Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

Molecular and Metabolic Imaging of Castration-Resistant Prostate Cancer: State of Art and Future Prospects

Author(s): Luca Filippi*, Agostino Chiaravalloti, Pietro Basile, Orazio Schillaci and Oreste Bagni

Volume 22, Issue 1, 2022

Published on: 11 February, 2021

Page: [25 - 36] Pages: 12

DOI: 10.2174/1566524021666210211112423

Price: $65

Abstract

Prostate cancer (PCa) represents to be the most common tumor in male and one of the most relevant causes of death in the Western countries. Androgen deprivation therapy (ADT) constitutes a widely used approach in advanced PCa. When PCa progresses in spite of ADT and castrate levels of testosterone, the severe clinical condition termed as metastatic castration-resistant prostate cancer (mCRPC) takes place. The only approach to mCRPC has been represented by chemotherapy with taxanes for many years. Nevertheless, recently introduced treatments such as 2nd generation antiandrogens (i.e., enzalutamide and abiraterone), cell immunotherapy with sipuleucel-T or targeted alpha therapy with 223Ra-dichloride, have dramatically changed mCRPC prognosis. These novel therapies call for an unmet need for imaging biomarkers suitable for patients’ pre-treatment stratification and response assessment. In this scenario, nuclear medicine can provide several metabolic and molecular probes for investigating pathological processes at a cellular and sub-cellular level. The aim of this paper is to review the most relevant findings of the literature published to date on this topic, giving particular emphasis on the pros and cons of each tracer and also covering future prospects for defining personalized therapeutic approaches.

Keywords: Prostate cancer, castration-resistant, antiadrogens, androgen receptor, 18F-choline, bone scan, 18Ffluciclovine, prostate specific membrane antigen.

[1]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin 2020; 70(1): 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[2]
Lam TBL, MacLennan S, Willemse PM, et al. EAU-EANM-ESTRO-ESUR-SIOG prostate cancer guideline panel consensus statements for deferred treatment with curative intent for localised prostate cancer from an international collaborative study (DETECTIVE Study). Eur Urol 2019; 76(6): 790-813.
[http://dx.doi.org/10.1016/j.eururo.2019.09.020] [PMID: 31587989]
[3]
Rodrigues G, Warde P, Pickles T, et al. Genitourinary Radiation Oncologists of Canada. Pre-treatment risk stratification of prostate cancer patients: A critical review. Can Urol Assoc J 2012; 6(2): 121-7.
[http://dx.doi.org/10.5489/cuaj.11085] [PMID: 22511420]
[4]
Smith MR. Androgen deprivation therapy for prostate cancer: new concepts and concerns. Curr Opin Endocrinol Diabetes Obes 2007; 14(3): 247-54.
[http://dx.doi.org/10.1097/MED.0b013e32814db88c] [PMID: 17940447]
[5]
Huang Y, Jiang X, Liang X, Jiang G. Molecular and cellular mechanisms of castration resistant prostate cancer. Oncol Lett 2018; 15(5): 6063-76.
[http://dx.doi.org/10.3892/ol.2018.8123] [PMID: 29616091]
[6]
Shapiro D, Tareen B. Current and emerging treatments in the management of castration-resistant prostate cancer. Expert Rev Anticancer Ther 2012; 12(7): 951-64.
[http://dx.doi.org/10.1586/era.12.59] [PMID: 22845410]
[7]
Rosino A, Ballester I, Tudela J, González-Billalabeitia E. Chemotherapy in metastatic castration resistant prostate cancer. Arch Esp Urol 2018; 71(8): 676-84.
[PMID: 30319127]
[8]
Chandrasekar T, Yang JC, Gao AC, Evans CP. Mechanisms of resistance in castration-resistant prostate cancer (CRPC). Transl Androl Urol 2015; 4(3): 365-80.
[PMID: 26814148]
[9]
Kawalec P, Paszulewicz A, Holko P, Pilc A. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. A systematic review and meta-analysis. Arch Med Sci 2012; 8(5): 767-75.
[http://dx.doi.org/10.5114/aoms.2012.31610] [PMID: 23185184]
[10]
El-Amm J, Aragon-Ching JB. Radium-223 for the treatment of castration-resistant prostate cancer. OncoTargets Ther 2015; 8: 1103-9.
[http://dx.doi.org/10.2147/OTT.S44291] [PMID: 26056474]
[11]
Jones W, Griffiths K, Barata PC, Paller CJ. PSMA theranostics: review of the current status of PSMA-targeted imaging and radioligand therapy. Cancers (Basel) 2020; 12(6): 1367.
[http://dx.doi.org/10.3390/cancers12061367] [PMID: 32466595]
[12]
Schillaci O, Urbano N. Personalized medicine: a new option for nuclear medicine and molecular imaging in the third millennium. Eur J Nucl Med Mol Imaging 2017; 44(4): 563-6.
[http://dx.doi.org/10.1007/s00259-017-3616-5] [PMID: 28083691]
[13]
Qin C, Ma X, Tian J. Translational research of optical molecular imaging for personalized medicine. Curr Mol Med 2013; 13(10): 1579-90.
[http://dx.doi.org/10.2174/1566524013666131111123201] [PMID: 24206134]
[14]
Filippi L, Scopinaro F, Pelle G, et al. Molecular response assessed by (68)Ga-DOTANOC and survival after (90)Y microsphere therapy in patients with liver metastases from neuroendocrine tumours. Eur J Nucl Med Mol Imaging 2016; 43(3): 432-40.
[http://dx.doi.org/10.1007/s00259-015-3178-3] [PMID: 26323577]
[15]
Crawford ED, Stone NN, Yu EY, et al. Prostate Cancer Radiographic Assessments for Detection of Advanced Recurrence (RADAR) Group. Challenges and recommendations for early identification of metastatic disease in prostate cancer. Urology 2014; 83(3): 664-9.
[http://dx.doi.org/10.1016/j.urology.2013.10.026] [PMID: 24411213]
[16]
Crawford ED, Petrylak DP, Shore N, et al. Prostate Cancer Radiographic Assessments for Detection of Advanced Recurrence (RADAR II) Group. The Role of Therapeutic Layering in Optimizing Treatment for Patients With Castration-resistant Prostate Cancer (Prostate Cancer Radiographic Assessments for Detection of Advanced Recurrence II). Urology 2017; 104: 150-9.
[http://dx.doi.org/10.1016/j.urology.2016.12.033] [PMID: 28302580]
[17]
Crawford ED, Koo PJ, Shore N, et al. RADAR III Group. A Clinician’s Guide to Next Generation Imaging in Patients With Advanced Prostate Cancer (RADAR III). J Urol 2019; 201(4): 682-92.
[http://dx.doi.org/10.1016/j.juro.2018.05.164] [PMID: 30077557]
[18]
Townsend DW. Multimodality imaging of structure and function. Phys Med Biol 2008; 53(4): R1-R39.
[http://dx.doi.org/10.1088/0031-9155/53/4/R01] [PMID: 18263942]
[19]
Filippi L, Biancone L, Petruzziello C, Schillaci O. Tc-99m HMPAO-labeled leukocyte scintigraphy with hybrid SPECT/CT detects perianal fistulas in Crohn disease. Clin Nucl Med 2006; 31(9): 541-2.
[http://dx.doi.org/10.1097/01.rlu.0000233082.89996.3a] [PMID: 16921278]
[20]
Sonni I, Baratto L, Park S, et al. Initial experience with a SiPM-based PET/CT scanner: Influence of acquisition time on image quality. EJNMMI Phys 2018; 5(1): 9.
[http://dx.doi.org/10.1186/s40658-018-0207-x] [PMID: 29666972]
[21]
Alberts I, Prenosil G, Sachpekidis C, et al. Digital versus analogue PET in [68Ga]Ga-PSMA-11 PET/CT for recurrent prostate cancer: A matched-pair comparison. Eur J Nucl Med Mol Imaging 2020; 47(3): 614-23.
[http://dx.doi.org/10.1007/s00259-019-04630-y] [PMID: 31792572]
[22]
Wong KK, Piert M. Dynamic bone imaging with 99mTc-labeled diphosphonates and 18F-NaF: Mechanisms and applications. J Nucl Med 2013; 54(4): 590-9.
[http://dx.doi.org/10.2967/jnumed.112.114298] [PMID: 23482667]
[23]
Einhorn TA, Vigorita VJ, Aaron A. Localization of technetium-99m methylene diphosphonate in bone using microautoradiography. J Orthop Res 1986; 4(2): 180-7.
[http://dx.doi.org/10.1002/jor.1100040206] [PMID: 3712127]
[24]
Imbriaco M, Larson SM, Yeung HW, et al. A new parameter for measuring metastatic bone involvement by prostate cancer: the Bone Scan Index. Clin Cancer Res 1998; 4(7): 1765-72.
[PMID: 9676853]
[25]
Dennis ER, Jia X, Mezheritskiy IS, et al. Bone scan index: a quantitative treatment response biomarker for castration-resistant metastatic prostate cancer. J Clin Oncol 2012; 30(5): 519-24.
[http://dx.doi.org/10.1200/JCO.2011.36.5791] [PMID: 22231045]
[26]
Song H, Jin S, Xiang P, Hu S, Jin J. Prognostic value of the bone scan index in patients with metastatic castration-resistant prostate cancer: A systematic review and meta-analysis. BMC Cancer 2020; 20(1): 238.
[http://dx.doi.org/10.1186/s12885-020-06739-y] [PMID: 32197590]
[27]
Jadvar H, Desai B, Conti PS. Sodium 18F-fluoride PET/CT of bone, joint, and other disorders. Semin Nucl Med 2015; 45(1): 58-65.
[http://dx.doi.org/10.1053/j.semnuclmed.2014.07.008] [PMID: 25475379]
[28]
Apolo AB, Lindenberg L, Shih JH, et al. Prospective study evaluating Na18F PET/CT in predicting clinical outcomes and survival in advanced prostate cancer. J Nucl Med 2016; 57(6): 886-92.
[http://dx.doi.org/10.2967/jnumed.115.166512] [PMID: 26795292]
[29]
Zukotynski KA, Kim CK, Gerbaudo VH, et al. (18)F-FDG-PET/CT and (18)F-NaF-PET/CT in men with castrate-resistant prostate cancer. Am J Nucl Med Mol Imaging 2014; 5(1): 72-82.
[PMID: 25625029]
[30]
Kairemo K, Joensuu T. Radium-223-Dichloride in Castration Resistant Metastatic Prostate Cancer-Preliminary Results of the Response Evaluation Using F-18-Fluoride PET/CT. Diagnostics (Basel) 2015; 5(4): 413-27.
[http://dx.doi.org/10.3390/diagnostics5040413] [PMID: 26854163]
[31]
Liberti MV, Locasale JW. The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem Sci 2016; 41(3): 211-8.
[http://dx.doi.org/10.1016/j.tibs.2015.12.001] [PMID: 26778478]
[32]
Eidelman E, Twum-Ampofo J, Ansari J, Siddiqui MM. The Metabolic Phenotype of Prostate Cancer. Front Oncol 2017; 7: 131.
[http://dx.doi.org/10.3389/fonc.2017.00131] [PMID: 28674679]
[33]
Vaz CV, Alves MG, Marques R, et al. Androgen-responsive and nonresponsive prostate cancer cells present a distinct glycolytic metabolism profile. Int J Biochem Cell Biol 2012; 44(11): 2077-84.
[http://dx.doi.org/10.1016/j.biocel.2012.08.013] [PMID: 22964025]
[34]
Filippi L, Di Costanzo GG, Tortora R, et al. Prognostic value of neutrophil-to-lymphocyte ratio and its correlation with fluorine-18-fluorodeoxyglucose metabolic parameters in intrahepatic cholangiocarcinoma submitted to 90Y-radioembolization. Nucl Med Commun 2020; 41(1): 78-86.
[http://dx.doi.org/10.1097/MNM.0000000000001123] [PMID: 31800510]
[35]
Bauckneht M, Capitanio S, Donegani MI, et al. Role of baseline and post-therapy 18F-FDG PET in the prognostic stratification of metastatic castration-resistant prostate cancer (mCRPC) patients treated with radium-223. Cancers (Basel) 2019; 12(1)E31
[http://dx.doi.org/10.3390/cancers12010031] [PMID: 31861942]
[36]
Jackowski S. Coordination of membrane phospholipid synthesis with the cell cycle. J Biol Chem 1994; 269(5): 3858-67.
[http://dx.doi.org/10.1016/S0021-9258(17)41939-9] [PMID: 8106431]
[37]
Yoshimoto M, Waki A, Obata A, Furukawa T, Yonekura Y, Fujibayashi Y. Radiolabeled choline as a proliferation marker: comparison with radiolabeled acetate. Nucl Med Biol 2004; 31(7): 859-65.
[http://dx.doi.org/10.1016/j.nucmedbio.2004.05.002] [PMID: 15464387]
[38]
Calabria F, Chiaravalloti A, Cicciò C, et al. PET/CT with 18F-choline: Physiological whole bio-distribution in male and female subjects and diagnostic pitfalls on 1000 prostate cancer patients: 18F-choline PET/CT bio-distribution and pitfalls. A southern Italian experience. Nucl Med Biol 2017; 51: 40-54.
[http://dx.doi.org/10.1016/j.nucmedbio.2017.04.004] [PMID: 28575697]
[39]
Nozaki K, Kawai T, Fujimura T, et al. Carbon 11-choline positron emission tomography/computed tomography and palliative local therapy for castration-resistant prostate cancer. Int Urol Nephrol 2019; 51(10): 1763-9.
[http://dx.doi.org/10.1007/s11255-019-02233-y] [PMID: 31325132]
[40]
De Giorgi U, Caroli P, Scarpi E, et al. (18)F-Fluorocholine PET/CT for early response assessment in patients with metastatic castration-resistant prostate cancer treated with enzalutamide. Eur J Nucl Med Mol Imaging 2015; 42(8): 1276-83.
[http://dx.doi.org/10.1007/s00259-015-3042-5] [PMID: 25808631]
[41]
Lee J, Sato MM, Coel MN, Lee KH, Kwee SA. Prediction of PSA progression in castration-resistant prostate cancer based on treatment-associated change in tumor burden quantified by 18F-fluorocholine PET/CT. J Nucl Med 2016; 57(7): 1058-64.
[http://dx.doi.org/10.2967/jnumed.115.169177] [PMID: 26912444]
[42]
Caroli P, De Giorgi U, Scarpi E, et al. Prognostic value of 18F-choline PET/CT metabolic parameters in patients with metastatic castration-resistant prostate cancer treated with abiraterone or enzalutamide. Eur J Nucl Med Mol Imaging 2018; 45(3): 348-54.
[http://dx.doi.org/10.1007/s00259-017-3866-2] [PMID: 29110067]
[43]
Filippi L, Basile P, Schillaci O, Bagni O. The relationship between total lesion activity on 18F choline positron emission tomography-computed tomography and clinical outcome in patients with castration-resistant prostate cancer bone metastases treated with 223Radium. Cancer Biother Radiopharm 2020; 35(6): 398-403.
[http://dx.doi.org/10.1089/cbr.2019.3188] [PMID: 32109140]
[44]
Ponde DE, Dence CS, Oyama N, et al. 18F-fluoroacetate: a potential acetate analog for prostate tumor imaging--in vivo evaluation of 18F-fluoroacetate versus 11C-acetate. J Nucl Med 2007; 48(3): 420-8.
[PMID: 17332620]
[45]
Almeida FD, Yen CK, Scholz MC, et al. Performance characteristics and relationship of PSA value/kinetics on carbon-11 acetate PET/CT imaging in biochemical relapse of prostate cancer. Am J Nucl Med Mol Imaging 2017; 7(1): 1-11.
[PMID: 28123863]
[46]
Yu EY, Muzi M, Hackenbracht JA, et al. C11-acetate and F-18 FDG PET for men with prostate cancer bone metastases: relative findings and response to therapy. Clin Nucl Med 2011; 36(3): 192-8.
[http://dx.doi.org/10.1097/RLU.0b013e318208f140] [PMID: 21285676]
[47]
Farnebo J, Wadelius A, Sandström P, et al. Progression-free and overall survival in metastatic castration-resistant prostate cancer treated with abiraterone acetate can be predicted with serial C11-acetate PET/CT. Medicine (Baltimore) 2016; 95(31)e4308
[http://dx.doi.org/10.1097/MD.0000000000004308] [PMID: 27495034]
[48]
Karanikas G, Beheshti M. 11C-acetate PET/CT imaging: physiologic uptake, variants, and pitfalls. PET Clin 2014; 9(3): 339-44.
[http://dx.doi.org/10.1016/j.cpet.2014.03.006] [PMID: 25030397]
[49]
Parent EE, Schuster DM. Update on 18F-Fluciclovine PET for Prostate Cancer Imaging. J Nucl Med 2018; 59(5): 733-9.
[http://dx.doi.org/10.2967/jnumed.117.204032] [PMID: 29523631]
[50]
Segawa A, Nagamori S, Kanai Y, Masawa N, Oyama T. L-type amino acid transporter 1 expression is highly correlated with Gleason score in prostate cancer. Mol Clin Oncol 2013; 1(2): 274-80.
[http://dx.doi.org/10.3892/mco.2012.54] [PMID: 24649160]
[51]
Laudicella R, Albano D, Alongi P, et al. on the behalf of Young AIMN working group. 18F-Facbc in prostate cancer: a systematic review and meta-analysis. Cancers (Basel) 2019; 11(9)E1348
[http://dx.doi.org/10.3390/cancers11091348] [PMID: 31514479]
[52]
Okudaira H, Oka S, Ono M, et al. Accumulation of trans-1-amino-3-[(18)F]fluorocyclobutanecarboxylic acid in prostate cancer due to androgen-induced expression of amino acid transporters. Mol Imaging Biol 2014; 16(6): 756-64.
[http://dx.doi.org/10.1007/s11307-014-0756-x] [PMID: 24943499]
[53]
Amorim BJ, Prabhu V, Marco SS, et al. Performance of 18F-fluciclovine PET/MR in the evaluation of osseous metastases from castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging 2020; 47(1): 105-14.
[http://dx.doi.org/10.1007/s00259-019-04506-1] [PMID: 31492992]
[54]
Chang SS. Overview of prostate-specific membrane antigen. Rev Urol 2004; 6(S10)(Suppl. 10): S13-8.
[PMID: 16985927]
[55]
Bostwick DG, Pacelli A, Blute M, Roche P, Murphy GP. Prostate specific membrane antigen expression in prostatic intraepithelial neoplasia and adenocarcinoma: A study of 184 cases. Cancer 1998; 82(11): 2256-61.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19980601)82:11<2256:AID-CNCR22>3.0.CO;2-S] [PMID: 9610707]
[56]
Hinkle GH, Burgers JK, Neal CE, et al. Multicenter radioimmunoscintigraphic evaluation of patients with prostate carcinoma using indium-111 capromab pendetide. Cancer 1998; 83(4): 739-47.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19980815)83:4<739:AID-CNCR16>3.0.CO;2-T] [PMID: 9708939]
[57]
Leung K. 111In-Capromab PendetideMolecular Imaging and Contrast Agent Database (MICAD) Bethesda (MD). National Center for Biotechnology Information (US) 2004.
[58]
Manyak MJ, Hinkle GH, Olsen JO, et al. Immunoscintigraphy with indium-111-capromab pendetide: evaluation before definitive therapy in patients with prostate cancer. Urology 1999; 54(6): 1058-63.
[http://dx.doi.org/10.1016/S0090-4295(99)00314-3] [PMID: 10604708]
[59]
Elgamal AA, Troychak MJ, Murphy GP. ProstaScint scan may enhance identification of prostate cancer recurrences after prostatectomy, radiation, or hormone therapy: Analysis of 136 scans of 100 patients. Prostate 1998; 37(4): 261-9.
[http://dx.doi.org/10.1002/(SICI)1097-0045(19981201)37:4<261:AID-PROS8>3.0.CO;2-#] [PMID: 9831223]
[60]
Nagda SN, Mohideen N, Lo SSV, et al. Long-term follow-up of 111In-capromab pendetide (ProstaScint) scan as pretreatment assessment in patients who undergo salvage radiotherapy for rising prostate-specific antigen after radical prostatectomy for prostate cancer. Int J Radiat Oncol Biol Phys 2007; 67(3): 834-40.
[http://dx.doi.org/10.1016/j.ijrobp.2006.09.026] [PMID: 17293236]
[61]
Filippi L, Schillaci O. SPECT/CT with a hybrid camera: a new imaging modality for the functional anatomical mapping of infections. Expert Rev Med Devices 2006; 3(6): 699-703.
[http://dx.doi.org/10.1586/17434440.3.6.699] [PMID: 17280534]
[62]
Hardie AD, Rieter WJ, Bradshaw ML, Gordon LL, Young MA, Keane TE. Improved performance of SPECT-CT In-111 capromab pendetide by correlation with diffusion-weighted magnetic resonance imaging for identifying metastatic pelvic lymphadenopathy in prostate cancer. World J Urol 2013; 31(6): 1327-32.
[http://dx.doi.org/10.1007/s00345-013-1079-2] [PMID: 23595605]
[63]
Hope TA, Goodman JZ, Allen IE, Calais J, Fendler WP, Carroll PR. Metaanalysis of 68Ga-PSMA-11 PET Accuracy for the Detection of Prostate Cancer Validated by Histopathology. J Nucl Med 2019; 60(6): 786-93.
[http://dx.doi.org/10.2967/jnumed.118.219501] [PMID: 30530831]
[64]
Fourquet A, Aveline C, Cussenot O, et al. 68Ga-PSMA-11 PET/CT in Restaging Castration-Resistant Nonmetastatic prostate cancer: detection rate, impact on patients’ disease management and adequacy of impact. Sci Rep 2020; 10(1): 2104.
[http://dx.doi.org/10.1038/s41598-020-58975-8.]
[65]
Rosar F, Dewes S, Ries M, et al. New insights in the paradigm of upregulation of tumoral PSMA expression by androgen receptor blockade: Enzalutamide induces PSMA upregulation in castration-resistant prostate cancer even in patients having previously progressed on enzalutamide. Eur J Nucl Med Mol Imaging 2020; 47(3): 687-94.
[http://dx.doi.org/10.1007/s00259-019-04674-0] [PMID: 31901103]
[66]
Heck MM, Tauber R, Schwaiger S, et al. Treatment Outcome, Toxicity, and Predictive Factors for Radioligand Therapy with 177Lu-PSMA-I&T in Metastatic Castration-resistant Prostate Cancer. Eur Urol 2019; 75(6): 920-6.
[http://dx.doi.org/10.1016/j.eururo.2018.11.016] [PMID: 30473431]
[67]
Rahbar K, Ahmadzadehfar H, Kratochwil C, et al. German multicenter study investigating 177Lu-PSMA-617 radioligand therapy in advanced prostate cancer patients. J Nucl Med 2017; 58(1): 85-90.
[http://dx.doi.org/10.2967/jnumed.116.183194] [PMID: 27765862]
[68]
Poty S, Mandleywala K, O’Neill E, Knight JC, Cornelissen B, Lewis JS. 89Zr-PET imaging of DNA double-strand breaks for the early monitoring of response following α- and β-particle radioimmunotherapy in a mouse model of pancreatic ductal adenocarcinoma. Theranostics 2020; 10(13): 5802-14.
[http://dx.doi.org/10.7150/thno.44772] [PMID: 32483420]
[69]
Sathekge M, Bruchertseifer F, Knoesen O, et al. Correction to: 225Ac-PSMA-617 in chemotherapy-naive patients with advanced prostate cancer: a pilot study. Eur J Nucl Med Mol Imaging 2019; 46(10): 1988.
[http://dx.doi.org/10.1007/s00259-019-04401-9] [PMID: 31240331]
[70]
Takata M, Sasaki MS, Sonoda E, et al. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J 1998; 17(18): 5497-508.
[http://dx.doi.org/10.1093/emboj/17.18.5497] [PMID: 9736627]
[71]
Chen A. PARP inhibitors: its role in treatment of cancer. Chin J Cancer 2011; 30(7): 463-71.
[http://dx.doi.org/10.5732/cjc.011.10111] [PMID: 21718592]
[72]
de Bono J, Mateo J, Fizazi K, et al. Olaparib for Metastatic Castration-Resistant Prostate Cancer. N Engl J Med 2020; 382(22): 2091-102.
[http://dx.doi.org/10.1056/NEJMoa1911440] [PMID: 32343890]
[73]
Zhou D, Xu J, Mpoy C, et al. Preliminary evaluation of a novel 18F-labeled PARP-1 ligand for PET imaging of PARP-1 expression in prostate cancer. Nucl Med Biol 2018; 66: 26-31.
[http://dx.doi.org/10.1016/j.nucmedbio.2018.08.003] [PMID: 30195072]
[74]
Wang B, Liu C, Wei Y, et al. A prospective trial of 68Ga-PSMA and 18F-FDG PET/CT in nonmetastatic prostate cancer patients with an early PSA progression during castration. Clin Cancer Res 2020; 26(17): 4551-8.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-0587] [PMID: 32527944]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy