23816568]
[15]
Li K, Jia H, She X, et al. Role of NMDA receptors in noise-induced tau hyperphosphorylation in rat hippocampus and prefrontal cortex. J Neurol Sci 2014; 340(1-2): 191-7.
[http://dx.doi.org/10.1016/j.jns.2014.03.027] [PMID: 24685355]
[16]
Cui B, Wu M, She X. Effects of chronic noise exposure on spatial learning and memory of rats in relation to neurotransmitters and NMDAR2B alteration in the hippocampus. J Occup Health 2009; 51(2): 152-8.
[http://dx.doi.org/10.1539/joh.L8084] [PMID: 19225220]
[17]
Gai Z, Li K, Sun H, She X, Cui B, Wang R. Effects of chronic noise on mRNA and protein expression of CRF family molecules and its relationship with p-tau in the rat prefrontal cortex. J Neurol Sci 2016; 368: 307-13.
[http://dx.doi.org/10.1016/j.jns.2016.07.049] [PMID: 27538655]
[18]
Roberson ED. Reducing endogenous tau ameliorates Amyloid bate-induced deficits in an Alzheimer's disease mouse model. Science 2007; 316(5825): 750-4.
[19]
Cuadrado-Tejedor M, Vilariño M, Cabodevilla F, Del Río J, Frechilla D, Pérez-Mediavilla A. Enhanced expression of the voltage-dependent anion channel 1 (VDAC1) in Alzheimer’s disease transgenic mice: An insight into the pathogenic effects of amyloid-β. J Alzheimers Dis 2011; 23(2): 195-206.
[http://dx.doi.org/10.3233/JAD-2010-100966] [PMID: 20930307]
[20]
Hoeijmakers L, Ruigrok SR, Amelianchik A, et al. Early-life stress lastingly alters the neuroinflammatory response to amyloid pathology in an Alzheimer’s disease mouse model. Brain Behav Immun 2017; 63: 160-75.
[http://dx.doi.org/10.1016/j.bbi.2016.12.023] [PMID: 28027926]
[21]
Carroll JC, Iba M, Bangasser DA, et al. Chronic stress exacerbates tau pathology, neurodegeneration, and cognitive performance through a corticotropin-releasing factor receptor-dependent mechanism in a transgenic mouse model of tauopathy. J Neurosci 2011; 31(40): 14436-49.
[http://dx.doi.org/10.1523/JNEUROSCI.3836-11.2011] [PMID: 21976528]
[22]
Chen M. The maze of APP processing in Alzheimer’s disease: Where did we go wrong in reasoning? Front Cell Neurosci 2015; 9: 186.
[http://dx.doi.org/10.3389/fncel.2015.00186] [PMID: 26052267]
[23]
Musiek ES, Holtzman DM. Three dimensions of the amyloid hypothesis: Time, space and ‘wingmen’. Nat Neurosci 2015; 18(6): 800-6.
[http://dx.doi.org/10.1038/nn.4018] [PMID: 26007213]
[24]
Zhang H, Ma Q, Zhang YW, Xu H. Proteolytic processing of Alzheimer’s β-amyloid precursor protein. J Neurochem 2012; 120(Suppl. 1): 9-21.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07519.x] [PMID: 22122372]
[25]
Cunningham C. Microglia and neurodegeneration: The role of systemic inflammation. Glia 2013; 61(1): 71-90.
[http://dx.doi.org/10.1002/glia.22350] [PMID: 22674585]
[26]
Heneka MT, Carson MJ, El Khoury J, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol 2015; 14(4): 388-405.
[http://dx.doi.org/10.1016/S1474-4422(15)70016-5] [PMID: 25792098]
[27]
Mhatre SD, Tsai CA, Rubin AJ, James ML, Andreasson KI. Microglial malfunction: The third rail in the development of Alzheimer’s disease. Trends Neurosci 2015; 38(10): 621-36.
[http://dx.doi.org/10.1016/j.tins.2015.08.006] [PMID: 26442696]
[28]
Spangenberg EE, Green KN. Inflammation in Alzheimer’s disease: Lessons learned from microglia-depletion models. Brain Behav Immun 2017; 61: 1-11.
[http://dx.doi.org/10.1016/j.bbi.2016.07.003] [PMID: 27395435]
[29]
Jacobsen JS, Wu CC, Redwine JM, et al. Early-onset behavioral and synaptic deficits in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 2006; 103(13): 5161-6.
[http://dx.doi.org/10.1073/pnas.0600948103] [PMID: 16549764]
[30]
Julien C, Tremblay C, Phivilay A, et al. High-fat diet aggravates amyloid-beta and tau pathologies in the 3xTg-AD mouse model. Neurobiol Aging 2010; 31(9): 1516-31.
[http://dx.doi.org/10.1016/j.neurobiolaging.2008.08.022] [PMID: 18926603]
[31]
Manczak M, Reddy PH. Abnormal interaction of VDAC1 with amyloid beta and phosphorylated tau causes mitochondrial dysfunction in Alzheimer’s disease. Hum Mol Genet 2012; 21(23): 5131-46.
[http://dx.doi.org/10.1093/hmg/dds360] [PMID: 22926141]
[32]
Picone P, Vilasi S, Librizzi F, et al. Biological and biophysics aspects of metformin-induced effects: Cortex mitochondrial dysfunction and promotion of toxic amyloid pre-fibrillar aggregates. Aging (Albany NY) 2016; 8(8): 1718-34.
[http://dx.doi.org/10.18632/aging.101004] [PMID: 27509335]
[33]
Iqbal K, Liu F, Gong CX, Alonso AdelC, Grundke-Iqbal I. Mechanisms of tau-induced neurodegeneration. Acta Neuropathol 2009; 118(1): 53-69.
[http://dx.doi.org/10.1007/s00401-009-0486-3] [PMID: 19184068]
[34]
Calkins MJ, Manczak M, Mao P, Shirendeb U, Reddy PH. Impaired mitochondrial biogenesis, defective axonal transport of mitochondria, abnormal mitochondrial dynamics and synaptic degeneration in a mouse model of Alzheimer’s disease. Hum Mol Genet 2011; 20(23): 4515-29.
[http://dx.doi.org/10.1093/hmg/ddr381] [PMID: 21873260]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy