Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

Circulating miRNA in Atherosclerosis: A Clinical Biomarker and Early Diagnostic Tool

Author(s): Ashish Ranjan Sharma, Garima Sharma, Manojit Bhattacharya, Sang-Soo Lee* and Chiranjib Chakraborty*

Volume 22, Issue 3, 2022

Published on: 15 March, 2021

Page: [250 - 262] Pages: 13

DOI: 10.2174/1566524021666210315124438

Price: $65

Abstract

Atherosclerosis, a vascular disease, is characterized by narrowing the arteries and forming plaque inside arteries. There is a record of 17.5 million associated deaths recorded annually, representing 31% of global death. It has been noted that there is an association between vascular fibrosis and atherosclerosis. The thickening of the arterial wall and reduction of the lumen diameter may cause unwarranted deposition of extracellular matrix (ECM), and these conditions help in the progression of many clinical diseases and pathological conditions, such as atherosclerosis. Here, we reviewed the involvement of various circulating microRNAs (miRNAs) in the very early diagnosis of atherosclerosis. We have also tried to provide an insight into the advantages and validation of circulating miRNAs through different techniques. We have discussed different circulating miRNAs, such as miR-17, miR-17-5p, miR-29b, miR-30, miR-92a, miR-126, miR-143, miR-145, miR-146a, miR-212, miR-218, miR-221, miR-222 and miR- 361-5p as a biomarker for clinical diagnosis of atherosclerosis. The insightful demonstration in this review will offer a better opportunity for the researchers and technology developers in understanding the current scenario of circulating miRNA, which could facilitate them in improving the current diagnostic technologies of atherosclerosis in clinics.

Keywords: Atherosclerosis, vascular fibrosis, circulating miRNA, biomarker, diagnostic tool, blood monocytes.

[1]
Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature 2011; 473(7347): 317-25.
[http://dx.doi.org/10.1038/nature10146] [PMID: 21593864]
[2]
Thent ZC, Chakraborty C, Mahakkanukrauh P, Nik Ritza Kosai Nik Mahmood N, Rajan R, Das S. The molecular concept of atheromatous plaques. Curr Drug Targets 2017; 18(11): 1250-8.
[http://dx.doi.org/10.2174/1389450117666160502151600] [PMID: 27138760]
[3]
Wang ZQ, Jing LL, Yan JC, et al. Role of AGEs in the progression and regression of atherosclerotic plaques. Glycoconj J 2018; 35(5): 443-50.
[http://dx.doi.org/10.1007/s10719-018-9831-x] [PMID: 29987432]
[4]
Breslow JL. Cardiovascular disease burden increases, NIH funding decreases. Nat Med 1997; 3(6): 600-1.
[http://dx.doi.org/10.1038/nm0697-600] [PMID: 9176478]
[5]
Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med 1999; 340(2): 115-26.
[http://dx.doi.org/10.1056/NEJM199901143400207] [PMID: 9887164]
[6]
Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics—2013 update a report from the American Heart Association. Circulation 2012; CIR. 0b013e31828124ad.
[7]
Koenen RR, Weber C. Therapeutic targeting of chemokine interactions in atherosclerosis. Nat Rev Drug Discov 2010; 9(2): 141-53.
[http://dx.doi.org/10.1038/nrd3048] [PMID: 20118962]
[8]
Hong YM. Atherosclerotic cardiovascular disease beginning in childhood. Korean Circ J 2010; 40(1): 1-9.
[http://dx.doi.org/10.4070/kcj.2010.40.1.1] [PMID: 20111646]
[9]
Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2000; 20(5): 1262-75.
[http://dx.doi.org/10.1161/01.ATV.20.5.1262] [PMID: 10807742]
[10]
Charo IF, Taub R. Anti-inflammatory therapeutics for the treatment of atherosclerosis. Nat Rev Drug Discov 2011; 10(5): 365-76.
[http://dx.doi.org/10.1038/nrd3444] [PMID: 21532566]
[11]
Roever LS, Resende ES, Diniz AL, et al. Abdominal obesity and association with atherosclerosis risk factors: the Uberlandia Heart Study. Medicine (Baltimore) 2016; 95(11): e1357.
[http://dx.doi.org/10.1097/MD.0000000000001357] [PMID: 26986094]
[12]
Touyz RM. Intracellular mechanisms involved in vascular remodelling of resistance arteries in hypertension: role of angiotensin II. Exp Physiol 2005; 90(4): 449-55.
[http://dx.doi.org/10.1113/expphysiol.2005.030080] [PMID: 15890798]
[13]
Lan TH, Huang XQ, Tan HM. Vascular fibrosis in atherosclerosis. Cardiovasc Pathol 2013; 22(5): 401-7.
[http://dx.doi.org/10.1016/j.carpath.2013.01.003] [PMID: 23375582]
[14]
Ait-Oufella H, Taleb S, Mallat Z, Tedgui A. Recent advances on the role of cytokines in atherosclerosis. Arterioscler Thromb Vasc Biol 2011; 31(5): 969-79.
[http://dx.doi.org/10.1161/ATVBAHA.110.207415] [PMID: 21508343]
[15]
Ramsey SA, Gold ES, Aderem A. A systems biology approach to understanding atherosclerosis. EMBO Mol Med 2010; 2(3): 79-89.
[http://dx.doi.org/10.1002/emmm.201000063] [PMID: 20201031]
[16]
Zhang C. MicroRNAs in vascular biology and vascular disease. J Cardiovasc Transl Res 2010; 3(3): 235-40.
[http://dx.doi.org/10.1007/s12265-010-9164-z] [PMID: 20560045]
[17]
Zhang C. MicroRNAs: role in cardiovascular biology and disease. Clin Sci (Lond) 2008; 114(12): 699-706.
[http://dx.doi.org/10.1042/CS20070211] [PMID: 18474027]
[18]
Feinberg MW, Moore KJ. MicroRNA regulation of atherosclerosis. Circ Res 2016; 118(4): 703-20.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306300] [PMID: 26892968]
[19]
Loyer X, Mallat Z, Boulanger CM, Tedgui A. MicroRNAs as therapeutic targets in atherosclerosis. Expert Opin Ther Targets 2015; 19(4): 489-96.
[http://dx.doi.org/10.1517/14728222.2014.989835] [PMID: 25464904]
[20]
Shukla GC, Singh J, Barik S. MicroRNAs: processing, maturation, target recognition and regulatory functions. Mol Cell Pharmacol 2011; 3(3): 83-92.
[PMID: 22468167]
[21]
Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP. Vertebrate microRNA genes. Science 2003; 299(5612): 1540.
[http://dx.doi.org/10.1126/science.1080372] [PMID: 12624257]
[22]
Valinezhad Orang A, Safaralizadeh R, Kazemzadeh-Bavili M. Mechanisms of miRNA-mediated gene regulation from common downregulation to mRNA-specific upregulation. International journal of genomics 2014.
[http://dx.doi.org/10.1155/2014/970607]
[23]
Cho WC. Grand challenges and opportunities in deciphering the role of non-coding RNAs in human diseases. Front Genet 2011; 2: 1.
[http://dx.doi.org/10.3389/fgene.2011.00001] [PMID: 22303300]
[24]
Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science 2001; 294(5543): 853-8.
[http://dx.doi.org/10.1126/science.1064921] [PMID: 11679670]
[25]
Felekkis K, Touvana E, Stefanou Ch, Deltas C. microRNAs: a newly described class of encoded molecules that play a role in health and disease. Hippokratia 2010; 14(4): 236-40.
[PMID: 21311629]
[26]
Yue D, Liu H, Huang Y. Survey of computational algorithms for microRNA target prediction. Curr Genomics 2009; 10(7): 478-92.
[http://dx.doi.org/10.2174/138920209789208219] [PMID: 20436875]
[27]
Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75(5): 843-54.
[http://dx.doi.org/10.1016/0092-8674(93)90529-Y] [PMID: 8252621]
[28]
Hinske LC, Heyn J, Galante PA, Ohno-Machado L, Kreth S. Setting up an intronic miRNA database MicroRNA Protocols. Springer 2013; pp. 69-76.
[29]
Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136(2): 215-33.
[http://dx.doi.org/10.1016/j.cell.2009.01.002] [PMID: 19167326]
[30]
Olena AF, Patton JG. Genomic organization of microRNAs. J Cell Physiol 2010; 222(3): 540-5.
[PMID: 20020507]
[31]
Cho WC. MicroRNAs in cancer—from research to therapy. Biochimica et Biophysica Acta (BBA)-. Rev Can 2010; 1805(2): 209-17.
[32]
Chakraborty C, George Priya Doss C, Bandyopadhyay S. miRNAs in insulin resistance and diabetes-associated pancreatic cancer: the ‘minute and miracle’ molecule moving as a monitor in the ‘genomic galaxy’. Curr Drug Targets 2013; 14(10): 1110-7.
[http://dx.doi.org/10.2174/13894501113149990182] [PMID: 23834149]
[33]
Chakraborty C, Doss CGP, Bandyopadhyay S, Agoramoorthy G. Influence of miRNA in insulin signaling pathway and insulin resistance: micro-molecules with a major role in type-2 diabetes. Wiley Interdiscip Rev RNA 2014; 5(5): 697-712.
[http://dx.doi.org/10.1002/wrna.1240] [PMID: 24944010]
[34]
Chakraborty C, Doss CGP, Sarin R, Hsu MJ, Agoramoorthy G. Can the chemotherapeutic agents perform anticancer activity through miRNA expression regulation? Proposing a new hypothesis. [corrected]. Protoplasma 2015; 252(6): 1603-10.
[http://dx.doi.org/10.1007/s00709-015-0776-7] [PMID: 25698235]
[35]
Sharma AR, Sharma G, Lee SS, Chakraborty C. miRNA-regulated key components of cytokine signaling pathways and inflammation in rheumatoid arthritis. Med Res Rev 2016; 36(3): 425-39.
[http://dx.doi.org/10.1002/med.21384] [PMID: 26786912]
[36]
Chakraborty C, Sharma AR, Sharma G, Doss CGP, Lee S-S. Therapeutic miRNA and siRNA: moving from bench to clinic as next generation medicine. Mol Ther Nucleic Acids 2017; 8: 132-43.
[http://dx.doi.org/10.1016/j.omtn.2017.06.005] [PMID: 28918016]
[37]
Faruq O, Vecchione A. microRNA: Diagnostic Perspective. Front Med (Lausanne) 2015; 2: 51.
[http://dx.doi.org/10.3389/fmed.2015.00051] [PMID: 26284247]
[38]
Chakraborty C, Das S. Profiling cell-free and circulating miRNA: a clinical diagnostic tool for different cancers. Tumour Biol 2016; 37(5): 5705-14.
[http://dx.doi.org/10.1007/s13277-016-4907-3] [PMID: 26831657]
[39]
Wang G-K, Zhu J-Q, Zhang J-T, et al. Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J 2010; 31(6): 659-66.
[http://dx.doi.org/10.1093/eurheartj/ehq013] [PMID: 20159880]
[40]
Kosaka N, Iguchi H, Ochiya T. Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci 2010; 101(10): 2087-92.
[http://dx.doi.org/10.1111/j.1349-7006.2010.01650.x] [PMID: 20624164]
[41]
Tyrrell DJ, Goldstein DR. Ageing and atherosclerosis: vascular intrinsic and extrinsic factors and potential role of IL-6. Nat Rev Cardiol 2021; 18(1): 58-68.
[http://dx.doi.org/10.1038/s41569-020-0431-7] [PMID: 32918047]
[42]
Marchio P, Guerra-Ojeda S, Vila JM, Aldasoro M, Victor VM, Mauricio MD. Targeting early atherosclerosis: a focus on oxidative stress and inflammation. Oxid Med Cell Longev 2019; 2019: 8563845.
[http://dx.doi.org/10.1155/2019/8563845] [PMID: 31354915]
[43]
Vassiliadis E, Barascuk N, Karsdal MA. Atherofibrosis - a unique and common process of the disease pathogenesis of atherosclerosis and fibrosis - lessons for biomarker development. Am J Transl Res 2013; 5(1): 1-14.
[PMID: 23390561]
[44]
Dbouk HA, Tawil A, Nasr F, Kandakarjian L, Abou-Merhi R. Significance of CEA and VEGF as diagnostic markers of colorectal cancer in Lebanese patients. Open Clin Cancer J 2007; 1: 1-5.
[http://dx.doi.org/10.2174/1874189400701010001] [PMID: 18665243]
[45]
Wang F, Long G, Zhao C, et al. Atherosclerosis-related circulating miRNAs as novel and sensitive predictors for acute myocardial infarction. PLoS One 2014; 9(9): e105734.
[http://dx.doi.org/10.1371/journal.pone.0105734] [PMID: 25184815]
[46]
Ma R, Jiang T, Kang X. Circulating microRNAs in cancer: origin, function and application. J Exp Clin Cancer Res 2012; 31(1): 38.
[http://dx.doi.org/10.1186/1756-9966-31-38] [PMID: 22546315]
[47]
Jones RJ, Brown J. Circulating biomarkers in cancer care: What possible use? Practical laboratory medicine. 2017; 7: 45-8.
[48]
Deftos LJ. Chromogranin A: its role in endocrine function and as an endocrine and neuroendocrine tumor marker. Endocr Rev 1991; 12(2): 181-7.
[http://dx.doi.org/10.1210/edrv-12-2-181] [PMID: 2070778]
[49]
Huber K, Kirchheimer JC, Ermler D, Bell C, Binder BR. Determination of plasma urokinase-type plasminogen activator antigen in patients with primary liver cancer: characterization as tumor-associated antigen and comparison with α-fetoprotein. Cancer Res 1992; 52(7): 1717-20.
[PMID: 1372529]
[50]
Einhorn N, Sjövall K, Knapp RC, et al. Prospective evaluation of serum CA 125 levels for early detection of ovarian cancer. Obstet Gynecol 1992; 80(1): 14-8.
[PMID: 1603484]
[51]
Sánchez-Carbayo M, Herrero E, Megías J, Mira A, Soria F. Evaluation of nuclear matrix protein 22 as a tumour marker in the detection of transitional cell carcinoma of the bladder. BJU Int 1999; 84(6): 706-13.
[http://dx.doi.org/10.1046/j.1464-410x.1999.00254.x] [PMID: 10510120]
[52]
Lenhard M, Tsvilina A, Schumacher L, et al. Human chorionic gonadotropin and its relation to grade, stage and patient survival in ovarian cancer. BMC Cancer 2012; 12(1): 2.
[http://dx.doi.org/10.1186/1471-2407-12-2] [PMID: 22214378]
[53]
Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 2008; 18(10): 997-1006.
[http://dx.doi.org/10.1038/cr.2008.282] [PMID: 18766170]
[54]
Chen X, Gao C, Li H, et al. Identification and characterization of microRNAs in raw milk during different periods of lactation, commercial fluid, and powdered milk products. Cell Res 2010; 20(10): 1128-37.
[http://dx.doi.org/10.1038/cr.2010.80] [PMID: 20548333]
[55]
Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 2008; 105(30): 10513-8.
[http://dx.doi.org/10.1073/pnas.0804549105] [PMID: 18663219]
[56]
Hanke M, Hoefig K, Merz H, Feller AC, Kausch I, Jocham D, Eds. A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer Urologic Oncology: Seminars and Original Investigations. Elsevier 2010.
[57]
Zhang LQ, Sun SL, Li WY, et al. Decreased expression of tumor suppressive miR-874 and its clinical significance in human osteosarcoma. Genet Mol Res 2015; 14(4): 18315-24.
[http://dx.doi.org/10.4238/2015.December.23.19] [PMID: 26782479]
[58]
Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 2011; 13(4): 423-33.
[http://dx.doi.org/10.1038/ncb2210] [PMID: 21423178]
[59]
Zernecke A, Bidzhekov K, Noels H, et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal 2009; 2(100): ra81. [-ra.
[http://dx.doi.org/10.1126/scisignal.2000610] [PMID: 19996457]
[60]
Sohel MH. Extracellular/circulating microRNAs: release mechanisms, functions and challenges. Achievements in the Life Sciences 2016; 10(2): 175-86.
[http://dx.doi.org/10.1016/j.als.2016.11.007]
[61]
Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9(6): 654-9.
[http://dx.doi.org/10.1038/ncb1596] [PMID: 17486113]
[62]
Zhang Y, Liu D, Chen X, et al. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 2010; 39(1): 133-44.
[http://dx.doi.org/10.1016/j.molcel.2010.06.010] [PMID: 20603081]
[63]
Kosaka N, Izumi H, Sekine K, Ochiya T. microRNA as a new immune-regulatory agent in breast milk. Silence 2010; 1(1): 7.
[http://dx.doi.org/10.1186/1758-907X-1-7] [PMID: 20226005]
[64]
Cocucci E, Racchetti G, Meldolesi J. Shedding microvesicles: artefacts no more. Trends Cell Biol 2009; 19(2): 43-51.
[http://dx.doi.org/10.1016/j.tcb.2008.11.003] [PMID: 19144520]
[65]
Wang K, Zhang S, Weber J, Baxter D, Galas DJ. Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res 2010; 38(20): 7248-59.
[http://dx.doi.org/10.1093/nar/gkq601] [PMID: 20615901]
[66]
Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res 2011; 39(16): 7223-33.
[http://dx.doi.org/10.1093/nar/gkr254] [PMID: 21609964]
[67]
Arroyo JD, Chevillet JR, Kroh EM, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA 2011; 108(12): 5003-8.
[http://dx.doi.org/10.1073/pnas.1019055108] [PMID: 21383194]
[68]
Li C, Pei F, Zhu X, Duan DD, Zeng C. Circulating microRNAs as novel and sensitive biomarkers of acute myocardial Infarction. Clin Biochem 2012; 45(10-11): 727-32.
[http://dx.doi.org/10.1016/j.clinbiochem.2012.04.013] [PMID: 22713968]
[69]
Park NJ, Zhou H, Elashoff D, Henson BS, et al. Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clinical Cancer Research 2009; 1078-0432. CCR-09-736.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0736]
[70]
Lodes MJ, Caraballo M, Suciu D, Munro S, Kumar A, Anderson B. Detection of cancer with serum miRNAs on an oligonucleotide microarray. PLoS One 2009; 4(7): e6229.
[http://dx.doi.org/10.1371/journal.pone.0006229] [PMID: 19597549]
[71]
Etheridge A, Lee I, Hood L, Galas D, Wang K. Extracellular microRNA: a new source of biomarkers. Mutat Res 2011; 717(1-2): 85-90.
[http://dx.doi.org/10.1016/j.mrfmmm.2011.03.004] [PMID: 21402084]
[72]
Eggers KM, Lindahl B. Application of cardiac troponin in cardiovascular diseases other than acute coronary syndrome. Clin Chem 2017; 63(1): 223-35.
[http://dx.doi.org/10.1373/clinchem.2016.261495] [PMID: 28062620]
[73]
Keller A, Meese E. Can circulating miRNAs live up to the promise of being minimal invasive biomarkers in clinical settings? Wiley Interdiscip Rev RNA 2016; 7(2): 148-56.
[http://dx.doi.org/10.1002/wrna.1320] [PMID: 26670867]
[74]
Gautam A, Kumar R, Dimitrov G, Hoke A, Hammamieh R, Jett M. Identification of extracellular miRNA in archived serum samples by next-generation sequencing from RNA extracted using multiple methods. Mol Biol Rep 2016; 43(10): 1165-78.
[http://dx.doi.org/10.1007/s11033-016-4043-6] [PMID: 27510798]
[75]
Wang X. A PCR-based platform for microRNA expression profiling studies. RNA 2009; 15(4): 716-23.
[http://dx.doi.org/10.1261/rna.1460509] [PMID: 19218553]
[76]
Wu D, Hu Y, Tong S, Williams BR, Smyth GK, Gantier MP. The use of miRNA microarrays for the analysis of cancer samples with global miRNA decrease. RNA 2013; 19(7): 876-88.
[http://dx.doi.org/10.1261/rna.035055.112] [PMID: 23709276]
[77]
Dong H, Lei J, Ding L, Wen Y, Ju H, Zhang X. MicroRNA: function, detection, and bioanalysis. Chem Rev 2013; 113(8): 6207-33.
[http://dx.doi.org/10.1021/cr300362f] [PMID: 23697835]
[78]
Zampetaki A, Mayr M. Analytical challenges and technical limitations in assessing circulating miRNAs. Thromb Haemost 2012; 108(4): 592-8.
[PMID: 22627831]
[79]
Reid G, Kirschner MB, van Zandwijk N. Circulating microRNAs: Association with disease and potential use as biomarkers. Crit Rev Oncol Hematol 2011; 80(2): 193-208.
[http://dx.doi.org/10.1016/j.critrevonc.2010.11.004] [PMID: 21145252]
[80]
Schwarzenbach H, Nishida N, Calin GA, Pantel K. Clinical relevance of circulating cell-free microRNAs in cancer. Nat Rev Clin Oncol 2014; 11(3): 145-56.
[http://dx.doi.org/10.1038/nrclinonc.2014.5] [PMID: 24492836]
[81]
Castoldi M, Schmidt S, Benes V, et al. A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids (LNA). RNA 2006; 12(5): 913-20.
[http://dx.doi.org/10.1261/rna.2332406] [PMID: 16540696]
[82]
Wan G, Lim QE, Too H-P. High-performance quantification of mature microRNAs by real-time RT-PCR using deoxyuridine-incorporated oligonucleotides and hemi-nested primers. RNA 2010; 16(7): 1436-45.
[http://dx.doi.org/10.1261/rna.2001610] [PMID: 20547774]
[83]
Fu H-J, Zhu J, Yang M, et al. A novel method to monitor the expression of microRNAs. Mol Biotechnol 2006; 32(3): 197-204.
[http://dx.doi.org/10.1385/MB:32:3:197] [PMID: 16632886]
[84]
Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, et al. Real-time quantification of microRNAs by stem–loop RT–PCR. Nucleic acids research 2005; 33(20): e179-e.
[http://dx.doi.org/10.1093/nar/gni178]
[85]
Kroh EM, Parkin RK, Mitchell PS, Tewari M. Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods 2010; 50(4): 298-301.
[http://dx.doi.org/10.1016/j.ymeth.2010.01.032] [PMID: 20146939]
[86]
Schee K, Lorenz S, Worren MM, et al. Deep sequencing the microRNA transcriptome in colorectal cancer. PLoS One 2013; 8(6): e66165.
[http://dx.doi.org/10.1371/journal.pone.0066165] [PMID: 23824282]
[87]
Schuster SC. Next-generation sequencing transforms today’s biology. Nat Methods 2008; 5(1): 16-8.
[http://dx.doi.org/10.1038/nmeth1156] [PMID: 18165802]
[88]
Williams Z, Ben-Dov IZ, Elias R, Mihailovic A, Brown M, Rosenwaks Z, et al. Comprehensive profiling of circulating microRNA via small RNA sequencing of cDNA libraries reveals biomarker potential and limitations. Proceedings of the National Academy of Sciences. 201214046.
[http://dx.doi.org/10.1073/pnas.1214046110]
[89]
Chang H-T, Li S-C, Ho M-R, Pan H-W, Ger L-P, Hu L-Y, Eds. Comprehensive analysis of microRNAs in breast cancer BMC genomics. BioMed Central 2012.
[90]
Ryan BM, Robles AI, Harris CC. Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer 2010; 10(6): 389-402.
[http://dx.doi.org/10.1038/nrc2867] [PMID: 20495573]
[91]
Li S-C, Liao Y-L, Ho M-R, Tsai K-W, Lai C-H, Lin W-c, Eds. miRNA arm selection and isomiR distribution in gastric cancer. BMC genomicsBioMed Central. 2012.
[92]
Fichtlscherer S, De Rosa S, Fox H, et al. Circulating microRNAs in patients with coronary artery disease. Circ Res 2010; 107(5): 677-84.
[http://dx.doi.org/10.1161/CIRCRESAHA.109.215566] [PMID: 20595655]
[93]
Weinberg MD, Hooper WC, Dangas G. Cardiac biomarkers for the prediction and diagnosis of atherosclerotic disease and its complications. Curr Mol Med 2006; 6(5): 557-69.
[http://dx.doi.org/10.2174/156652406778018608] [PMID: 16918376]
[94]
Shoeibi S. Diagnostic and theranostic microRNAs in the pathogenesis of atherosclerosis. Acta Physiol (Oxf) 2020; 228(1): e13353.
[http://dx.doi.org/10.1111/apha.13353] [PMID: 31344321]
[95]
Abdel-Al A, El-Ahwany E, Zoheiry M, et al. miRNA-221 and miRNA-222 are promising biomarkers for progression of liver fibrosis in HCV Egyptian patients. Virus Res 2018; 253: 135-9.
[http://dx.doi.org/10.1016/j.virusres.2018.06.007] [PMID: 29932949]
[96]
Liang L, Zheng X, Hu M, et al. MiRNA-221/222 in thyroid cancer: A meta-analysis. Clin Chim Acta 2018; 484: 284-92.
[http://dx.doi.org/10.1016/j.cca.2018.06.012] [PMID: 29894779]
[97]
Yilmaz SG, Isbir S, Kunt AT, Isbir T. Circulating microRNAs as Novel Biomarkers for Atherosclerosis. In Vivo 2018; 32(3): 561-5.
[PMID: 29695561]
[98]
Zhang J-Y, Gong Y-L, Li C-J, Qi Q, Zhang Q-M, Yu D-M. Circulating MiRNA biomarkers serve as a fingerprint for diabetic atherosclerosis. Am J Transl Res 2016; 8(6): 2650-8.
[PMID: 27398148]
[99]
Pereira-da-Silva T, Coutinho Cruz M, Carrusca C, Cruz Ferreira R, Napoleão P, Mota Carmo M. Circulating microRNA profiles in different arterial territories of stable atherosclerotic disease: a systematic review. Am J Cardiovasc Dis 2018; 8(1): 1-13.
[PMID: 29531852]
[100]
Quan X, Ji Y, Zhang C, et al. Circulating MiR-146a may be a potential biomarker of coronary heart disease in patients with subclinical hypothyroidism. Cell Physiol Biochem 2018; 45(1): 226-36.
[http://dx.doi.org/10.1159/000486769] [PMID: 29357324]
[101]
Huang YQ, Li J, Chen JY, et al. The association of circulating MiR-29b and interleukin-6 with subclinical atherosclerosis. Cell Physiol Biochem 2017; 44(4): 1537-44.
[http://dx.doi.org/10.1159/000485649] [PMID: 29197872]
[102]
Liu K, Xuekelati S, Zhang Y, et al. Expression levels of atherosclerosis-associated miR-143 and miR-145 in the plasma of patients with hyperhomocysteinaemia. BMC Cardiovasc Disord 2017; 17(1): 163.
[http://dx.doi.org/10.1186/s12872-017-0596-0] [PMID: 28633641]
[103]
Jeong HS, Kim J-Y, Lee SH, et al. Synergy of circulating miR-212 with markers for cardiovascular risks to enhance estimation of atherosclerosis presence. PLoS One 2017; 12(5): e0177809.
[http://dx.doi.org/10.1371/journal.pone.0177809] [PMID: 28557988]
[104]
Zhang Y, Li H-H, Yang R, Yang B-J, Gao Z-Y. Association between circulating microRNA-208a and severity of coronary heart disease. Scand J Clin Lab Invest 2017; 77(5): 379-84.
[http://dx.doi.org/10.1080/00365513.2017.1328740] [PMID: 28554251]
[105]
Huang Y, Tang S, Ji-Yan C, et al. Circulating miR-92a expression level in patients with essential hypertension: a potential marker of atherosclerosis. J Hum Hypertens 2017; 31(3): 200-5.
[http://dx.doi.org/10.1038/jhh.2016.66] [PMID: 27629245]
[106]
Huang Y, Chen J, Zhou Y, et al. Circulating miR-30 is related to carotid artery atherosclerosis. Clin Exp Hypertens 2016; 38(5): 489-94.
[http://dx.doi.org/10.3109/10641963.2016.1163370] [PMID: 27379414]
[107]
Chen J, Xu L, Hu Q, Yang S, Zhang B, Jiang H. MiR-17-5p as circulating biomarkers for the severity of coronary atherosclerosis in coronary artery disease. Int J Cardiol 2015; 197: 123-4.
[http://dx.doi.org/10.1016/j.ijcard.2015.06.037] [PMID: 26134369]
[108]
Kim J-M, Jung K-H, Chu K, et al. Atherosclerosis-related circulating microRNAs as a predictor of stroke recurrence. Transl Stroke Res 2015; 6(3): 191-7.
[http://dx.doi.org/10.1007/s12975-015-0390-1] [PMID: 25697638]
[109]
Gao J, Yang S, Wang K, Zhong Q, Ma A, Pan X. Plasma miR-126 and miR-143 as Potential Novel Biomarkers for Cerebral Atherosclerosis. J Stroke Cerebrovasc Dis 2018.
[PMID: 30309729]
[110]
Pritchard CC, Kroh E, Wood B, et al. Blood cell origin of circulating microRNAs: a cautionary note for cancer biomarker studies. Cancer Prev Res (Phila) 2012; 5(3): 492-7.
[http://dx.doi.org/10.1158/1940-6207.CAPR-11-0370] [PMID: 22158052]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy