Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Mini-Review Article

Pouteria sapota (Red Mamey Fruit): Chemistry and Biological Activity of Carotenoids

Author(s): Johant Lakey-Beitia, Velmarini Vasquez, Randy Mojica-Flores, Arelys L. Fuentes C., Enrique Murillo, Muralidhar L. Hegde and K.S. Rao*

Volume 25, Issue 7, 2022

Published on: 01 March, 2021

Page: [1134 - 1147] Pages: 14

DOI: 10.2174/1386207324666210301093711

Price: $65

conference banner
Abstract

Background: Red mamey is the fruit of P. sapota, a tree found in Mesoamerica and Asia. This fruit is considered a nutraceutical due to its multiple beneficial health including antiamyloidogenic activity and potential anti-tumorigenic property. Red mamey contain a variety of carotenoids including novel ketocarotenoids such as sapotexanthin and cryptocapsin. A ketocarotenoid is a chemical compound with a carbonyl group present in the β-ring or in the double bond chain of a carotenoid. In red mamey, the 3'-deoxy-k-end group in sapotexanthin has proven to be an important pro-vitamin A source, which is essential for maintaining a healthy vision and cognitive processes.

Objective: This work reviews the current knowledge about the chemistry and biological activities of carotenoids in red mamey.

Method: An exhaustive extraction is the most usual methodology to isolate and thoroughly characterize the carotenoids present in this fruit. High performance liquid chromatography is used to determine the profile of total carotenoids and its purity, while atmospheric pressure chemical ionization was used to determine their molecular weight and nuclear magnetic resonance determined their structure.

Result: For each 100 g of fresh weight, 0.12 mg of total carotenoid from this fruit can be obtained. Out of the more than 47 reported carotenoids in red mamey, only 34 have a detailed characterization.

Conclusion: It is important to continue studying the chemical composition and biological activity of this unique tropical fruit with commercial and nutritional value.

Keywords: Red mamey, P. sapota, ketocarotenoid, extraction, characterization, biological activity.

Graphical Abstract

[1]
Murillo, E.; Meléndez-Martínez, A.J.; Portugal, F. Screening of Vegetables and Fruits from Panama for Rich Sources of Lutein and Zeaxanthin. Food Chem., 2010, 122, 167-172.
[http://dx.doi.org/10.1016/j.foodchem.2010.02.034]
[2]
Rivera Vélez, S.M. Guide for Carotenoid Identification in Biological Samples. J. Nat. Prod., 2016, 79(5), 1473-1484.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00756] [PMID: 27158746]
[3]
Choi, S-K.; Osawa, A.; Maoka, T.; Hattan, J.; Ito, K.; Uchiyama, A.; Suzuki, M.; Shindo, K.; Misawa, N. 3-β-Glucosyl-3'-β-quinovosyl zeaxanthin, a novel carotenoid glycoside synthesized by Escherichia coli cells expressing the Pantoea ananatis carotenoid biosynthesis gene cluster. Appl. Microbiol. Biotechnol., 2013, 97(19), 8479-8486.
[http://dx.doi.org/10.1007/s00253-013-5101-9] [PMID: 23880877]
[4]
Reboul, E.; Borel, P.; Mikail, C.; Abou, L.; Charbonnier, M.; Caris-Veyrat, C.; Goupy, P.; Portugal, H.; Lairon, D.; Amiot, M-J. Enrichment of tomato paste with 6% tomato peel increases lycopene and β-carotene bioavailability in men. J. Nutr., 2005, 135(4), 790-794.
[http://dx.doi.org/10.1093/jn/135.4.790] [PMID: 15795436]
[5]
Polotow, T.G.; Poppe, S.C.; Vardaris, C.V.; Ganini, D.; Guariroba, M.; Mattei, R.; Hatanaka, E.; Martins, M.F.; Bondan, E.F.; Barros, M.P. Redox status and neuro inflammation indexes in cerebellum and motor cortex of wistar rats supplemented with natural sources of omega-3 fatty acids and astaxanthin: Fish oil, krill oil, and algal biomass. Mar. Drugs, 2015, 13(10), 6117-6137.
[http://dx.doi.org/10.3390/md13106117] [PMID: 26426026]
[6]
Takaichi, S. Carotenoids in algae: distributions, biosyntheses and functions. Mar. Drugs, 2011, 9(6), 1101-1118.
[http://dx.doi.org/10.3390/md9061101] [PMID: 21747749]
[7]
Amorim-Carrilho, K.T.; Cepeda, A.; Fente, C.; Regal, P. Review of Methods for Analysis of Carotenoids. TrAC. Trends Analyt. Chem., 2014, 56, 49-73.
[http://dx.doi.org/10.1016/j.trac.2013.12.011]
[8]
Wu, L.; Lin, D. Molecular Aspects of Carotenoid Metabolizing Enzymes and Implications for Ophthalmology. Handbook of Nutrition, Diet, and the Eye; Preedy, V.R; Watson, R.R., Ed.; Academic Press: Stillwater, 2019, pp. 415-424.
[http://dx.doi.org/10.1016/B978-0-12-815245-4.00025-9]
[9]
Britton, G. Structure and properties of carotenoids in relation to function. FASEB J., 1995, 9(15), 1551-1558.
[http://dx.doi.org/10.1096/fasebj.9.15.8529834] [PMID: 8529834]
[10]
Eggersdorfer, M.; Wyss, A. Carotenoids in human nutrition and health. Arch. Biochem. Biophys., 2018, 652, 18-26.
[http://dx.doi.org/10.1016/j.abb.2018.06.001] [PMID: 29885291]
[11]
Cotton, F.A.; Donahue, J.P.; Murillo, C.A.; Pérez, L.M. Polyunsaturated dicarboxylate tethers connecting dimolybdenum redox and chromophoric centers: absorption spectra and electronic structures. J. Am. Chem. Soc., 2003, 125(18), 5486-5492.
[http://dx.doi.org/10.1021/ja0343555] [PMID: 12720463]
[12]
Coronel, J. Pinos, I.; Amengual, J. β-carotene in obesity research: Technical considerations and current status of the field. Nutrients, 2019, 11(4), 842.
[http://dx.doi.org/10.3390/nu11040842] [PMID: 31013923]
[13]
Rodriguez-Concepcion, M.; Avalos, J.; Bonet, M.L.; Boronat, A.; Gomez-Gomez, L.; Hornero-Mendez, D.; Limon, M.C.; Meléndez-Martínez, A.J.; Olmedilla-Alonso, B.; Palou, A.; Ribot, J.; Rodrigo, M.J.; Zacarias, L.; Zhu, C. A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Prog. Lipid Res., 2018, 70, 62-93.
[http://dx.doi.org/10.1016/j.plipres.2018.04.004] [PMID: 29679619]
[14]
Granado-Lorencio, F.; Herrero-Barbudo, C.; Acién-Fernández, G.; Molina-Grima, E.; Fernández-Sevilla, J.M.; Pérez-Sacristán, B.; Blanco-Navarro, I. In Vitro Bioaccesibility of Lutein and Zeaxanthin from the Microalgae Scenedesmus Almeriensis. Food Chem., 2009, 114, 747-752.
[http://dx.doi.org/10.1016/j.foodchem.2008.10.058]
[15]
Cong, L.; Wang, C.; Chen, L.; Liu, H.; Yang, G.; He, G. Expression of phytoene synthase1 and carotene desaturase crtI genes result in an increase in the total carotenoids content in transgenic elite wheat (Triticum aestivum L.). J. Agric. Food Chem., 2009, 57(18), 8652-8660.
[http://dx.doi.org/10.1021/jf9012218] [PMID: 19694433]
[16]
Bolhassani, A.; Khavari, A.; Bathaie, S.Z. Saffron and natural carotenoids: Biochemical activities and anti-tumor effects. Biochim. Biophys. Acta, 2014, 1845(1), 20-30.
[PMID: 24269582]
[17]
Giuffrida, D.; Menchaca, D.; Dugo, P.; Donato, P.; Cacciola, F.; Murillo, E. Study of the carotenoid composition in membrillo, guanabana toreta, jobo and mamey fruits. Fruits, 2015, 70, 163-172.
[http://dx.doi.org/10.1051/fruits/2015009]
[18]
Torres-Mendoza, D.; González, Y.; Gómez-Reyes, J.F.; Guzmán, H.M.; López-Perez, J.L.; Gerwick, W.H.; Fernandez, P.L.; Gutiérrez, M.; Uprolides, N.; Uprolides, N. O and P from the panamanian octocoraL EUNICEA succinea. Molecules, 2016, 21(6), 819.
[http://dx.doi.org/10.3390/molecules21060819] [PMID: 27338338]
[19]
González, Y.; Doens, D.; Santamaría, R.; Ramos, M.; Restrepo, C.M.; Barros de Arruda, L.; Lleonart, R.; Gutiérrez, M.; Fernández, P.L. A pseudopterane diterpene isolated from the octocoral Pseudopterogorgia acerosa inhibits the inflammatory response mediated by TLR-ligands and TNF-alpha in macrophages. PLoS One, 2013, 8(12), e84107.
[http://dx.doi.org/10.1371/journal.pone.0084107] [PMID: 24358331]
[20]
González, Y.; Torres-Mendoza, D.; Jones, G.E.; Fernandez, P.L. Marine Diterpenoids as Potential Anti-Inflammatory Agents. Mediators Inflamm., 2015, 2015, 263543.
[http://dx.doi.org/10.1155/2015/263543] [PMID: 26538822]
[21]
Rivera-Mondragón, A.; Tuenter, E.; Bijttebier, S.; Cos, P.; Apers, S.; Caballero-George, C.; Foubert, K.; Pieters, L. Two New Antiplasmodial Flavonolignans from the Leaves of Cecropia Obtusifolia. Phytochem. Lett., 2019, 31, 118-120.
[http://dx.doi.org/10.1016/j.phytol.2019.03.019]
[22]
Murillo, E.; Britton, G.B.; Durant, A.A. Antioxidant activity and polyphenol content in cultivated and wild edible fruits grown in Panama. J. Pharm. Bioallied Sci., 2012, 4(4), 313-317.
[http://dx.doi.org/10.4103/0975-7406.103261] [PMID: 23248565]
[23]
Molinar, E.; Rios, N.; Spadafora, C.; Arnold, A.E.; Coley, P.D.; Kursar, T.A.; Gerwick, W.H.; Cubilla-Rios, L. Coibanoles, a new class of meroterpenoids produced by Pycnoporus sanguineus. Tetrahedron Lett., 2012, 53(8), 919-922.
[http://dx.doi.org/10.1016/j.tetlet.2011.12.021] [PMID: 25177062]
[24]
Torres-Mendoza, D.; Ortega, H.E.; Cubilla-Rios, L. Patents on endophytic fungi related to secondary metabolites and biotransformation applications. J. Fungi (Basel), 2020, 6(2), 58.
[http://dx.doi.org/10.3390/jof6020058] [PMID: 32370098]
[25]
Martínez-Luis, S.; Della-Togna, G.; Coley, P.D.; Kursar, T.A.; Gerwick, W.H.; Cubilla-Rios, L. Antileishmanial constituents of the Panamanian endophytic fungus Edenia sp. J. Nat. Prod., 2008, 71(12), 2011-2014.
[http://dx.doi.org/10.1021/np800472q] [PMID: 19007286]
[26]
Murillo, E.; McLean, R.; Britton, G.; Agócs, A.; Nagy, V.; Deli, J. Sapotexanthin, an A-provitamin carotenoid from red mamey (Pouteria sapota). J. Nat. Prod., 2011, 74(2), 283-285.
[http://dx.doi.org/10.1021/np1006982] [PMID: 21214217]
[27]
Lakey-Beitia, J.; Doens, D.; Jagadeesh Kumar, D.; Murillo, E.; Fernández, P.L.; Rao, K.S.; Durant-Archibold, A.A. Anti-amyloid aggregation activity of novel carotenoids: implications for Alzheimer’s drug discovery. Clin. Interv. Aging, 2017, 12, 815-822.
[http://dx.doi.org/10.2147/CIA.S134605] [PMID: 28553090]
[28]
Lakey-Beitia, J.; Kumar, D.J.; Hegde, M.L.; Rao, K.S. Carotenoids as novel therapeutic molecules against neurodegenerative disorders: Chemistry and molecular docking analysis. Int. J. Mol. Sci., 2019, 20(22), 5553.
[http://dx.doi.org/10.3390/ijms20225553] [PMID: 31703296]
[29]
Lakey-Beitia, J.; González, Y.; Doens, D.; Stephens, D.E.; Santamaría, R.; Murillo, E.; Gutiérrez, M.; Fernández, P.L.; Rao, K.S.; Larionov, O.V.; Durant-archibold, A.A. assessment of novel curcumin derivatives as potent inhibitors of inflammation and amyloid-β aggregation in Alzheimer’s disease. J. Alzheimers Dis., 2017, 60(s1), S59-S68.
[http://dx.doi.org/10.3233/JAD-170071] [PMID: 28453488]
[30]
Yamano, Y.; Ito, M. Total synthesis of capsanthin and capsorubin using Lewis acid-promoted regio- and stereoselective rearrangement of tetrasubsutituted epoxides. Org. Biomol. Chem., 2007, 5(19), 3207-3212.
[http://dx.doi.org/10.1039/b710386g] [PMID: 17878980]
[31]
Pérez-Gálvez, A.; Mínguez-Mosquera, M.I. Esterification of xanthophylls and its effect on chemical behavior and bioavailability of carotenoids in the human. Nutr. Res., 2005, 25, 631-640.
[http://dx.doi.org/10.1016/j.nutres.2005.07.002]
[32]
Deli, J.; Molnár, P.; Matus, Z.; Tóth, G. Carotenoid composition in the fruits of red paprika (Capsicum annuum var. lycopersiciforme rubrum) during ripening; biosynthesis of carotenoids in red paprika. J. Agric. Food Chem., 2001, 49(3), 1517-1523.
[http://dx.doi.org/10.1021/jf000958d] [PMID: 11312889]
[33]
Murillo, E.; Mosquera, Y.; Kurtán, T.; Gulyás-Fekete, G.; Nagy, V.; Deli, J. Isolation and characterization of novel capsorubin-like carotenoids from the red mamey (Pouteria Sapota). Helv. Chim. Acta, 2012, 95, 983-988.
[http://dx.doi.org/10.1002/hlca.201100493]
[34]
Chacón-Ordóñez, T.; Esquivel, P.; Jiménez, V.M.; Carle, R.; Schweiggert, R.M. Deposition Form and bioaccessibility of keto-carotenoids from mamey sapote (Pouteria sapota), red bell pepper (Capsicum annuum), and sockeye salmon (Oncorhynchus nerka) filet. J. Agric. Food Chem., 2016, 64(9), 1989-1998.
[http://dx.doi.org/10.1021/acs.jafc.5b06039] [PMID: 26888016]
[35]
Hornero-Méndez, D.; Gómez-Ladrón De Guevara, R.; Mínguez-Mosquera, M.I. Carotenoid biosynthesis changes in five red pepper (Capsicum annuum L.) cultivars during ripening. Cultivar selection for breeding. J. Agric. Food Chem., 2000, 48(9), 3857-3864.
[http://dx.doi.org/10.1021/jf991020r] [PMID: 10995282]
[36]
Maoka, T.; Akimoto, N.; Fujiwara, Y.; Hashimoto, K. Structure of new carotenoids with the 6-oxo-κ end group from the fruits of paprika, Capsicum annuum. J. Nat. Prod., 2004, 67(1), 115-117.
[http://dx.doi.org/10.1021/np030400a] [PMID: 14738402]
[37]
Murillo, E.; Turcsi, E.; Szabó, I.; Mosquera, Y.; Agócs, A.; Nagy, V.; Gulyás-Fekete, G.; Deli, J. Carotenoid composition of the fruit of red mamey (Pouteria sapota). J. Agric. Food Chem., 2016, 64(38), 7148-7155.
[http://dx.doi.org/10.1021/acs.jafc.6b03146] [PMID: 27598884]
[38]
Agócs, A.; Murillo, E.; Turcsi, E.; Béni, S.; Darcsi, A.; Szappanos, Á.; Kurtán, T.; Deli, J. Isolation of Allene Carotenoids from Mamey. J. Food Compos. Anal., 2018, 65, 1-5.
[http://dx.doi.org/10.1016/j.jfca.2017.04.004]
[39]
Solís-Fuentes, J.A.; Ayala-Tirado, R.C.; Fernández-Suárez, A.D.; Durán-de-Bazúa, M.C. Mamey sapote seed oil (Pouteria Sapota). potential, composition, fractionation and thermal behavior. Grasas Aceites, 2015, 66, e056.
[http://dx.doi.org/10.3989/gya.0691141]
[40]
Alia-Tejacal, I.; Villanueva-Arce, R.; Pelayo-Zaldívar, C.; Colinas-León, M.T.T.; López-Martínez, V.; Bautista-Baños, S. Postharvest physiology and technology of sapote mamey fruit (Pouteria Sapota (Jacq.) H.E. Moore & Stearn). Postharvest Biol. Technol., 2007, 45, 285-297.
[http://dx.doi.org/10.1016/j.postharvbio.2006.12.024]
[41]
Crane, J.H.; Balerdi, C.F.; Maguire, I. Mamey Sapote Growing in the Florida Home Landscape; University of Florida/Institute of Food and Agricultural Sciences: Gainsville, FL, 2019.
[42]
Moore, H.E.; Stearn, W.T. The Identity of Achras Zapota L. and the Names for the Sapodilla and the Sapote. Taxon, 1967, 16, 382-395.
[http://dx.doi.org/10.2307/1216409]
[43]
Lim, T.K. Pouteria Sapota.Edible Medicinal And Non-Medicinal Plants; Springer Netherlands: Dordrecht, 2013, Vol. 6, pp. 138-142.
[http://dx.doi.org/10.1007/978-94-007-5628-1_24]
[44]
Rodriguez-Amaya, D.B. A Guide to Carotenoid Analysis in Foods; International Life Sciences Institute Press: Washington, USA, 2001.
[45]
Moise, A.R.; Al-Babili, S.; Wurtzel, E.T. Mechanistic aspects of carotenoid biosynthesis. Chem. Rev., 2014, 114(1), 164-193.
[http://dx.doi.org/10.1021/cr400106y] [PMID: 24175570]
[46]
Kita, M.; Kato, M.; Ban, Y.; Honda, C.; Yaegaki, H.; Ikoma, Y.; Moriguchi, T. Carotenoid accumulation in Japanese apricot (Prunus mume Siebold & Zucc.): molecular analysis of carotenogenic gene expression and ethylene regulation. J. Agric. Food Chem., 2007, 55(9), 3414-3420.
[http://dx.doi.org/10.1021/jf063552v] [PMID: 17397180]
[47]
Chacón-Ordóñez, T.; Schweiggert, R.M.; Bosy-Westphal, A.; Jiménez, V.M.; Carle, R.; Esquivel, P. Carotenoids and carotenoid esters of orange- and yellow-fleshed mamey sapote (Pouteria sapota (Jacq.) H.E. Moore & Stearn) fruit and their post-prandial absorption in humans. Food Chem., 2017, 221, 673-682.
[http://dx.doi.org/10.1016/j.foodchem.2016.11.120] [PMID: 27979258]
[48]
Turcsi, E.; Murillo, E.; Kurtán, T.; Szappanos, Á.; Illyés, T-Z.; Gulyás-Fekete, G.; Agócs, A.; Avar, P.; Deli, J. Isolation of β-cryptoxanthin-epoxides, precursors of cryptocapsin and 3'-deoxycapsanthin, from red mamey (Pouteria sapota). J. Agric. Food Chem., 2015, 63(26), 6059-6065.
[http://dx.doi.org/10.1021/acs.jafc.5b01936] [PMID: 26057604]
[49]
Murillo, E.; Agócs, A.; Nagy, V.; Király, S.B.; Kurtán, T.; Toribio, E.M.; Lakey-Beitia, J.; Deli, J. Isolation and identification of sapotexanthin 5,6-epoxide and 5,8-epoxide from red mamey (Pouteria sapota). Chirality, 2020, 32(5), 579-587.
[http://dx.doi.org/10.1002/chir.23206] [PMID: 32126590]
[50]
Gulyás-Fekete, G.; Murillo, E.; Kurtán, T.; Papp, T.; Illyés, T-Z.; Drahos, L.; Visy, J.; Agócs, A.; Turcsi, E.; Deli, J. Cryptocapsinepoxide-type carotenoids from red mamey, Pouteria sapota. J. Nat. Prod., 2013, 76(4), 607-614.
[http://dx.doi.org/10.1021/np3007827] [PMID: 23451823]
[51]
Deli, J. Molnár, P.; Ősz, E.; Tóth, G. Capsoneoxanthin, a New Carotenoid Isolated from the Fruits of Asparagus Falcatus. Tetrahedron Lett., 2000, 41, 8153-8155.
[http://dx.doi.org/10.1016/S0040-4039(00)01417-9]
[52]
Murillo, E.; Giuffrida, D.; Menchaca, D.; Dugo, P.; Torre, G.; Meléndez-Martinez, A.J.; Mondello, L. Native carotenoids composition of some tropical fruits. Food Chem., 2013, 140(4), 825-836.
[http://dx.doi.org/10.1016/j.foodchem.2012.11.014] [PMID: 23692772]
[53]
Van Breemen, R.B. Mass Spectrometry of Carotenoids. Curr. Protoc. Food Anal. Chem., 2001, 00, F2.4.1-F2.4.13.
[54]
Scott, K.J. Detection and Measurement of Carotenoids by UV/VIS Spectrophotometry. Curr. Protoc. Food Anal. Chem., 2001, 00, F2.2.1-F2.2.10.
[55]
Rodriguez-Amaya, D.B.; Kimura, M. HarvestPlus Handbook for Carotenoid Analysis; International Food Policy Research Institute; IFPRI: Washington, 2004, Vol. 2, .
[56]
van Breemen, R.B.; Dong, L.; Pajkovic, N.D. Atmospheric pressure chemical ionization tandem mass spectrometry of carotenoids. Int. J. Mass Spectrom., 2012, 312, 163-172.
[http://dx.doi.org/10.1016/j.ijms.2011.07.030] [PMID: 22408388]
[57]
Rivera, S.M.; Christou, P.; Canela-Garayoa, R. Identification of carotenoids using mass spectrometry. Mass Spectrom. Rev., 2014, 33(5), 353-372.
[http://dx.doi.org/10.1002/mas.21390] [PMID: 24178708]
[58]
Vallverdú-Queralt, A.; Martínez-Huélamo, M.; Arranz-Martinez, S.; Miralles, E.; Lamuela-Raventós, R.M. Differences in the carotenoid content of ketchups and gazpachos through HPLC/ESI(Li(+))-MS/MS correlated with their antioxidant capacity. J. Sci. Food Agric., 2012, 92(10), 2043-2049.
[http://dx.doi.org/10.1002/jsfa.5598] [PMID: 22290499]
[59]
Hao, Z.; Parker, B.; Knapp, M.; Yu, L. Simultaneous quantification of α-tocopherol and four major carotenoids in botanical materials by normal phase liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry. J. Chromatogr. A, 2005, 1094(1-2), 83-90.
[http://dx.doi.org/10.1016/j.chroma.2005.07.097] [PMID: 16257293]
[60]
Rezanka, T.; Olsovská, J.; Sobotka, M.; Sigler, K. The Use of APCI-MS with HPLC and Other Separation Techniques for Identification of Carotenoids and Related Compounds. Curr. Anal. Chem., 2009, 5, 1-25.
[http://dx.doi.org/10.2174/157341109787047862]
[61]
Pérez-Gálvez, A.; Roca, M. Recent Developments in the Analysis of Carotenoids by Mass Spectrometry. Progress in Carotenoid Research; Zepka, L.Q.; Jacob-Lopes, E.; De Rosso, V.V., Eds.; InTech, 2018, pp. 17-44..
[http://dx.doi.org/10.5772/intechopen.79755]
[62]
Rivera, S.M.; Canela-Garayoa, R. Analytical tools for the analysis of carotenoids in diverse materials. J. Chromatogr. A, 2012, 1224, 1-10.
[http://dx.doi.org/10.1016/j.chroma.2011.12.025] [PMID: 22226560]
[63]
Britton, G.; Young, A.J. Methods for the Isolation and Analysis Carotenoids.Carotenoids in Photosynthesis; Young, A.J; Britton, G., Ed.; Springer: Dordrecht, 1993, pp. 409-457.
[http://dx.doi.org/10.1007/978-94-011-2124-8_10]
[64]
Suram, A.; Hegde, M.L.; Rao, K.S.J. A new evidence for DNA nicking property of amyloid β-peptide (1-42): relevance to Alzheimer’s disease. Arch. Biochem. Biophys., 2007, 463(2), 245-252.
[http://dx.doi.org/10.1016/j.abb.2007.03.015] [PMID: 17502108]
[65]
Convertino, M.; Pellarin, R.; Catto, M.; Carotti, A.; Caflisch, A. 9,10-Anthraquinone hinders β-aggregation: how does a small molecule interfere with Abeta-peptide amyloid fibrillation? Protein Sci., 2009, 18(4), 792-800.
[http://dx.doi.org/10.1002/pro.87] [PMID: 19309732]
[66]
Hashimoto, M.; Rockenstein, E.; Crews, L.; Masliah, E. Role of protein aggregation in mitochondrial dysfunction and neurodegeneration in Alzheimer’s and Parkinson’s diseases. Neuromolecular Med., 2003, 4(1-2), 21-36.
[http://dx.doi.org/10.1385/NMM:4:1-2:21] [PMID: 14528050]
[67]
Castillo, X.; Castro-Obregón, S.; Gutiérrez-Becker, B.; Gutiérrez-Ospina, G.; Karalis, N.; Khalil, A.A.; Lopez-Noguerola, J.S.; Rodríguez, L.L.; Martínez-Martínez, E.; Perez-Cruz, C.; Pérez-Velázquez, J.; Piña, A.L.; Rubio, K.; García, H.P.S.; Syeda, T.; Vanoye-Carlo, A.; Villringer, A.; Winek, K.; Zille, M. Re-thinking the etiological framework of neurodegeneration. Front. Neurosci., 2019, 13, 728.
[http://dx.doi.org/10.3389/fnins.2019.00728] [PMID: 31396030]
[68]
Rodríguez-Rodríguez, C.; Rimola, A.; Alí-Torres, J.; Sodupe, M.; González-Duarte, P. In silico strategies for the selection of chelating compounds with potential application in metal-promoted neurodegenerative diseases. J. Comput. Aided Mol. Des., 2011, 25(1), 21-30.
[http://dx.doi.org/10.1007/s10822-010-9396-7] [PMID: 21061044]
[69]
Rambaran, R.N.; Serpell, L.C. Amyloid fibrils: abnormal protein assembly. Prion, 2008, 2(3), 112-117.
[http://dx.doi.org/10.4161/pri.2.3.7488] [PMID: 19158505]
[70]
Gadad, B.S.; Britton, G.B.; Rao, K.S. Targeting oligomers in neurodegenerative disorders: lessons from α-synuclein, tau, and amyloid-β peptide. J. Alzheimers Dis., 2011, 24(Suppl. 2), 223-232.
[http://dx.doi.org/10.3233/JAD-2011-110182] [PMID: 21460436]
[71]
Hegde, M.L.; Hegde, P.M.; Rao, K.S.; Mitra, S. Oxidative genome damage and its repair in neurodegenerative diseases: function of transition metals as a double-edged sword. J. Alzheimers Dis., 2011, 24(Suppl. 2), 183-198.
[http://dx.doi.org/10.3233/JAD-2011-110281] [PMID: 21441656]
[72]
Prado-Prado, F.; García, I. Review of theoretical studies for prediction of neurodegenerative inhibitors. Mini Rev. Med. Chem., 2012, 12(6), 452-466.
[http://dx.doi.org/10.2174/138955712800493780] [PMID: 22587762]
[73]
Ademowo, O.S.; Dias, H.K.I.; Milic, I.; Devitt, A.; Moran, R.; Mulcahy, R.; Howard, A.N.; Nolan, J.M.; Griffiths, H.R. Phospholipid oxidation and carotenoid supplementation in Alzheimer’s disease patients. Free Radic. Biol. Med., 2017, 108, 77-85.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.03.008] [PMID: 28315450]
[74]
Citron, M.; Diehl, T.S.; Gordon, G.; Biere, A.L.; Seubert, P.; Selkoe, D.J. Evidence that the 42- and 40-amino acid forms of amyloid β protein are generated from the β-amyloid precursor protein by different protease activities. Proc. Natl. Acad. Sci. USA, 1996, 93(23), 13170-13175.
[http://dx.doi.org/10.1073/pnas.93.23.13170] [PMID: 8917563]
[75]
Xiang, S.; Liu, F.; Lin, J.; Chen, H.; Huang, C.; Chen, L.; Zhou, Y.; Ye, L.; Zhang, K.; Jin, J.; Zhen, J.; Wang, C.; He, S.; Wang, Q.; Cui, W.; Zhang, J. Fucoxanthin inhibits β-amyloid assembly and attenuates β-amyloid oligomer-induced cognitive impairments. J. Agric. Food Chem., 2017, 65(20), 4092-4102.
[http://dx.doi.org/10.1021/acs.jafc.7b00805] [PMID: 28478680]
[76]
Kumar, G.P.; Khanum, F. Neuroprotective potential of phytochemicals. Pharmacogn. Rev., 2012, 6(12), 81-90.
[http://dx.doi.org/10.4103/0973-7847.99898] [PMID: 23055633]
[77]
Fujiwara, H.; Tabuchi, M.; Yamaguchi, T.; Iwasaki, K.; Furukawa, K.; Sekiguchi, K.; Ikarashi, Y.; Kudo, Y.; Higuchi, M.; Saido, T.C.; Maeda, S.; Takashima, A.; Hara, M.; Yaegashi, N.; Kase, Y.; Arai, H. A traditional medicinal herb Paeonia suffruticosa and its active constituent 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose have potent anti-aggregation effects on Alzheimer’s amyloid β proteins in vitro and in vivo. J. Neurochem., 2009, 109(6), 1648-1657.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06069.x] [PMID: 19457098]
[78]
Ramesh, B.N.; Indi, S.S.; Rao, K.S.J. Anti-amyloidogenic property of leaf aqueous extract of Caesalpinia crista. Neurosci. Lett., 2010, 475(2), 110-114.
[http://dx.doi.org/10.1016/j.neulet.2010.03.062] [PMID: 20356566]
[79]
Obulesu, M.; Dowlathabad, M.R.; Bramhachari, P.V. Carotenoids and Alzheimer’s disease: an insight into therapeutic role of retinoids in animal models. Neurochem. Int., 2011, 59(5), 535-541.
[http://dx.doi.org/10.1016/j.neuint.2011.04.004] [PMID: 21672580]
[80]
Katayama, S.; Ogawa, H.; Nakamura, S. Apricot carotenoids possess potent anti-amyloidogenic activity in vitro. J. Agric. Food Chem., 2011, 59(23), 12691-12696.
[http://dx.doi.org/10.1021/jf203654c] [PMID: 22043804]
[81]
Park, H-A.; Hayden, M.M.; Bannerman, S.; Jansen, J.; Crowe-White, K.M. Anti-Apoptotic Effects of Carotenoids in Neurodegeneration. Molecules, 2020, 25(15), 3453.
[http://dx.doi.org/10.3390/molecules25153453] [PMID: 32751250]
[82]
Shih, P.H.; Wu, C.H.; Yeh, C.T.; Yen, G.C. Protective effects of anthocyanins against amyloid β-peptide-induced damage in neuro-2A cells. J. Agric. Food Chem., 2011, 59(5), 1683-1689.
[http://dx.doi.org/10.1021/jf103822h] [PMID: 21302893]
[83]
Esler, W.P.; Wolfe, M.S. A Portrait of Alzheimer Secretases-New Features and Familiar Faces. Science (80-. ), 2001, 293, 1449- 1454.
[84]
Ramesh, B.N. Raichurkar, K.P.; Shamasundar, N.M.; Rao, T.S.S.; Rao, K.S.J. Aβ(42) induced MRI changes in aged rabbit brain resembles AD brain. Neurochem. Int., 2011, 59(5), 637-642.
[http://dx.doi.org/10.1016/j.neuint.2011.06.003] [PMID: 21723897]
[85]
Ozawa, Y.; Sasaki, M.; Takahashi, N.; Kamoshita, M.; Miyake, S.; Tsubota, K. Neuroprotective effects of lutein in the retina. Curr. Pharm. Des., 2012, 18(1), 51-56.
[http://dx.doi.org/10.2174/138161212798919101] [PMID: 22211688]
[86]
Xu, X.; Lin, X. Advances in the researches of lutein and alzheimer’s disease. Zhonghua Yu Fang Yi Xue Za Zhi, 2015, 49(5), 456-460.
[PMID: 26081713]
[87]
Lin, J.; Huang, L.; Yu, J.; Xiang, S.; Wang, J.; Zhang, J.; Yan, X.; Cui, W.; He, S.; Wang, Q. Fucoxanthin, a Marine Carotenoid, Reverses Scopolamine-Induced Cognitive Impairments in Mice and Inhibits Acetylcholinesterase in Vitro. Mar. Drugs, 2016, 14(4), 67.
[http://dx.doi.org/10.3390/md14040067] [PMID: 27023569]
[88]
Lin, J.; Yu, J.; Zhao, J.; Zhang, K.; Zheng, J.; Wang, J.; Huang, C.; Zhang, J.; Yan, X.; Gerwick, W.H.; Wang, Q.; Cui, W.; He, S. Fucoxanthin, a Marine Carotenoid, Attenuates β-Amyloid Oligomer-Induced Neurotoxicity Possibly via Regulating the PI3K/Akt and the ERK Pathways in SH-SY5Y Cells. Oxid. Med. Cell. Longev., 2017, 2017, 6792543.
[http://dx.doi.org/10.1155/2017/6792543] [PMID: 28928905]
[89]
Han, J.H.; Lee, Y.L. Im, J.H.; Ham, Y.W.; Lee, H.P.; Han, S.B.; Hong, J.T. Astaxanthin Ameliorates Lipopolysaccharide-Induced Neuroinflammation, Oxidative Stress and Memory Dysfunction through Inactivation of the Signal Transducer and Activator of Transcription 3 Pathway. Mar. Drugs, 2019, 17, 123.
[http://dx.doi.org/10.3390/md17020123]
[90]
Hongo, N.; Takamura, Y.; Nishimaru, H.; Matsumoto, J.; Tobe, K.; Saito, T.; Saido, T.C.; Nishijo, H. Astaxanthin Ameliorated Parvalbumin-Positive Neuron Deficits and Alzheimer’s Disease-Related Pathological Progression in the Hippocampus of AppNL-G-F/NL-G-F Mice. Front. Pharmacol., 2020, 11, 307.
[http://dx.doi.org/10.3389/fphar.2020.00307] [PMID: 32218736]
[91]
Min, J-Y.; Min, K-B. Serum lycopene, lutein and zeaxanthin, and the risk of Alzheimer’s disease mortality in older adults. Dement. Geriatr. Cogn. Disord., 2014, 37(3-4), 246-256.
[http://dx.doi.org/10.1159/000356486] [PMID: 24247062]
[92]
Tjernberg, L.O.; Näslund, J.; Lindqvist, F.; Johansson, J.; Karlström, A.R.; Thyberg, J.; Terenius, L.; Nordstedt, C. Arrest of β-amyloid fibril formation by a pentapeptide ligand. J. Biol. Chem., 1996, 271(15), 8545-8548.
[http://dx.doi.org/10.1074/jbc.271.15.8545] [PMID: 8621479]
[93]
Kumar, J.; Namsechi, R.; Sim, V.L. Structure-Based Peptide Design to Modulate Amyloid Beta Aggregation and Reduce Cytotoxicity. PLoS One, 2015, 10(6), e0129087.
[http://dx.doi.org/10.1371/journal.pone.0129087] [PMID: 26070139]
[94]
Hetényi, C.; Körtvélyesi, T.; Penke, B. Mapping of possible binding sequences of two beta-sheet breaker peptides on beta amyloid peptide of Alzheimer’s disease. Bioorg. Med. Chem., 2002, 10(5), 1587-1593.
[http://dx.doi.org/10.1016/S0968-0896(01)00424-2] [PMID: 11886820]
[95]
Murillo, E.; Nagy, V.; Agócs, A.; Deli, J. Carotenoids with κ-End Group. In: Carotenoids: Food Sources, Production and Health Benefits; Yamaguchi, M., Ed.; Nova Science Publishers, Inc., 2013, pp. 49-77.
[96]
Zeng, J.; Chen, L.; Wang, Z.; Chen, Q.; Fan, Z.; Jiang, H.; Wu, Y.; Ren, L.; Chen, J.; Li, T.; Song, W. Marginal vitamin A deficiency facilitates Alzheimer’s pathogenesis. Acta Neuropathol., 2017, 133(6), 967-982.
[http://dx.doi.org/10.1007/s00401-017-1669-y] [PMID: 28130638]
[97]
Bourdel-Marchasson, I.; Delmas-Beauvieux, M.C.; Peuchant, E.; Richard-Harston, S.; Decamps, A.; Reignier, B.; Emeriau, J.P.; Rainfray, M. Antioxidant defences and oxidative stress markers in erythrocytes and plasma from normally nourished elderly Alzheimer patients. Age Ageing, 2001, 30(3), 235-241.
[http://dx.doi.org/10.1093/ageing/30.3.235] [PMID: 11443025]
[98]
Lopes da Silva, S.; Vellas, B.; Elemans, S.; Luchsinger, J.; Kamphuis, P.; Yaffe, K.; Sijben, J.; Groenendijk, M.; Stijnen, T. Plasma nutrient status of patients with Alzheimer’s disease: Systematic review and meta-analysis. Alzheimers Dement., 2014, 10(4), 485-502.
[http://dx.doi.org/10.1016/j.jalz.2013.05.1771] [PMID: 24144963]
[99]
Huang, X.; Zhang, H.; Zhen, J.; Dong, S.; Guo, Y.; Van Halm-Lutterodt, N.; Yuan, L. Diminished circulating retinol and elevated α-TOH/retinol ratio predict an increased risk of cognitive decline in aging Chinese adults, especially in subjects with ApoE2 or ApoE4 genotype. Aging (Albany NY), 2018, 10(12), 4066-4083.
[http://dx.doi.org/10.18632/aging.101694] [PMID: 30573705]
[100]
Wołoszynowska-Fraser, M.U.; Kouchmeshky, A.; McCaffery, P. Vitamin A and Retinoic Acid in Cognition and Cognitive Disease. Annu. Rev. Nutr., 2020, 40, 247-272.
[http://dx.doi.org/10.1146/annurev-nutr-122319-034227] [PMID: 32966186]
[101]
Das, B.C.; Dasgupta, S.; Ray, S.K. Potential therapeutic roles of retinoids for prevention of neuroinflammation and neurodegeneration in Alzheimer’s disease. Neural Regen. Res., 2019, 14(11), 1880-1892.
[http://dx.doi.org/10.4103/1673-5374.259604] [PMID: 31290437]
[102]
Chakrabarti, M.; McDonald, A.J.; Will Reed, J.; Moss, M.A.; Das, B.C.; Ray, S.K. Molecular Signaling Mechanisms of Natural and Synthetic Retinoids for Inhibition of Pathogenesis in Alzheimer’s Disease. J. Alzheimers Dis., 2016, 50(2), 335-352.
[http://dx.doi.org/10.3233/JAD-150450] [PMID: 26682679]
[103]
Chacón-Ordóñez, T.; Esquivel, P.; Quesada, S.; Jiménez, R.R.; Cordero, A.; Carle, R.; Schweiggert, R. Mamey sapote fruit and carotenoid formulations derived thereof are dietary sources of vitamin A - A comparative randomized cross-over study. Food Res. Int., 2019, 122, 340-347.
[http://dx.doi.org/10.1016/j.foodres.2019.04.009] [PMID: 31229087]
[104]
Behairi, N.; Belkhelfa, M.; Mesbah-Amroun, H.; Rafa, H.; Belarbi, S.; Tazir, M.; Touil-Boukoffa, C. All-trans-retinoic acid modulates nitric oxide and interleukin-17A production by peripheral blood mononuclear cells from patients with Alzheimer’s disease. Neuroimmunomodulation, 2015, 22(6), 385-393.
[http://dx.doi.org/10.1159/000435885] [PMID: 26278415]
[105]
Behairi, N.; Belkhelfa, M.; Rafa, H.; Labsi, M.; Deghbar, N.; Bouzid, N.; Mesbah-Amroun, H.; Touil-Boukoffa, C. All-trans retinoic acid (ATRA) prevents lipopolysaccharide-induced neuroinflammation, amyloidogenesis and memory impairment in aged rats. J. Neuroimmunol., 2016, 300, 21-29.
[http://dx.doi.org/10.1016/j.jneuroim.2016.10.004] [PMID: 27806872]
[106]
Khatib, T.; Chisholm, D.R.; Whiting, A.; Platt, B.; McCaffery, P. Decay in Retinoic Acid Signaling in Varied Models of Alzheimer’s Disease and In-Vitro Test of Novel Retinoic Acid Receptor Ligands (RAR-Ms) to Regulate Protective Genes. J. Alzheimers Dis., 2020, 73(3), 935-954.
[http://dx.doi.org/10.3233/JAD-190931] [PMID: 31884477]
[107]
Husson, M.; Enderlin, V.; Delacourte, A.; Ghenimi, N.; Alfos, S.; Pallet, V.; Higueret, P. Retinoic acid normalizes nuclear receptor mediated hypo-expression of proteins involved in β-amyloid deposits in the cerebral cortex of vitamin A deprived rats. Neurobiol. Dis., 2006, 23(1), 1-10.
[http://dx.doi.org/10.1016/j.nbd.2006.01.008] [PMID: 16531051]
[108]
Ono, K.; Yoshiike, Y.; Takashima, A.; Hasegawa, K.; Naiki, H.; Yamada, M.; Vitamin, A. Vitamin A exhibits potent antiamyloidogenic and fibril-destabilizing effects in vitro. Exp. Neurol., 2004, 189(2), 380-392.
[http://dx.doi.org/10.1016/j.expneurol.2004.05.035] [PMID: 15380488]
[109]
Takasaki, J.; Ono, K.; Yoshiike, Y.; Hirohata, M.; Ikeda, T.; Morinaga, A.; Takashima, A.; Yamada, M.; Vitamin, A. Vitamin A has anti-oligomerization effects on amyloid-β in vitro. J. Alzheimers Dis., 2011, 27(2), 271-280.
[http://dx.doi.org/10.3233/JAD-2011-110455] [PMID: 21811022]
[110]
de Rosso, V.V.; Mercadante, A.Z. Identification and quantification of carotenoids, by HPLC-PDA-MS/MS, from Amazonian fruits. J. Agric. Food Chem., 2007, 55(13), 5062-5072.
[http://dx.doi.org/10.1021/jf0705421] [PMID: 17530774]
[111]
Azqueta, A.; Collins, A.R. Carotenoids and DNA damage. Mutat. Res., 2012, 733(1-2), 4-13.
[http://dx.doi.org/10.1016/j.mrfmmm.2012.03.005] [PMID: 22465157]
[112]
Torbergsen, A.C.; Collins, A.R. Recovery of human lymphocytes from oxidative DNA damage; the apparent enhancement of DNA repair by carotenoids is probably simply an antioxidant effect. Eur. J. Nutr., 2000, 39(2), 80-85.
[http://dx.doi.org/10.1007/s003940050006] [PMID: 10918989]
[113]
Zhao, X.; Aldini, G.; Johnson, E.J.; Rasmussen, H.; Kraemer, K.; Woolf, H.; Musaeus, N.; Krinsky, N.I.; Russell, R.M.; Yeum, K-J. Modification of lymphocyte DNA damage by carotenoid supplementation in postmenopausal women. Am. J. Clin. Nutr., 2006, 83(1), 163-169.
[http://dx.doi.org/10.1093/ajcn/83.1.163] [PMID: 16400064]
[114]
Zhang, D-M.; Luo, Y.; Yishake, D.; Liu, Z-Y.; He, T-T.; Luo, Y.; Zhang, Y-J.; Fang, A-P.; Zhu, H-L. Prediagnostic dietary intakes of vitamin A and β-carotene are associated with hepatocellular-carcinoma survival. Food Funct., 2020, 11(1), 759-767.
[http://dx.doi.org/10.1039/C9FO02468A] [PMID: 31915755]
[115]
Li, K.; Zhang, B. The association of dietary β-carotene and vitamin A intake on the risk of esophageal cancer: a meta-analysis. Rev. Esp. Enferm. Dig., 2020, 112(8), 620-626.
[http://dx.doi.org/10.17235/reed.2020.6699/2019] [PMID: 32543872]
[116]
Yu, N.; Su, X.; Wang, Z.; Dai, B.; Kang, J. Association of Dietary Vitamin A and β-Carotene Intake with the Risk of Lung Cancer: A Meta-Analysis of 19 Publications. Nutrients, 2015, 7(11), 9309-9324.
[http://dx.doi.org/10.3390/nu7115463] [PMID: 26569298]
[117]
Gloria, N.F.; Soares, N.; Brand, C.; Oliveira, F.L.; Borojevic, R.; Teodoro, A.J. Lycopene and beta-carotene induce cell-cycle arrest and apoptosis in human breast cancer cell lines. Anticancer Res., 2014, 34(3), 1377-1386.
[PMID: 24596385]
[118]
Jang, S.H.; Lim, J.W.; Kim, H. Mechanism of β-carotene-induced apoptosis of gastric cancer cells: involvement of ataxia-telangiectasia-mutated. Ann. N. Y. Acad. Sci., 2009, 1171, 156-162.
[http://dx.doi.org/10.1111/j.1749-6632.2009.04711.x] [PMID: 19723050]
[119]
Goodman, G.E.; Thornquist, M.D.; Balmes, J.; Cullen, M.R.; Meyskens, F.L., Jr; Omenn, G.S.; Valanis, B.; Williams, J.H., Jr The β-Carotene and Retinol Efficacy Trial: incidence of lung cancer and cardiovascular disease mortality during 6-year follow-up after stopping β-carotene and retinol supplements. J. Natl. Cancer Inst., 2004, 96(23), 1743-1750.
[http://dx.doi.org/10.1093/jnci/djh320] [PMID: 15572756]
[120]
Patrick, L. Beta-carotene: the controversy continues. Altern. Med. Rev., 2000, 5(6), 530-545.
[PMID: 11134976]
[121]
Serpeloni, J.M.; Barcelos, G.R.M.; Friedmann Angeli, J.P.; Mercadante, A.Z.; Lourdes Pires Bianchi, M.; Antunes, L.M.G. Dietary carotenoid lutein protects against DNA damage and alterations of the redox status induced by cisplatin in human derived HepG2 cells. Toxicol. In Vitro, 2012, 26(2), 288-294.
[http://dx.doi.org/10.1016/j.tiv.2011.11.011] [PMID: 22138568]
[122]
Santocono, M.; Zurria, M.; Berrettini, M.; Fedeli, D.; Falcioni, G. Influence of astaxanthin, zeaxanthin and lutein on DNA damage and repair in UVA-irradiated cells. J. Photochem. Photobiol. B, 2006, 85(3), 205-215.
[http://dx.doi.org/10.1016/j.jphotobiol.2006.07.009] [PMID: 16962787]
[123]
Murillo, E.; Watts, M.; Reyna, G.; Giuffrida, D.; Durant-Archibold, A.A. Carotenoid composition of Cionosicyos Macranthus fruit. Nat. Prod. Commun., 2019, 14, 1-6.
[http://dx.doi.org/10.1177/1934578X19862649]
[124]
Gao, M. Dang, F.; Deng, C. β-Cryptoxanthin induced anti-proliferation and apoptosis by G0/G1 arrest and AMPK signal inactivation in gastric cancer. Eur. J. Pharmacol., 2019, 859, 172528.
[http://dx.doi.org/10.1016/j.ejphar.2019.172528] [PMID: 31288004]
[125]
Iskandar, A.R. Miao, B.; Li, X.; Hu, K.Q.; Liu, C.; Wang, X-D. β-cryptoxanthin reduced lung tumor multiplicity and inhibited lung cancer cell motility by downregulating nicotinic acetylcholine receptor α7 signaling. Cancer Prev. Res. (Phila.), 2016, 9(11), 875-886.
[http://dx.doi.org/10.1158/1940-6207.CAPR-16-0161] [PMID: 27623933]
[126]
Terao, R.; Murata, A.; Sugamoto, K.; Watanabe, T.; Nagahama, K.; Nakahara, K.; Kondo, T.; Murakami, N.; Fukui, K.; Hattori, H.; Eto, N. Immunostimulatory effect of kumquat (Fortunella crassifolia) and its constituents, β-cryptoxanthin and R-limonene. Food Funct., 2019, 10(1), 38-48.
[http://dx.doi.org/10.1039/C8FO01971A] [PMID: 30548041]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy