Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

General Review Article

Methicillin-Resistant Staphylococcus Aureus (MRSA) Pyruvate Kinase (PK) Inhibitors and their Antimicrobial Activities

Author(s): Jingjing Jia, Yang Luo, Xue Zhong and Ling He*

Volume 29, Issue 5, 2022

Published on: 22 March, 2021

Page: [908 - 923] Pages: 16

DOI: 10.2174/0929867328666210322103340

Price: $65

Abstract

Resistance to antibiotics has existed in the health care and community settings. Thus, developing novel antibiotics is urgent. Methicillin-resistant Staphylococcus aureus (MRSA) pyruvate kinase (PK) is crucial for the survival of bacteria, making it a novel antimicrobial target. In the past decade, the most commonly reported PK inhibitors include indole, flavonoid, phenazine derivatives from natural products’ small molecules or their analogs, or virtual screening from small molecule compound library. This review covers the PK inhibitors and their antimicrobial activities reported from the beginning of 2011 through mid-2020. The Structure-Activity Relationships (SARs) were discussed briefly as well.

Keywords: Methicillin-resistant Staphylococcus aureus, pyruvate kinase antimicrobial, hydrazones, indoles, flavonoids, nitro compounds, phenazines.

[1]
Breijyeh, Z.; Jubeh, B.; Karaman, R. Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules, 2020, 25(6), E1340.
[http://dx.doi.org/10.3390/molecules25061340] [PMID: 32187986]
[2]
Brinkac, L.; Voorhies, A.; Gomez, A.; Nelson, K.E. The Threat of Antimicrobial Resistance on the Human Microbiome. Microb. Ecol., 2017, 74(4), 1001-1008.
[http://dx.doi.org/10.1007/s00248-017-0985-z] [PMID: 28492988]
[3]
Mahasenan, K.V.; Molina, R.; Bouley, R.; Batuecas, M.T.; Fisher, J.F.; Hermoso, J.A.; Chang, M.; Mobashery, S. Conformational Dynamics in Penicillin-Binding Protein 2a of Methicillin-Resistant Staphylococcus aureus, Allosteric Communication Network and Enablement of Catalysis. J. Am. Chem. Soc., 2017, 139(5), 2102-2110.
[http://dx.doi.org/10.1021/jacs.6b12565] [PMID: 28099001]
[4]
Zha, G-F.; Wang, S-M.; Rakesh, K.P.; Bukhari, S.N.A.; Manukumar, H.M.; Vivek, H.K.; Mallesha, N.; Qin, H-L. Discovery of novel arylethenesulfonyl fluorides as potential candidates against methicillin-resistant of Staphylococcus aureus (MRSA) for overcoming multidrug resistance of bacterial infections. Eur. J. Med. Chem., 2019, 162, 364-377.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.012] [PMID: 30453245]
[5]
Gajdács, M. The Continuing Threat of Methicillin-Resistant Staphylococcus aureus. Antibiotics (Basel), 2019, 8(2), 52.
[http://dx.doi.org/10.3390/antibiotics8020052] [PMID: 31052511]
[6]
Ippolito, G.; Leone, S.; Lauria, F.N.; Nicastri, E.; Wenzel, R.P. Methicillin-resistant Staphylococcus aureus: the superbug. Int. J. Infect. Dis., 2010, 14(Suppl. 4), S7-S11.
[http://dx.doi.org/10.1016/j.ijid.2010.05.003] [PMID: 20851011]
[7]
Boonsiri, T.; Watanabe, S.; Tan, X-E.; Thitiananpakorn, K.; Narimatsu, R.; Sasaki, K.; Takenouchi, R.; Sato’o, Y.; Aiba, Y.; Kiga, K.; Sasahara, T.; Taki, Y.; Li, F-Y.; Zhang, Y.; Azam, A.H.; Kawaguchi, T.; Cui, L. Identification and characterization of mutations responsible for the β-lactam resistance in oxacillin-susceptible mecA-positive Staphylococcus aureus. Sci. Rep., 2020, 10(1), 16907.
[http://dx.doi.org/10.1038/s41598-020-73796-5] [PMID: 33037239]
[8]
Lakhundi, S.; Zhang, K. Methicillin-Resistant Staphylococcus aureus: Molecular Characterization, Evolution, and Epidemiology. Clin. Microbiol. Rev., 2018, 31(4), e00020-18.
[http://dx.doi.org/10.1128/CMR.00020-18] [PMID: 30209034]
[9]
Cuny, C.; Wieler, L.H.; Witte, W. Livestock-Associated MRSA: The Impact on Humans. Antibiotics (Basel), 2015, 4(4), 521-543.
[http://dx.doi.org/10.3390/antibiotics4040521] [PMID: 27025639]
[10]
Pathania, R.; Brown, E.D.B.D. Small and lethal: searching for new antibacterial compounds with novel modes of action. Biochem. Cell Biol., 2008, 86(2), 111-115.
[http://dx.doi.org/10.1139/O08-011] [PMID: 18443624]
[11]
Thomsen, I.P.; Liu, G.Y. Targeting fundamental pathways to disrupt Staphylococcus aureus survival: clinical implications of recent discoveries. JCI Insight, 2018, 3(5), 98216.
[http://dx.doi.org/10.1172/jci.insight.98216] [PMID: 29515041]
[12]
Zhu, T.; Lou, Q.; Wu, Y.; Hu, J.; Yu, F.; Qu, D. Impact of the Staphylococcus epidermidis LytSR two-component regulatory system on murein hydrolase activity, pyruvate utilization and global transcriptional profile. BMC Microbiol., 2010, 10, 287.
[http://dx.doi.org/10.1186/1471-2180-10-287] [PMID: 21073699]
[13]
Vasu, D.; Sunitha, M. M.; Srikanth, L.; Swarupa, V.; Prasad, U. V.; Sireesha, K.; Yeswanth, S.; Kumar, P. S.; Venkatesh, K.; Chaudhary, A.; Sarma, P. V. G. K. In Staphylococcus aureus the regulation of pyruvate kinase activity by serine/threonine protein kinase favors biofilm formation. 3 Biotech, 2015, 5(4), 505-512.
[14]
Zoraghi, R.; See, R.H.; Gong, H.; Lian, T.; Swayze, R.; Finlay, B.B.; Brunham, R.C.; McMaster, W.R.; Reiner, N.E. Functional analysis, overexpression, and kinetic characterization of pyruvate kinase from methicillin-resistant Staphylococcus aureus. Biochemistry, 2010, 49(35), 7733-7747.
[http://dx.doi.org/10.1021/bi100780t] [PMID: 20707314]
[15]
Monahan, L.G.; Hajduk, I.V.; Blaber, S.P.; Charles, I.G.; Harry, E.J. Coordinating bacterial cell division with nutrient availability: a role for glycolysis. MBio, 2014, 5(3), e00935-e14.
[http://dx.doi.org/10.1128/mBio.00935-14] [PMID: 24825009]
[16]
Veale, C.G.L.; Zoraghi, R.; Young, R.M.; Morrison, J.P.; Pretheeban, M.; Lobb, K.A.; Reiner, N.E.; Andersen, R.J.; Davies-Coleman, M.T. Synthetic analogues of the marine bisindole deoxytopsentin: potent selective inhibitors of MRSA pyruvate kinase. J. Nat. Prod., 2015, 78(3), 355-362.
[http://dx.doi.org/10.1021/np500755v] [PMID: 25372480]
[17]
Suzuki, K.; Ito, S.; Shimizu-Ibuka, A.; Sakai, H. Crystal structure of pyruvate kinase from Geobacillus stearothermophilus. J. Biochem., 2008, 144(3), 305-312.
[http://dx.doi.org/10.1093/jb/mvn069] [PMID: 18511452]
[18]
Axerio-Cilies, P.; See, R.H.; Zoraghi, R.; Worral, L.; Lian, T.; Stoynov, N.; Jiang, J.; Kaur, S.; Jackson, L.; Gong, H.; Swayze, R.; Amandoron, E.; Kumar, N.S.; Moreau, A.; Hsing, M.; Strynadka, N.C.; McMaster, W.R.; Finlay, B.B.; Foster, L.J.; Young, R.N.; Reiner, N.E.; Cherkasov, A. Cheminformatics-driven discovery of selective, nanomolar inhibitors for staphylococcal pyruvate kinase. ACS Chem. Biol., 2012, 7(2), 350-359.
[http://dx.doi.org/10.1021/cb2003576] [PMID: 22066782]
[19]
Cherkasov, A.; Hsing, M.; Zoraghi, R.; Foster, L.J.; See, R.H.; Stoynov, N.; Jiang, J.; Kaur, S.; Lian, T.; Jackson, L.; Gong, H.; Swayze, R.; Amandoron, E.; Hormozdiari, F.; Dao, P.; Sahinalp, C.; Santos-Filho, O.; Axerio-Cilies, P.; Byler, K.; McMaster, W.R.; Brunham, R.C.; Finlay, B.B.; Reiner, N.E. Mapping the protein interaction network in methicillin-resistant Staphylococcus aureus. J. Proteome Res., 2011, 10(3), 1139-1150.
[http://dx.doi.org/10.1021/pr100918u] [PMID: 21166474]
[20]
Zoraghi, R.; See, R.H.; Axerio-Cilies, P.; Kumar, N.S.; Gong, H.; Moreau, A.; Hsing, M.; Kaur, S.; Swayze, R.D.; Worrall, L.; Amandoron, E.; Lian, T.; Jackson, L.; Jiang, J.; Thorson, L.; Labriere, C.; Foster, L.; Brunham, R.C.; McMaster, W.R.; Finlay, B.B.; Strynadka, N.C.; Cherkasov, A.; Young, R.N.; Reiner, N.E. Identification of pyruvate kinase in methicillin-resistant Staphylococcus aureus as a novel antimicrobial drug target. Antimicrob. Agents Chemother., 2011, 55(5), 2042-2053.
[http://dx.doi.org/10.1128/AAC.01250-10] [PMID: 21357306]
[21]
Kumar, N.S.; Amandoron, E.A.; Cherkasov, A.; Finlay, B.B.; Gong, H.; Jackson, L.; Kaur, S.; Lian, T.; Moreau, A.; Labrière, C.; Reiner, N.E.; See, R.H.; Strynadka, N.C.; Thorson, L.; Wong, E.W.Y.; Worrall, L.; Zoraghi, R.; Young, R.N. Optimization and structure-activity relationships of a series of potent inhibitors of methicillin-resistant Staphylococcus aureus (MRSA) pyruvate kinase as novel antimicrobial agents. Bioorg. Med. Chem., 2012, 20(24), 7069-7082.
[http://dx.doi.org/10.1016/j.bmc.2012.10.002] [PMID: 23141418]
[22]
Morgan, H.P.; McNae, I.W.; Nowicki, M.W.; Hannaert, V.; Michels, P.A.M.; Fothergill-Gilmore, L.A.; Walkinshaw, M.D. Allosteric mechanism of pyruvate kinase from Leishmania mexicana uses a rock and lock model. J. Biol. Chem., 2010, 285(17), 12892-12898.
[http://dx.doi.org/10.1074/jbc.M109.079905] [PMID: 20123988]
[23]
Nastasă, C.; Tiperciuc, B.; Duma, M.; Benedec, D.; Oniga, O. New Hydrazones Bearing Thiazole Scaffold: Synthesis, Characterization, Antimicrobial, and Antioxidant Investigation. Molecules, 2015, 20(9), 17325-17338.
[http://dx.doi.org/10.3390/molecules200917325] [PMID: 26393564]
[24]
Angelusiu, M.V.; Barbuceanu, S-F.; Draghici, C.; Almajan, G.L. New Cu(II), Co(II), Ni(II) complexes with aroyl-hydrazone based ligand. Synthesis, spectroscopic characterization and in vitro antibacterial evaluation. Eur. J. Med. Chem., 2010, 45(5), 2055-2062.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.033] [PMID: 20133023]
[25]
McNulty, J.; Babu Dokuburra, C.; D’Aiuto, L.; Demers, M.; McClain, L.; Piazza, P.; Williamson, K.; Zheng, W.; Nimgaonkar, V.L. Synthesis of non-nucleoside anti-viral cyclopropylcarboxacyl hydrazones and initial anti-HSV-1 structure-activity relationship studies. Bioorg. Med. Chem. Lett., 2020, 30(24), 127559-127559.
[http://dx.doi.org/10.1016/j.bmcl.2020.127559] [PMID: 32961320]
[26]
Tok, F.; Koçyiğit-Kaymakçıoğlu, B.; Sağlık, B.N.; Levent, S.; Özkay, Y.; Kaplancıklı, Z.A. Synthesis and biological evaluation of new pyrazolone Schiff bases as monoamine oxidase and cholinesterase inhibitors. Bioorg. Chem., 2019, 84, 41-50.
[http://dx.doi.org/10.1016/j.bioorg.2018.11.016] [PMID: 30481645]
[27]
Gwaram, N.S.; Ali, H.M.; Abdulla, M.A.; Buckle, M.J.C.; Sukumaran, S.D.; Chung, L.Y.; Othman, R.; Alhadi, A.A.; Yehye, W.A.; Hadi, A.H.A.; Hassandarvish, P.; Khaledi, H.; Abdelwahab, S.I. Synthesis, characterization, X-ray crystallography, acetyl cholinesterase inhibition and antioxidant activities of some novel ketone derivatives of gallic hydrazide-derived Schiff bases. Molecules, 2012, 17(3), 2408-2427.
[http://dx.doi.org/10.3390/molecules17032408] [PMID: 22374313]
[28]
Coimbra, E.S.; Nora de Souza, M.V.; Terror, M.S.; Pinheiro, A.C.; da Trindade Granato, J. Synthesis, biological activity, and mechanism of action of new 2-pyrimidinyl hydrazone and N-acylhydrazone derivatives, a potent and new classes of antileishmanial agents. Eur. J. Med. Chem., 2019, 184, 111742.
[http://dx.doi.org/10.1016/j.ejmech.2019.111742] [PMID: 31605866]
[29]
Taha, M.; Sultan, S.; Herizal, M.; Fatmi, M.Q.; Selvaraj, M.; Ramasamy, K.; Halim, S.A.; Lim, S.M.; Rahim, F.; Ashraf, K.; Shehzad, A. Synthesis, anticancer, molecular docking and QSAR studies of benzoylhydrazone. J. Saudi Chem. Soc., 2019, 23(8), 1168-1179.
[http://dx.doi.org/10.1016/j.jscs.2019.07.007]
[30]
Dias Viegas, F.P.; de Freitas Silva, M.; Divino da Rocha, M.; Castelli, M.R.; Riquiel, M.M.; Machado, R.P.; Vaz, S.M.; Simões de Lima, L.M.; Mancini, K.C.; Marques de Oliveira, P.C.; Morais, É.P.; Gontijo, V.S.; da Silva, F.M.R.; D’Alincourt da Fonseca Peçanha, D.; Castro, N.G.; Neves, G.A.; Giusti-Paiva, A.; Vilela, F.C.; Orlandi, L.; Camps, I.; Veloso, M.P.; Leomil Coelho, L.F.; Ionta, M.; Ferreira-Silva, G.Á.; Pereira, R.M.; Dardenne, L.E.; Guedes, I.A.; de Oliveira Carneiro Junior, W.; Quaglio Bellozi, P.M.; Pinheiro de Oliveira, A.C.; Ferreira, F.F.; Pruccoli, L.; Tarozzi, A.; Viegas, C., Jr Design, synthesis and pharmacological evaluation of N-benzyl-piperidinyl-aryl-acylhydrazone derivatives as donepezil hybrids: Discovery of novel multi-target anti-alzheimer prototype drug candidates. Eur. J. Med. Chem., 2018, 147, 48-65.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.066] [PMID: 29421570]
[31]
Gorantla, V.; Gundla, R.; Jadav, S.S.; Anugu, S.R.; Chimakurthy, J.; Nidasanametla, S.K.; Korupolu, R. Molecular hybrid design, synthesis and biological evaluation of N-phenyl sulfonamide linked N-acyl hydrazone derivatives functioning as COX-2 inhibitors: new anti-inflammatory, anti-oxidant and anti-bacterial agents. New J. Chem., 2017, 41(22), 13516-13532.
[http://dx.doi.org/10.1039/C7NJ03332J]
[32]
Meng, T.; Hou, Y.; Shang, C.; Zhang, J.; Zhang, B. Recent advances in indole dimers and hybrids with antibacterial activity against methicillin-resistant Staphylococcus aureus. Arch Pharm., 2021, 354(2), e2000266.
[33]
Kumar, D.; Sharma, S.; Kalra, S.; Singh, G.; Monga, V.; Kumar, B. Medicinal Perspective of Indole Derivatives: Recent Developments and Structure-Activity Relationship Studies. Curr. Drug Targets, 2020, 21(9), 864-891.
[http://dx.doi.org/10.2174/1389450121666200310115327] [PMID: 32156235]
[34]
de Sá Alves, F.R.; Barreiro, E.J.; Fraga, C.A. From nature to drug discovery: the indole scaffold as a ‘privileged structure’. Mini Rev. Med. Chem., 2009, 9(7), 782-793.
[http://dx.doi.org/10.2174/138955709788452649] [PMID: 19519503]
[35]
Richeldi, L.; du Bois, R.M.; Raghu, G.; Azuma, A.; Brown, K.K.; Costabel, U.; Cottin, V.; Flaherty, K.R.; Hansell, D.M.; Inoue, Y.; Kim, D.S.; Kolb, M.; Nicholson, A.G.; Noble, P.W.; Selman, M.; Taniguchi, H.; Brun, M.; Le Maulf, F.; Girard, M.; Stowasser, S.; Schlenker-Herceg, R.; Disse, B.; Collard, H.R.; Investigators, I.T. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N. Engl. J. Med., 2014, 370(22), 2071-2082.
[http://dx.doi.org/10.1056/NEJMoa1402584] [PMID: 24836310]
[36]
Chung, B.H.; Horie, S.; Chiong, E. Clinical studies investigating the use of leuprorelin for prostate cancer in Asia. Prostate Int., 2020, 8(1), 1-9.
[http://dx.doi.org/10.1016/j.prnil.2019.06.001] [PMID: 32257971]
[37]
Vanangamudi, M.; Kurup, S.; Namasivayam, V. Non-nucleoside reverse transcriptase inhibitors (NNRTIs): a brief overview of clinically approved drugs and combination regimens. Curr. Opin. Pharmacol., 2020, 54, 179-187.
[http://dx.doi.org/10.1016/j.coph.2020.10.009] [PMID: 33202360]
[38]
Saag, M.S. New and investigational antiretroviral drugs for HIV infection: mechanisms of action and early research findings. Top. Antivir. Med., 2012, 20(5), 162-167.
[PMID: 23363694]
[39]
Chen, X.; Lv, X.; Yang, G.; Lu, D.; Piao, C.; Zhang, X.; Jiang, H.; Xie, Y.; Yang, J.; Li, X.; Li, Y.; Xiao, X.; Li, Y.; Sun, L.; Zheng, S.; Cheng, Q.; Peng, Y.; Yang, W. Polyethylene glycol loxenatide injections added to metformin effectively improve glycemic control and exhibit favorable safety in type 2 diabetic patients. J. Diabetes, 2017, 9(2), 158-167.
[http://dx.doi.org/10.1111/1753-0407.12397] [PMID: 26989888]
[40]
Zoraghi, R.; Worrall, L.; See, R.H.; Strangman, W.; Popplewell, W.L.; Gong, H.; Samaai, T.; Swayze, R.D.; Kaur, S.; Vuckovic, M.; Finlay, B.B.; Brunham, R.C.; McMaster, W.R.; Davies-Coleman, M.T.; Strynadka, N.C.; Andersen, R.J.; Reiner, N.E. Methicillin-resistant Staphylococcus aureus (MRSA) pyruvate kinase as a target for bis-indole alkaloids with antibacterial activities. J. Biol. Chem., 2011, 286(52), 44716-44725.
[http://dx.doi.org/10.1074/jbc.M111.289033] [PMID: 22030393]
[41]
Kumar, N.S.; Dullaghan, E.M.; Finlay, B.B.; Gong, H.; Reiner, N.E.; Jon Paul Selvam, J.; Thorson, L.M.; Campbell, S.; Vitko, N.; Richardson, A.R.; Zoraghi, R.; Young, R.N. Discovery and optimization of a new class of pyruvate kinase inhibitors as potential therapeutics for the treatment of methicillin-resistant Staphylococcus aureus infections. Bioorg. Med. Chem., 2014, 22(5), 1708-1725.
[http://dx.doi.org/10.1016/j.bmc.2014.01.020] [PMID: 24508307]
[42]
Veale, C.G.L.; Lobb, K.A.; Zoraghi, R.; Morrison, J.P.; Reiner, N.E.; Andersen, R.J.; Davies-Coleman, M.T. Synthesis and MRSA PK inhibitory activity of thiazole containing deoxytopsentin analogues. Tetrahedron, 2014, 70(43), 7845-7853.
[http://dx.doi.org/10.1016/j.tet.2014.09.007]
[43]
Zoraghi, R.; Campbell, S.; Kim, C.; Dullaghan, E.M.; Blair, L.M.; Gillard, R.M.; Reiner, N.E.; Sperry, J. Discovery of a 1,2-bis(3-indolyl)ethane that selectively inhibits the pyruvate kinase of methicillin-resistant Staphylococcus aureus over human isoforms. Bioorg. Med. Chem. Lett., 2014, 24(21), 5059-5062.
[http://dx.doi.org/10.1016/j.bmcl.2014.09.010] [PMID: 25266785]
[44]
El-Sayed, M.T.; Zoraghi, R.; Reiner, N.; Suzen, S.; Ohlsen, K.; Lalk, M.; Altanlar, N.; Hilgeroth, A. Novel inhibitors of the methicillin-resistant Staphylococcus aureus (MRSA)-pyruvate kinase. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1666-1671.
[http://dx.doi.org/10.3109/14756366.2015.1118685] [PMID: 26653005]
[45]
Kim, A.; Kim, M.J.; Noh, T.H.; Hong, J.; Liu, Y.; Wei, X.; Jung, J.H. Synthesis and antibacterial evaluation of hamacanthin B analogues. Bioorg. Med. Chem. Lett., 2016, 26(20), 5013-5017.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.095] [PMID: 27614413]
[46]
Labrière, C.; Gong, H.; Finlay, B.B.; Reiner, N.E.; Young, R.N. Further investigation of inhibitors of MRSA pyruvate kinase: Towards the conception of novel antimicrobial agents. Eur. J. Med. Chem., 2017, 125, 1-13.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.018] [PMID: 27643559]
[47]
El Sayed, M.T.; Sabry, N.M.; Hamdy, N.A.; Voronkov, A.; Ogungbe, I.V.; Balakin, K.; Abdel-Aziz, M.S. Synthesis, Anti-methicillin-resistant S. aureus (MRSA) Evaluation, Quantitative Structure-activity Relationship and Molecular Modeling Studies of Some Novel Bis-indoles as Prospective MRSA Pyruvate Kinase Inhibitors. Lett. Drug Des. Discov., 2018, 15(4), 336-346.
[http://dx.doi.org/10.2174/1570180815666171213144922]
[48]
Sayed, A.M.; Alhadrami, H.A.; El-Hawary, S.S.; Mohammed, R.; Hassan, H.M.; Rateb, M.E.; Abdelmohsen, U.R.; Bakeer, W. Discovery of Two Brominated Oxindole Alkaloids as Staphylococcal DNA Gyrase and Pyruvate Kinase Inhibitors via Inverse Virtual Screening. Microorganisms, 2020, 8(2), 293.
[http://dx.doi.org/10.3390/microorganisms8020293] [PMID: 32093370]
[49]
Banerjee, R.; Fernandez, M.G.; Enthaler, N.; Graml, C.; Greenwood-Quaintance, K.E.; Patel, R. Combinations of cefoxitin plus other β-lactams are synergistic in vitro against community associated methicillin-resistant Staphylococcus aureus. Eur. J. Clin. Microbiol. Infect. Dis., 2013, 32(6), 827-833.
[http://dx.doi.org/10.1007/s10096-013-1817-9] [PMID: 23340864]
[50]
Bao, M.; Zhang, L.; Liu, B.; Li, L.; Zhang, Y.; Zhao, H.; Ji, X.; Chen, Q.; Hu, M.; Bai, J.; Pang, G.; Yi, J.; Tan, Y.; Lu, C. Synergistic effects of anti-MRSA herbal extracts combined with antibiotics. Future Microbiol., 2020, 15(13), 1265-1276.
[http://dx.doi.org/10.2217/fmb-2020-0001] [PMID: 33026882]
[51]
González-Bello, C.; Rodríguez, D.; Pernas, M.; Rodríguez, Á.; Colchón, E. β-Lactamase Inhibitors To Restore the Efficacy of Antibiotics against Superbugs. J. Med. Chem., 2020, 63(5), 1859-1881.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01279] [PMID: 31663735]
[52]
Zhang, L.; Liang, E.; Cheng, Y.; Mahmood, T.; Ge, F.; Zhou, K.; Bao, M.; Lv, L.; Li, L.; Yi, J.; Lu, C.; Tan, Y. Is combined medication with natural medicine a promising therapy for bacterial biofilm infection? Biomed. Pharmacother., 2020, 128, 110184.
[http://dx.doi.org/10.1016/j.biopha.2020.110184] [PMID: 32450528]
[53]
Miklasińska-Majdanik, M.; Kępa, M.; Wojtyczka, R.D.; Idzik, D.; Wąsik, T.J. Phenolic Compounds Diminish Antibiotic Resistance of Staphylococcus Aureus Clinical Strains. Int. J. Environ. Res. Public Health, 2018, 15(10), 2321.
[http://dx.doi.org/10.3390/ijerph15102321] [PMID: 30360435]
[54]
Usman Amin, M.; Khurram, M.; Khan, T.A.; Faidah, H.S.; Ullah Shah, Z.; Ur Rahman, S.; Haseeb, A.; Ilyas, M.; Ullah, N.; Umar Khayam, S.M.; Iriti, M. Effects of Luteolin and Quercetin in Combination with Some Conventional Antibiotics against Methicillin-Resistant Staphylococcus aureus. Int. J. Mol. Sci., 2016, 17(11), 1947.
[http://dx.doi.org/10.3390/ijms17111947] [PMID: 27879665]
[55]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: an overview. ScientificWorldJournal, 2013, 2013, 162750.
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[56]
Alghazeer, R.; Elmansori, A.; Sidati, M.; Gammoudi, F.; Azwai, S.; Naas, H.; Garbaj, A.; Eldaghayes, I. Antibacterial Activity of Flavonoid Extracts of Two Selected Libyan Algae against Multi-Drug Resistant Bacteria Isolated from Food Products. J Biosci Med, 2017, 5(1), 23.
[57]
Chan, B.C.L.; Ip, M.; Lau, C.B.S.; Lui, S.L.; Jolivalt, C.; Ganem-Elbaz, C.; Litaudon, M.; Reiner, N.E.; Gong, H.; See, R.H.; Fung, K.P.; Leung, P.C. Synergistic effects of baicalein with ciprofloxacin against NorA over-expressed methicillin-resistant Staphylococcus aureus (MRSA) and inhibition of MRSA pyruvate kinase. J. Ethnopharmacol., 2011, 137(1), 767-773.
[http://dx.doi.org/10.1016/j.jep.2011.06.039] [PMID: 21782012]
[58]
Li, J.; Liu, D.; Tian, X.; Koseki, S.; Chen, S.; Ye, X.; Ding, T. Novel antibacterial modalities against methicillin resistant Staphylococcus aureus derived from plants. Crit Rev Food Sci Nutr, 2019, 59(sup1), S153-161.
[http://dx.doi.org/10.1080/10408398.2018.1541865]
[59]
Wang, J.; Jiao, H.; Meng, J.; Qiao, M.; Du, H.; He, M.; Ming, K.; Liu, J.; Wang, D.; Wu, Y. Baicalin Inhibits Biofilm Formation and the Quorum-Sensing System by Regulating the MsrA Drug Efflux Pump in Staphylococcus saprophyticus. Front. Microbiol., 2019, 10, 2800-2800.
[http://dx.doi.org/10.3389/fmicb.2019.02800] [PMID: 31921008]
[60]
Chan, B.C.L.; Ip, M.; Gong, H.; Lui, S.L.; See, R.H.; Jolivalt, C.; Fung, K.P.; Leung, P.C.; Reiner, N.E.; Lau, C.B.S. Synergistic effects of diosmetin with erythromycin against ABC transporter over-expressed methicillin-resistant Staphylococcus aureus (MRSA) RN4220/pUL5054 and inhibition of MRSA pyruvate kinase. Phytomedicine, 2013, 20(7), 611-614.
[http://dx.doi.org/10.1016/j.phymed.2013.02.007] [PMID: 23541215]
[61]
Nepali, K.; Lee, H-Y.; Liou, J-P. Nitro-Group-Containing Drugs. J. Med. Chem., 2019, 62(6), 2851-2893.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00147] [PMID: 30295477]
[62]
Tan, S.; He, F.; Kong, T.; Wu, J.; Liu, Z. Design, synthesis and tumor cell growth inhibitory activity of 3-nitro-2H-cheromene derivatives as histone deacetylaes inhibitors. Bioorg. Med. Chem., 2017, 25(15), 4123-4132.
[http://dx.doi.org/10.1016/j.bmc.2017.05.062] [PMID: 28629630]
[63]
Papadopoulou, M.V.; Bloomer, W.D.; Rosenzweig, H.S. The antitubercular activity of various nitro(triazole/imidazole)-based compounds. Bioorg. Med. Chem., 2017, 25(21), 6039-6048.
[http://dx.doi.org/10.1016/j.bmc.2017.09.037] [PMID: 28993106]
[64]
Brondani, D.J.; Caetano, N. de M. Moreira, D. R.; Soares, R. R.; Lima, V. T.; de Araújo, J. M.; de Abreu, F. C.; de Oliveira, B. G.; Hernandes, M. Z.; Leite, A. C. L., Novel Nitrofurazone Derivatives Endowed with Antimicrobial Activity. Arch. Pharm. Pharm. Med. Chem., 2008, 341(10), 655-660.
[http://dx.doi.org/10.1002/ardp.200700243]
[65]
Popiołek, Ł.; Biernasiuk, A. Synthesis and investigation of antimicrobial activities of nitrofurazone analogues containing hydrazide-hydrazone moiety. Saudi Pharm. J., 2017, 25(7), 1097-1102.
[http://dx.doi.org/10.1016/j.jsps.2017.05.006] [PMID: 29158722]
[66]
El Sayed, M.T.; Sarhan, A.E.; Ahmed, E.; Khattab, R.R.; Elnaggar, M.; El-Messery, S.M.; Shaldam, M.A.; Hassan, G.S. Novel Pyruvate Kinase (PK) Inhibitors: New Target to Overcome Bacterial Resistance. ChemistrySelect, 2020, 5(11), 3445-3453.
[http://dx.doi.org/10.1002/slct.202000043]
[67]
Zhou, X.; Yu, S.; Su, J.; Sun, L. Computational Study on New Natural Compound Inhibitors of Pyruvate Dehydrogenase Kinases. Int. J. Mol. Sci., 2016, 17(3), 340.
[http://dx.doi.org/10.3390/ijms17030340] [PMID: 26959013]
[68]
Ates-Alagoz, Z.; Yildiz, S.; Buyukbingol, E. Antimicrobial activities of some tetrahydronaphthalene-benzimidazole derivatives. Chemotherapy, 2007, 53(2), 110-113.
[http://dx.doi.org/10.1159/000100011] [PMID: 17310118]
[69]
Taha, I.; Keshk, E.M.; Khalil, A-G.M.; Fekri, A. Synthesis, characterization, antibacterial evaluation, 2D-QSAR modeling and molecular docking studies for benzocaine derivatives. Mol. Divers., 2021, 25(1), 435-459.
[PMID: 32978693]
[70]
Guttenberger, N.; Blankenfeldt, W.; Breinbauer, R. Recent developments in the isolation, biological function, biosynthesis, and synthesis of phenazine natural products. Bioorg. Med. Chem., 2017, 25(22), 6149-6166.
[http://dx.doi.org/10.1016/j.bmc.2017.01.002] [PMID: 28094222]
[71]
Mavrodi, D.V.; Blankenfeldt, W.; Thomashow, L.S. Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annu. Rev. Phytopathol., 2006, 44(1), 417-445.
[http://dx.doi.org/10.1146/annurev.phyto.44.013106.145710] [PMID: 16719720]
[72]
Laursen, J.B.; Nielsen, J. Phenazine natural products: biosynthesis, synthetic analogues, and biological activity. Chem. Rev., 2004, 104(3), 1663-1686.
[http://dx.doi.org/10.1021/cr020473j] [PMID: 15008629]
[73]
Garrison, A.T.; Abouelhassan, Y.; Norwood, V.M., IV; Kallifidas, D.; Bai, F.; Nguyen, M.T.; Rolfe, M.; Burch, G.M.; Jin, S.; Luesch, H.; Huigens, R.W., III Structure-Activity Relationships of a Diverse Class of Halogenated Phenazines That Targets Persistent, Antibiotic-Tolerant Bacterial Biofilms and Mycobacterium tuberculosis. J. Med. Chem., 2016, 59(8), 3808-3825.
[http://dx.doi.org/10.1021/acs.jmedchem.5b02004] [PMID: 27018907]
[74]
Garrison, A.T.; Abouelhassan, Y.; Kallifidas, D.; Bai, F.; Ukhanova, M.; Mai, V.; Jin, S.; Luesch, H.; Huigens, R.W., III Halogenated Phenazines that Potently Eradicate Biofilms, MRSA Persister Cells in Non-Biofilm Cultures, and Mycobacterium tuberculosis. Angew. Chem. Int. Ed. Engl., 2015, 54(49), 14819-14823.
[http://dx.doi.org/10.1002/anie.201508155] [PMID: 26480852]
[75]
Hifnawy, S. M.; Hassan, H. M.; Mohammed, R.; M. Fouda, M.; Sayed, A. M.; A. Hamed, A.; F. AbouZid, S.; Rateb, M. E.; Alhadrami, H. A.; Abdelmohsen, U. R., Induction of Antibacterial Metabolites by Co-Cultivation of Two Red-Sea-Sponge-Associated Actinomycetes Micromonospora sp. UR56 and Actinokinespora sp. EG49. Mar. Drugs, 2020, 18(5), 243.
[http://dx.doi.org/10.3390/md18050243]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy