General Review Article

耐甲氧西林金黄色葡萄球菌 (MRSA) 丙酮酸激酶 (PK) 抑制剂及其抗菌活性

卷 29, 期 5, 2022

发表于: 22 March, 2021

页: [908 - 923] 页: 16

弟呕挨: 10.2174/0929867328666210322103340

价格: $65

conference banner
摘要

医疗保健和社区环境中已经存在对抗生素的耐药性。 因此,开发新型抗生素迫在眉睫。 耐甲氧西林金黄色葡萄球菌 (MRSA) 丙酮酸激酶 (PK) 对细菌的存活至关重要,使其成为一种新的抗菌靶点。 近十年来,最常报道的PK抑制剂包括天然产物小分子或其类似物的吲哚、黄酮、吩嗪衍生物或虚拟筛选小分子化合物库。 本综述涵盖了 2011 年初至 2020 年年中报告的 PK 抑制剂及其抗菌活性。 还简要讨论了构效关系 (SAR)。

关键词: 耐甲氧西林金黄色葡萄球菌、丙酮酸激酶抗菌素、腙类、吲哚类、黄酮类、硝基化合物、吩嗪类。

[1]
Breijyeh, Z.; Jubeh, B.; Karaman, R. Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules, 2020, 25(6), E1340.
[http://dx.doi.org/10.3390/molecules25061340] [PMID: 32187986]
[2]
Brinkac, L.; Voorhies, A.; Gomez, A.; Nelson, K.E. The Threat of Antimicrobial Resistance on the Human Microbiome. Microb. Ecol., 2017, 74(4), 1001-1008.
[http://dx.doi.org/10.1007/s00248-017-0985-z] [PMID: 28492988]
[3]
Mahasenan, K.V.; Molina, R.; Bouley, R.; Batuecas, M.T.; Fisher, J.F.; Hermoso, J.A.; Chang, M.; Mobashery, S. Conformational Dynamics in Penicillin-Binding Protein 2a of Methicillin-Resistant Staphylococcus aureus, Allosteric Communication Network and Enablement of Catalysis. J. Am. Chem. Soc., 2017, 139(5), 2102-2110.
[http://dx.doi.org/10.1021/jacs.6b12565] [PMID: 28099001]
[4]
Zha, G-F.; Wang, S-M.; Rakesh, K.P.; Bukhari, S.N.A.; Manukumar, H.M.; Vivek, H.K.; Mallesha, N.; Qin, H-L. Discovery of novel arylethenesulfonyl fluorides as potential candidates against methicillin-resistant of Staphylococcus aureus (MRSA) for overcoming multidrug resistance of bacterial infections. Eur. J. Med. Chem., 2019, 162, 364-377.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.012] [PMID: 30453245]
[5]
Gajdács, M. The Continuing Threat of Methicillin-Resistant Staphylococcus aureus. Antibiotics (Basel), 2019, 8(2), 52.
[http://dx.doi.org/10.3390/antibiotics8020052] [PMID: 31052511]
[6]
Ippolito, G.; Leone, S.; Lauria, F.N.; Nicastri, E.; Wenzel, R.P. Methicillin-resistant Staphylococcus aureus: the superbug. Int. J. Infect. Dis., 2010, 14(Suppl. 4), S7-S11.
[http://dx.doi.org/10.1016/j.ijid.2010.05.003] [PMID: 20851011]
[7]
Boonsiri, T.; Watanabe, S.; Tan, X-E.; Thitiananpakorn, K.; Narimatsu, R.; Sasaki, K.; Takenouchi, R.; Sato’o, Y.; Aiba, Y.; Kiga, K.; Sasahara, T.; Taki, Y.; Li, F-Y.; Zhang, Y.; Azam, A.H.; Kawaguchi, T.; Cui, L. Identification and characterization of mutations responsible for the β-lactam resistance in oxacillin-susceptible mecA-positive Staphylococcus aureus. Sci. Rep., 2020, 10(1), 16907.
[http://dx.doi.org/10.1038/s41598-020-73796-5] [PMID: 33037239]
[8]
Lakhundi, S.; Zhang, K. Methicillin-Resistant Staphylococcus aureus: Molecular Characterization, Evolution, and Epidemiology. Clin. Microbiol. Rev., 2018, 31(4), e00020-18.
[http://dx.doi.org/10.1128/CMR.00020-18] [PMID: 30209034]
[9]
Cuny, C.; Wieler, L.H.; Witte, W. Livestock-Associated MRSA: The Impact on Humans. Antibiotics (Basel), 2015, 4(4), 521-543.
[http://dx.doi.org/10.3390/antibiotics4040521] [PMID: 27025639]
[10]
Pathania, R.; Brown, E.D.B.D. Small and lethal: searching for new antibacterial compounds with novel modes of action. Biochem. Cell Biol., 2008, 86(2), 111-115.
[http://dx.doi.org/10.1139/O08-011] [PMID: 18443624]
[11]
Thomsen, I.P.; Liu, G.Y. Targeting fundamental pathways to disrupt Staphylococcus aureus survival: clinical implications of recent discoveries. JCI Insight, 2018, 3(5), 98216.
[http://dx.doi.org/10.1172/jci.insight.98216] [PMID: 29515041]
[12]
Zhu, T.; Lou, Q.; Wu, Y.; Hu, J.; Yu, F.; Qu, D. Impact of the Staphylococcus epidermidis LytSR two-component regulatory system on murein hydrolase activity, pyruvate utilization and global transcriptional profile. BMC Microbiol., 2010, 10, 287.
[http://dx.doi.org/10.1186/1471-2180-10-287] [PMID: 21073699]
[13]
Vasu, D.; Sunitha, M. M.; Srikanth, L.; Swarupa, V.; Prasad, U. V.; Sireesha, K.; Yeswanth, S.; Kumar, P. S.; Venkatesh, K.; Chaudhary, A.; Sarma, P. V. G. K. In Staphylococcus aureus the regulation of pyruvate kinase activity by serine/threonine protein kinase favors biofilm formation. 3 Biotech, 2015, 5(4), 505-512.
[14]
Zoraghi, R.; See, R.H.; Gong, H.; Lian, T.; Swayze, R.; Finlay, B.B.; Brunham, R.C.; McMaster, W.R.; Reiner, N.E. Functional analysis, overexpression, and kinetic characterization of pyruvate kinase from methicillin-resistant Staphylococcus aureus. Biochemistry, 2010, 49(35), 7733-7747.
[http://dx.doi.org/10.1021/bi100780t] [PMID: 20707314]
[15]
Monahan, L.G.; Hajduk, I.V.; Blaber, S.P.; Charles, I.G.; Harry, E.J. Coordinating bacterial cell division with nutrient availability: a role for glycolysis. MBio, 2014, 5(3), e00935-e14.
[http://dx.doi.org/10.1128/mBio.00935-14] [PMID: 24825009]
[16]
Veale, C.G.L.; Zoraghi, R.; Young, R.M.; Morrison, J.P.; Pretheeban, M.; Lobb, K.A.; Reiner, N.E.; Andersen, R.J.; Davies-Coleman, M.T. Synthetic analogues of the marine bisindole deoxytopsentin: potent selective inhibitors of MRSA pyruvate kinase. J. Nat. Prod., 2015, 78(3), 355-362.
[http://dx.doi.org/10.1021/np500755v] [PMID: 25372480]
[17]
Suzuki, K.; Ito, S.; Shimizu-Ibuka, A.; Sakai, H. Crystal structure of pyruvate kinase from Geobacillus stearothermophilus. J. Biochem., 2008, 144(3), 305-312.
[http://dx.doi.org/10.1093/jb/mvn069] [PMID: 18511452]
[18]
Axerio-Cilies, P.; See, R.H.; Zoraghi, R.; Worral, L.; Lian, T.; Stoynov, N.; Jiang, J.; Kaur, S.; Jackson, L.; Gong, H.; Swayze, R.; Amandoron, E.; Kumar, N.S.; Moreau, A.; Hsing, M.; Strynadka, N.C.; McMaster, W.R.; Finlay, B.B.; Foster, L.J.; Young, R.N.; Reiner, N.E.; Cherkasov, A. Cheminformatics-driven discovery of selective, nanomolar inhibitors for staphylococcal pyruvate kinase. ACS Chem. Biol., 2012, 7(2), 350-359.
[http://dx.doi.org/10.1021/cb2003576] [PMID: 22066782]
[19]
Cherkasov, A.; Hsing, M.; Zoraghi, R.; Foster, L.J.; See, R.H.; Stoynov, N.; Jiang, J.; Kaur, S.; Lian, T.; Jackson, L.; Gong, H.; Swayze, R.; Amandoron, E.; Hormozdiari, F.; Dao, P.; Sahinalp, C.; Santos-Filho, O.; Axerio-Cilies, P.; Byler, K.; McMaster, W.R.; Brunham, R.C.; Finlay, B.B.; Reiner, N.E. Mapping the protein interaction network in methicillin-resistant Staphylococcus aureus. J. Proteome Res., 2011, 10(3), 1139-1150.
[http://dx.doi.org/10.1021/pr100918u] [PMID: 21166474]
[20]
Zoraghi, R.; See, R.H.; Axerio-Cilies, P.; Kumar, N.S.; Gong, H.; Moreau, A.; Hsing, M.; Kaur, S.; Swayze, R.D.; Worrall, L.; Amandoron, E.; Lian, T.; Jackson, L.; Jiang, J.; Thorson, L.; Labriere, C.; Foster, L.; Brunham, R.C.; McMaster, W.R.; Finlay, B.B.; Strynadka, N.C.; Cherkasov, A.; Young, R.N.; Reiner, N.E. Identification of pyruvate kinase in methicillin-resistant Staphylococcus aureus as a novel antimicrobial drug target. Antimicrob. Agents Chemother., 2011, 55(5), 2042-2053.
[http://dx.doi.org/10.1128/AAC.01250-10] [PMID: 21357306]
[21]
Kumar, N.S.; Amandoron, E.A.; Cherkasov, A.; Finlay, B.B.; Gong, H.; Jackson, L.; Kaur, S.; Lian, T.; Moreau, A.; Labrière, C.; Reiner, N.E.; See, R.H.; Strynadka, N.C.; Thorson, L.; Wong, E.W.Y.; Worrall, L.; Zoraghi, R.; Young, R.N. Optimization and structure-activity relationships of a series of potent inhibitors of methicillin-resistant Staphylococcus aureus (MRSA) pyruvate kinase as novel antimicrobial agents. Bioorg. Med. Chem., 2012, 20(24), 7069-7082.
[http://dx.doi.org/10.1016/j.bmc.2012.10.002] [PMID: 23141418]
[22]
Morgan, H.P.; McNae, I.W.; Nowicki, M.W.; Hannaert, V.; Michels, P.A.M.; Fothergill-Gilmore, L.A.; Walkinshaw, M.D. Allosteric mechanism of pyruvate kinase from Leishmania mexicana uses a rock and lock model. J. Biol. Chem., 2010, 285(17), 12892-12898.
[http://dx.doi.org/10.1074/jbc.M109.079905] [PMID: 20123988]
[23]
Nastasă, C.; Tiperciuc, B.; Duma, M.; Benedec, D.; Oniga, O. New Hydrazones Bearing Thiazole Scaffold: Synthesis, Characterization, Antimicrobial, and Antioxidant Investigation. Molecules, 2015, 20(9), 17325-17338.
[http://dx.doi.org/10.3390/molecules200917325] [PMID: 26393564]
[24]
Angelusiu, M.V.; Barbuceanu, S-F.; Draghici, C.; Almajan, G.L. New Cu(II), Co(II), Ni(II) complexes with aroyl-hydrazone based ligand. Synthesis, spectroscopic characterization and in vitro antibacterial evaluation. Eur. J. Med. Chem., 2010, 45(5), 2055-2062.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.033] [PMID: 20133023]
[25]
McNulty, J.; Babu Dokuburra, C.; D’Aiuto, L.; Demers, M.; McClain, L.; Piazza, P.; Williamson, K.; Zheng, W.; Nimgaonkar, V.L. Synthesis of non-nucleoside anti-viral cyclopropylcarboxacyl hydrazones and initial anti-HSV-1 structure-activity relationship studies. Bioorg. Med. Chem. Lett., 2020, 30(24), 127559-127559.
[http://dx.doi.org/10.1016/j.bmcl.2020.127559] [PMID: 32961320]
[26]
Tok, F.; Koçyiğit-Kaymakçıoğlu, B.; Sağlık, B.N.; Levent, S.; Özkay, Y.; Kaplancıklı, Z.A. Synthesis and biological evaluation of new pyrazolone Schiff bases as monoamine oxidase and cholinesterase inhibitors. Bioorg. Chem., 2019, 84, 41-50.
[http://dx.doi.org/10.1016/j.bioorg.2018.11.016] [PMID: 30481645]
[27]
Gwaram, N.S.; Ali, H.M.; Abdulla, M.A.; Buckle, M.J.C.; Sukumaran, S.D.; Chung, L.Y.; Othman, R.; Alhadi, A.A.; Yehye, W.A.; Hadi, A.H.A.; Hassandarvish, P.; Khaledi, H.; Abdelwahab, S.I. Synthesis, characterization, X-ray crystallography, acetyl cholinesterase inhibition and antioxidant activities of some novel ketone derivatives of gallic hydrazide-derived Schiff bases. Molecules, 2012, 17(3), 2408-2427.
[http://dx.doi.org/10.3390/molecules17032408] [PMID: 22374313]
[28]
Coimbra, E.S.; Nora de Souza, M.V.; Terror, M.S.; Pinheiro, A.C.; da Trindade Granato, J. Synthesis, biological activity, and mechanism of action of new 2-pyrimidinyl hydrazone and N-acylhydrazone derivatives, a potent and new classes of antileishmanial agents. Eur. J. Med. Chem., 2019, 184, 111742.
[http://dx.doi.org/10.1016/j.ejmech.2019.111742] [PMID: 31605866]
[29]
Taha, M.; Sultan, S.; Herizal, M.; Fatmi, M.Q.; Selvaraj, M.; Ramasamy, K.; Halim, S.A.; Lim, S.M.; Rahim, F.; Ashraf, K.; Shehzad, A. Synthesis, anticancer, molecular docking and QSAR studies of benzoylhydrazone. J. Saudi Chem. Soc., 2019, 23(8), 1168-1179.
[http://dx.doi.org/10.1016/j.jscs.2019.07.007]
[30]
Dias Viegas, F.P.; de Freitas Silva, M.; Divino da Rocha, M.; Castelli, M.R.; Riquiel, M.M.; Machado, R.P.; Vaz, S.M.; Simões de Lima, L.M.; Mancini, K.C.; Marques de Oliveira, P.C.; Morais, É.P.; Gontijo, V.S.; da Silva, F.M.R.; D’Alincourt da Fonseca Peçanha, D.; Castro, N.G.; Neves, G.A.; Giusti-Paiva, A.; Vilela, F.C.; Orlandi, L.; Camps, I.; Veloso, M.P.; Leomil Coelho, L.F.; Ionta, M.; Ferreira-Silva, G.Á.; Pereira, R.M.; Dardenne, L.E.; Guedes, I.A.; de Oliveira Carneiro Junior, W.; Quaglio Bellozi, P.M.; Pinheiro de Oliveira, A.C.; Ferreira, F.F.; Pruccoli, L.; Tarozzi, A.; Viegas, C., Jr Design, synthesis and pharmacological evaluation of N-benzyl-piperidinyl-aryl-acylhydrazone derivatives as donepezil hybrids: Discovery of novel multi-target anti-alzheimer prototype drug candidates. Eur. J. Med. Chem., 2018, 147, 48-65.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.066] [PMID: 29421570]
[31]
Gorantla, V.; Gundla, R.; Jadav, S.S.; Anugu, S.R.; Chimakurthy, J.; Nidasanametla, S.K.; Korupolu, R. Molecular hybrid design, synthesis and biological evaluation of N-phenyl sulfonamide linked N-acyl hydrazone derivatives functioning as COX-2 inhibitors: new anti-inflammatory, anti-oxidant and anti-bacterial agents. New J. Chem., 2017, 41(22), 13516-13532.
[http://dx.doi.org/10.1039/C7NJ03332J]
[32]
Meng, T.; Hou, Y.; Shang, C.; Zhang, J.; Zhang, B. Recent advances in indole dimers and hybrids with antibacterial activity against methicillin-resistant Staphylococcus aureus. Arch Pharm., 2021, 354(2), e2000266.
[33]
Kumar, D.; Sharma, S.; Kalra, S.; Singh, G.; Monga, V.; Kumar, B. Medicinal Perspective of Indole Derivatives: Recent Developments and Structure-Activity Relationship Studies. Curr. Drug Targets, 2020, 21(9), 864-891.
[http://dx.doi.org/10.2174/1389450121666200310115327] [PMID: 32156235]
[34]
de Sá Alves, F.R.; Barreiro, E.J.; Fraga, C.A. From nature to drug discovery: the indole scaffold as a ‘privileged structure’. Mini Rev. Med. Chem., 2009, 9(7), 782-793.
[http://dx.doi.org/10.2174/138955709788452649] [PMID: 19519503]
[35]
Richeldi, L.; du Bois, R.M.; Raghu, G.; Azuma, A.; Brown, K.K.; Costabel, U.; Cottin, V.; Flaherty, K.R.; Hansell, D.M.; Inoue, Y.; Kim, D.S.; Kolb, M.; Nicholson, A.G.; Noble, P.W.; Selman, M.; Taniguchi, H.; Brun, M.; Le Maulf, F.; Girard, M.; Stowasser, S.; Schlenker-Herceg, R.; Disse, B.; Collard, H.R.; Investigators, I.T. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N. Engl. J. Med., 2014, 370(22), 2071-2082.
[http://dx.doi.org/10.1056/NEJMoa1402584] [PMID: 24836310]
[36]
Chung, B.H.; Horie, S.; Chiong, E. Clinical studies investigating the use of leuprorelin for prostate cancer in Asia. Prostate Int., 2020, 8(1), 1-9.
[http://dx.doi.org/10.1016/j.prnil.2019.06.001] [PMID: 32257971]
[37]
Vanangamudi, M.; Kurup, S.; Namasivayam, V. Non-nucleoside reverse transcriptase inhibitors (NNRTIs): a brief overview of clinically approved drugs and combination regimens. Curr. Opin. Pharmacol., 2020, 54, 179-187.
[http://dx.doi.org/10.1016/j.coph.2020.10.009] [PMID: 33202360]
[38]
Saag, M.S. New and investigational antiretroviral drugs for HIV infection: mechanisms of action and early research findings. Top. Antivir. Med., 2012, 20(5), 162-167.
[PMID: 23363694]
[39]
Chen, X.; Lv, X.; Yang, G.; Lu, D.; Piao, C.; Zhang, X.; Jiang, H.; Xie, Y.; Yang, J.; Li, X.; Li, Y.; Xiao, X.; Li, Y.; Sun, L.; Zheng, S.; Cheng, Q.; Peng, Y.; Yang, W. Polyethylene glycol loxenatide injections added to metformin effectively improve glycemic control and exhibit favorable safety in type 2 diabetic patients. J. Diabetes, 2017, 9(2), 158-167.
[http://dx.doi.org/10.1111/1753-0407.12397] [PMID: 26989888]
[40]
Zoraghi, R.; Worrall, L.; See, R.H.; Strangman, W.; Popplewell, W.L.; Gong, H.; Samaai, T.; Swayze, R.D.; Kaur, S.; Vuckovic, M.; Finlay, B.B.; Brunham, R.C.; McMaster, W.R.; Davies-Coleman, M.T.; Strynadka, N.C.; Andersen, R.J.; Reiner, N.E. Methicillin-resistant Staphylococcus aureus (MRSA) pyruvate kinase as a target for bis-indole alkaloids with antibacterial activities. J. Biol. Chem., 2011, 286(52), 44716-44725.
[http://dx.doi.org/10.1074/jbc.M111.289033] [PMID: 22030393]
[41]
Kumar, N.S.; Dullaghan, E.M.; Finlay, B.B.; Gong, H.; Reiner, N.E.; Jon Paul Selvam, J.; Thorson, L.M.; Campbell, S.; Vitko, N.; Richardson, A.R.; Zoraghi, R.; Young, R.N. Discovery and optimization of a new class of pyruvate kinase inhibitors as potential therapeutics for the treatment of methicillin-resistant Staphylococcus aureus infections. Bioorg. Med. Chem., 2014, 22(5), 1708-1725.
[http://dx.doi.org/10.1016/j.bmc.2014.01.020] [PMID: 24508307]
[42]
Veale, C.G.L.; Lobb, K.A.; Zoraghi, R.; Morrison, J.P.; Reiner, N.E.; Andersen, R.J.; Davies-Coleman, M.T. Synthesis and MRSA PK inhibitory activity of thiazole containing deoxytopsentin analogues. Tetrahedron, 2014, 70(43), 7845-7853.
[http://dx.doi.org/10.1016/j.tet.2014.09.007]
[43]
Zoraghi, R.; Campbell, S.; Kim, C.; Dullaghan, E.M.; Blair, L.M.; Gillard, R.M.; Reiner, N.E.; Sperry, J. Discovery of a 1,2-bis(3-indolyl)ethane that selectively inhibits the pyruvate kinase of methicillin-resistant Staphylococcus aureus over human isoforms. Bioorg. Med. Chem. Lett., 2014, 24(21), 5059-5062.
[http://dx.doi.org/10.1016/j.bmcl.2014.09.010] [PMID: 25266785]
[44]
El-Sayed, M.T.; Zoraghi, R.; Reiner, N.; Suzen, S.; Ohlsen, K.; Lalk, M.; Altanlar, N.; Hilgeroth, A. Novel inhibitors of the methicillin-resistant Staphylococcus aureus (MRSA)-pyruvate kinase. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1666-1671.
[http://dx.doi.org/10.3109/14756366.2015.1118685] [PMID: 26653005]
[45]
Kim, A.; Kim, M.J.; Noh, T.H.; Hong, J.; Liu, Y.; Wei, X.; Jung, J.H. Synthesis and antibacterial evaluation of hamacanthin B analogues. Bioorg. Med. Chem. Lett., 2016, 26(20), 5013-5017.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.095] [PMID: 27614413]
[46]
Labrière, C.; Gong, H.; Finlay, B.B.; Reiner, N.E.; Young, R.N. Further investigation of inhibitors of MRSA pyruvate kinase: Towards the conception of novel antimicrobial agents. Eur. J. Med. Chem., 2017, 125, 1-13.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.018] [PMID: 27643559]
[47]
El Sayed, M.T.; Sabry, N.M.; Hamdy, N.A.; Voronkov, A.; Ogungbe, I.V.; Balakin, K.; Abdel-Aziz, M.S. Synthesis, Anti-methicillin-resistant S. aureus (MRSA) Evaluation, Quantitative Structure-activity Relationship and Molecular Modeling Studies of Some Novel Bis-indoles as Prospective MRSA Pyruvate Kinase Inhibitors. Lett. Drug Des. Discov., 2018, 15(4), 336-346.
[http://dx.doi.org/10.2174/1570180815666171213144922]
[48]
Sayed, A.M.; Alhadrami, H.A.; El-Hawary, S.S.; Mohammed, R.; Hassan, H.M.; Rateb, M.E.; Abdelmohsen, U.R.; Bakeer, W. Discovery of Two Brominated Oxindole Alkaloids as Staphylococcal DNA Gyrase and Pyruvate Kinase Inhibitors via Inverse Virtual Screening. Microorganisms, 2020, 8(2), 293.
[http://dx.doi.org/10.3390/microorganisms8020293] [PMID: 32093370]
[49]
Banerjee, R.; Fernandez, M.G.; Enthaler, N.; Graml, C.; Greenwood-Quaintance, K.E.; Patel, R. Combinations of cefoxitin plus other β-lactams are synergistic in vitro against community associated methicillin-resistant Staphylococcus aureus. Eur. J. Clin. Microbiol. Infect. Dis., 2013, 32(6), 827-833.
[http://dx.doi.org/10.1007/s10096-013-1817-9] [PMID: 23340864]
[50]
Bao, M.; Zhang, L.; Liu, B.; Li, L.; Zhang, Y.; Zhao, H.; Ji, X.; Chen, Q.; Hu, M.; Bai, J.; Pang, G.; Yi, J.; Tan, Y.; Lu, C. Synergistic effects of anti-MRSA herbal extracts combined with antibiotics. Future Microbiol., 2020, 15(13), 1265-1276.
[http://dx.doi.org/10.2217/fmb-2020-0001] [PMID: 33026882]
[51]
González-Bello, C.; Rodríguez, D.; Pernas, M.; Rodríguez, Á.; Colchón, E. β-Lactamase Inhibitors To Restore the Efficacy of Antibiotics against Superbugs. J. Med. Chem., 2020, 63(5), 1859-1881.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01279] [PMID: 31663735]
[52]
Zhang, L.; Liang, E.; Cheng, Y.; Mahmood, T.; Ge, F.; Zhou, K.; Bao, M.; Lv, L.; Li, L.; Yi, J.; Lu, C.; Tan, Y. Is combined medication with natural medicine a promising therapy for bacterial biofilm infection? Biomed. Pharmacother., 2020, 128, 110184.
[http://dx.doi.org/10.1016/j.biopha.2020.110184] [PMID: 32450528]
[53]
Miklasińska-Majdanik, M.; Kępa, M.; Wojtyczka, R.D.; Idzik, D.; Wąsik, T.J. Phenolic Compounds Diminish Antibiotic Resistance of Staphylococcus Aureus Clinical Strains. Int. J. Environ. Res. Public Health, 2018, 15(10), 2321.
[http://dx.doi.org/10.3390/ijerph15102321] [PMID: 30360435]
[54]
Usman Amin, M.; Khurram, M.; Khan, T.A.; Faidah, H.S.; Ullah Shah, Z.; Ur Rahman, S.; Haseeb, A.; Ilyas, M.; Ullah, N.; Umar Khayam, S.M.; Iriti, M. Effects of Luteolin and Quercetin in Combination with Some Conventional Antibiotics against Methicillin-Resistant Staphylococcus aureus. Int. J. Mol. Sci., 2016, 17(11), 1947.
[http://dx.doi.org/10.3390/ijms17111947] [PMID: 27879665]
[55]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: an overview. ScientificWorldJournal, 2013, 2013, 162750.
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[56]
Alghazeer, R.; Elmansori, A.; Sidati, M.; Gammoudi, F.; Azwai, S.; Naas, H.; Garbaj, A.; Eldaghayes, I. Antibacterial Activity of Flavonoid Extracts of Two Selected Libyan Algae against Multi-Drug Resistant Bacteria Isolated from Food Products. J Biosci Med, 2017, 5(1), 23.
[57]
Chan, B.C.L.; Ip, M.; Lau, C.B.S.; Lui, S.L.; Jolivalt, C.; Ganem-Elbaz, C.; Litaudon, M.; Reiner, N.E.; Gong, H.; See, R.H.; Fung, K.P.; Leung, P.C. Synergistic effects of baicalein with ciprofloxacin against NorA over-expressed methicillin-resistant Staphylococcus aureus (MRSA) and inhibition of MRSA pyruvate kinase. J. Ethnopharmacol., 2011, 137(1), 767-773.
[http://dx.doi.org/10.1016/j.jep.2011.06.039] [PMID: 21782012]
[58]
Li, J.; Liu, D.; Tian, X.; Koseki, S.; Chen, S.; Ye, X.; Ding, T. Novel antibacterial modalities against methicillin resistant Staphylococcus aureus derived from plants. Crit Rev Food Sci Nutr, 2019, 59(sup1), S153-161.
[http://dx.doi.org/10.1080/10408398.2018.1541865]
[59]
Wang, J.; Jiao, H.; Meng, J.; Qiao, M.; Du, H.; He, M.; Ming, K.; Liu, J.; Wang, D.; Wu, Y. Baicalin Inhibits Biofilm Formation and the Quorum-Sensing System by Regulating the MsrA Drug Efflux Pump in Staphylococcus saprophyticus. Front. Microbiol., 2019, 10, 2800-2800.
[http://dx.doi.org/10.3389/fmicb.2019.02800] [PMID: 31921008]
[60]
Chan, B.C.L.; Ip, M.; Gong, H.; Lui, S.L.; See, R.H.; Jolivalt, C.; Fung, K.P.; Leung, P.C.; Reiner, N.E.; Lau, C.B.S. Synergistic effects of diosmetin with erythromycin against ABC transporter over-expressed methicillin-resistant Staphylococcus aureus (MRSA) RN4220/pUL5054 and inhibition of MRSA pyruvate kinase. Phytomedicine, 2013, 20(7), 611-614.
[http://dx.doi.org/10.1016/j.phymed.2013.02.007] [PMID: 23541215]
[61]
Nepali, K.; Lee, H-Y.; Liou, J-P. Nitro-Group-Containing Drugs. J. Med. Chem., 2019, 62(6), 2851-2893.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00147] [PMID: 30295477]
[62]
Tan, S.; He, F.; Kong, T.; Wu, J.; Liu, Z. Design, synthesis and tumor cell growth inhibitory activity of 3-nitro-2H-cheromene derivatives as histone deacetylaes inhibitors. Bioorg. Med. Chem., 2017, 25(15), 4123-4132.
[http://dx.doi.org/10.1016/j.bmc.2017.05.062] [PMID: 28629630]
[63]
Papadopoulou, M.V.; Bloomer, W.D.; Rosenzweig, H.S. The antitubercular activity of various nitro(triazole/imidazole)-based compounds. Bioorg. Med. Chem., 2017, 25(21), 6039-6048.
[http://dx.doi.org/10.1016/j.bmc.2017.09.037] [PMID: 28993106]
[64]
Brondani, D.J.; Caetano, N. de M. Moreira, D. R.; Soares, R. R.; Lima, V. T.; de Araújo, J. M.; de Abreu, F. C.; de Oliveira, B. G.; Hernandes, M. Z.; Leite, A. C. L., Novel Nitrofurazone Derivatives Endowed with Antimicrobial Activity. Arch. Pharm. Pharm. Med. Chem., 2008, 341(10), 655-660.
[http://dx.doi.org/10.1002/ardp.200700243]
[65]
Popiołek, Ł.; Biernasiuk, A. Synthesis and investigation of antimicrobial activities of nitrofurazone analogues containing hydrazide-hydrazone moiety. Saudi Pharm. J., 2017, 25(7), 1097-1102.
[http://dx.doi.org/10.1016/j.jsps.2017.05.006] [PMID: 29158722]
[66]
El Sayed, M.T.; Sarhan, A.E.; Ahmed, E.; Khattab, R.R.; Elnaggar, M.; El-Messery, S.M.; Shaldam, M.A.; Hassan, G.S. Novel Pyruvate Kinase (PK) Inhibitors: New Target to Overcome Bacterial Resistance. ChemistrySelect, 2020, 5(11), 3445-3453.
[http://dx.doi.org/10.1002/slct.202000043]
[67]
Zhou, X.; Yu, S.; Su, J.; Sun, L. Computational Study on New Natural Compound Inhibitors of Pyruvate Dehydrogenase Kinases. Int. J. Mol. Sci., 2016, 17(3), 340.
[http://dx.doi.org/10.3390/ijms17030340] [PMID: 26959013]
[68]
Ates-Alagoz, Z.; Yildiz, S.; Buyukbingol, E. Antimicrobial activities of some tetrahydronaphthalene-benzimidazole derivatives. Chemotherapy, 2007, 53(2), 110-113.
[http://dx.doi.org/10.1159/000100011] [PMID: 17310118]
[69]
Taha, I.; Keshk, E.M.; Khalil, A-G.M.; Fekri, A. Synthesis, characterization, antibacterial evaluation, 2D-QSAR modeling and molecular docking studies for benzocaine derivatives. Mol. Divers., 2021, 25(1), 435-459.
[PMID: 32978693]
[70]
Guttenberger, N.; Blankenfeldt, W.; Breinbauer, R. Recent developments in the isolation, biological function, biosynthesis, and synthesis of phenazine natural products. Bioorg. Med. Chem., 2017, 25(22), 6149-6166.
[http://dx.doi.org/10.1016/j.bmc.2017.01.002] [PMID: 28094222]
[71]
Mavrodi, D.V.; Blankenfeldt, W.; Thomashow, L.S. Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annu. Rev. Phytopathol., 2006, 44(1), 417-445.
[http://dx.doi.org/10.1146/annurev.phyto.44.013106.145710] [PMID: 16719720]
[72]
Laursen, J.B.; Nielsen, J. Phenazine natural products: biosynthesis, synthetic analogues, and biological activity. Chem. Rev., 2004, 104(3), 1663-1686.
[http://dx.doi.org/10.1021/cr020473j] [PMID: 15008629]
[73]
Garrison, A.T.; Abouelhassan, Y.; Norwood, V.M., IV; Kallifidas, D.; Bai, F.; Nguyen, M.T.; Rolfe, M.; Burch, G.M.; Jin, S.; Luesch, H.; Huigens, R.W., III Structure-Activity Relationships of a Diverse Class of Halogenated Phenazines That Targets Persistent, Antibiotic-Tolerant Bacterial Biofilms and Mycobacterium tuberculosis. J. Med. Chem., 2016, 59(8), 3808-3825.
[http://dx.doi.org/10.1021/acs.jmedchem.5b02004] [PMID: 27018907]
[74]
Garrison, A.T.; Abouelhassan, Y.; Kallifidas, D.; Bai, F.; Ukhanova, M.; Mai, V.; Jin, S.; Luesch, H.; Huigens, R.W., III Halogenated Phenazines that Potently Eradicate Biofilms, MRSA Persister Cells in Non-Biofilm Cultures, and Mycobacterium tuberculosis. Angew. Chem. Int. Ed. Engl., 2015, 54(49), 14819-14823.
[http://dx.doi.org/10.1002/anie.201508155] [PMID: 26480852]
[75]
Hifnawy, S. M.; Hassan, H. M.; Mohammed, R.; M. Fouda, M.; Sayed, A. M.; A. Hamed, A.; F. AbouZid, S.; Rateb, M. E.; Alhadrami, H. A.; Abdelmohsen, U. R., Induction of Antibacterial Metabolites by Co-Cultivation of Two Red-Sea-Sponge-Associated Actinomycetes Micromonospora sp. UR56 and Actinokinespora sp. EG49. Mar. Drugs, 2020, 18(5), 243.
[http://dx.doi.org/10.3390/md18050243]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy