Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

An Overview and Therapeutic Promise of Nutraceuticals Against Sports-Related Brain Injury

Author(s): Ashif Iqubal, Pratichi Bansal, Mohammad Kashif Iqubal, Faheem Hyder Pottoo* and Syed Ehtaishamul Haque*

Volume 15, Issue 1, 2022

Published on: 03 February, 2021

Article ID: e040122191118 Pages: 20

DOI: 10.2174/1874467214666210203211914

Price: $65

Abstract

Sports-related traumatic brain injury (TBI) is one of the common neurological maladies experienced by athletes. Earlier, the term ‘punch drunk syndrome’ was used in the case TBI of boxers and now this term is replaced by chronic traumatic encephalopathy (CTE). Sports-related brain injury can either be short-term or long-term. A common instance of brain injury encompasses subdural hematoma, concussion, cognitive dysfunction, amnesia, headache, vision issue, axonopathy, or even death, if it remains undiagnosed or untreated. Further, chronic TBI may lead to pathogenesis of neuroinflammation and neurodegeneration via tauopathy, the formation of neurofibrillary tangles, and damage to the blood-brain barrier, microglial, and astrocyte activation. Thus, altered pathological, neurochemical, and neurometabolic attributes lead to the modulation of multiple signaling pathways and cause neurological dysfunction. Available pharmaceutical interventions are based on one drug one target hypothesis and are thereby unable to cover altered multiple signaling pathways. However, in recent times, pharmacological intervention of nutrients and nutraceuticals have been explored as they exert a multifactorial mode of action and maintain over homeostasis of the body. There are various reports available showing the positive therapeutic effect of nutraceuticals in sport-related brain injury. Therefore, in the current article, we have discussed the pathology, neurological consequence, sequelae, and perpetuation of sports-related brain injury. Further, we have discussed various nutraceutical supplements as well as available animal models to explore the neuroprotective effect/ upshots of these nutraceuticals in sports-related brain injury.

Keywords: Cognition, neurodegeneration, neuroinflammation, signaling pathway and natural products.

Graphical Abstract

[1]
Theadom, A.; Mahon, S.; Hume, P.; Starkey, N.; Barker-Collo, S.; Jones, K.; Majdan, M.; Feigin, V.L. Incidence of sports-related traumatic brain injury of all severities: a systematic review. Neuroepidemiology, 2020, 54(2), 192-199.
[http://dx.doi.org/10.1159/000505424] [PMID: 31935738]
[2]
Liston, K.; Malcolm, D. Sports-related brain injury: Concussion and chronic traumatic encephalopathy. In: The Suffering Body in Sport (Research in the Sociology of Sport); Emerald Publishing Limited: Bingley, 2019; Vol. 12, pp. 89-104.
[http://dx.doi.org/10.1108/S1476-285420190000012008]
[3]
Fesharaki-Zadeh, A. Chronic traumatic encephalopathy: a brief overview. Front. Neurol., 2019, 10, 713.
[http://dx.doi.org/10.3389/fneur.2019.00713] [PMID: 31333567]
[4]
Oliver, J.M.; Anzalone, A.J.; Turner, S.M. Protection before impact: the potential neuroprotective role of nutritional supplementation in sports-related head trauma. Sports Med., 2018, 48(Suppl. 1), 39-52.
[http://dx.doi.org/10.1007/s40279-017-0847-3] [PMID: 29368186]
[5]
Zuckerman, S.L.; Kerr, Z.Y.; Yengo-Kahn, A.; Wasserman, E.; Covassin, T.; Solomon, G.S. Epidemiology of sports-related concussion in NCAA athletes from 2009-2010 to 2013-2014: incidence, recurrence, and mechanisms. Am. J. Sports Med., 2015, 43(11), 2654-2662.
[http://dx.doi.org/10.1177/0363546515599634] [PMID: 26330572]
[6]
Knollman-Porter, K.; Constantinidou, F.; Beardslee, J.; Dailey, S. Multidisciplinary management of collegiate sports-related concussions. Semin. Speech Lang., 2019, 40(1), 3-12.
[http://dx.doi.org/10.1055/s-0038-1676363] [PMID: 30616290]
[7]
Stern, R.A.; Daneshvar, D.H.; Baugh, C.M.; Seichepine, D.R.; Montenigro, P.H.; Riley, D.O.; Fritts, N.G.; Stamm, J.M.; Robbins, C.A.; McHale, L.; Simkin, I.; Stein, T.D.; Alvarez, V.E.; Goldstein, L.E.; Budson, A.E.; Kowall, N.W.; Nowinski, C.J.; Cantu, R.C.; McKee, A.C. Clinical presentation of chronic traumatic encephalopathy. Neurology, 2013, 81(13), 1122-1129.
[http://dx.doi.org/10.1212/WNL.0b013e3182a55f7f] [PMID: 23966253]
[8]
Petraglia, A.L.; Maroon, J.C.; Bailes, J.E. From the field of play to the field of combat: a review of the pharmacological management of concussion. Neurosurgery, 2012, 70(6), 1520-1533.
[http://dx.doi.org/10.1227/NEU.0b013e31824cebe8] [PMID: 22289786]
[9]
Schneider, K.J.; Leddy, J.J.; Guskiewicz, K.M.; Seifert, T.; McCrea, M.; Silverberg, N.D.; Feddermann-Demont, N.; Iverson, G.L.; Hayden, A.; Makdissi, M. Rest and treatment/rehabilitation following sport-related concussion: a systematic review. Br. J. Sports Med., 2017, 51(12), 930-934.
[http://dx.doi.org/10.1136/bjsports-2016-097475] [PMID: 28341726]
[10]
Yu, J.; Zhu, H.; Taheri, S.; Monday, W.L.; Perry, S.; Kindy, M.S. Reduced Neuroinflammation and Improved Functional Recovery after Traumatic Brain Injury by Prophylactic Diet Supplementation in Mice. Nutrients, 2019, 11(2), 299.
[http://dx.doi.org/10.3390/nu11020299] [PMID: 30708954]
[11]
Rank, K.; Ramos, G.; Addie, C.; Neltner, T.; Fraser, M.; Cosio-Lima, L.M. Role of Exercise and Dietary Supplementation in Attenuation of Traumatic Brain Injury in American Football. J. Sports Exerc. Med, 2019, 5(1), 5-10.
[http://dx.doi.org/10.17140/SEMOJ-5-168]
[12]
Guerriero, R.M.; Giza, C.C.; Rotenberg, A. Glutamate and GABA imbalance following traumatic brain injury. Curr. Neurol. Neurosci. Rep., 2015, 15(5), 27.
[http://dx.doi.org/10.1007/s11910-015-0545-1] [PMID: 25796572]
[13]
Barkhoudarian, G.; Hovda, D.A.; Giza, C.C. The molecular pathophysiology of concussive brain injury–an update. Phys. Med. Rehabil. Clin. N. Am., 2016, 27(2), 373-393.
[http://dx.doi.org/10.1016/j.pmr.2016.01.003] [PMID: 27154851]
[14]
Giza, C.C.; Hovda, D.A. The new neurometabolic cascade of concussion. Neurosurgery, 2014, 75(04)(Suppl. 4), S24-S33.
[http://dx.doi.org/10.1227/NEU.0000000000000505] [PMID: 25232881]
[15]
Mir, R.H.; Shah, A.J.; Mohi-Ud-Din, R.; Potoo, F.H.; Dar, M.A.; Jachak, S.M.; Masoodi, M.H. Natural anti-inflammatory compounds as drug candidates in Alzheimer’s disease. Curr. Med. Chem., 2021, 28(23), 4799-4825.
[http://dx.doi.org/10.2174/0929867327666200730213215] [PMID: 32744957]
[16]
Sankar, S.B.; Pybus, A.F.; Liew, A.; Sanders, B.; Shah, K.J.; Wood, L.B.; Buckley, E.M. Low cerebral blood flow is a non-invasive biomarker of neuroinflammation after repetitive mild traumatic brain injury. Neurobiol. Dis., 2019, 124, 544-554.
[http://dx.doi.org/10.1016/j.nbd.2018.12.018] [PMID: 30592976]
[17]
Iqubal, A.; Iqubal, M.K.; Khan, A.; Ali, J.; Baboota, S.; Haque, S.E. Gene therapy, a novel therapeutic tool for neurological disorders: Current progress, challenges and future prospective. Curr. Gene Ther., 2020, 20(3), 184-194.
[http://dx.doi.org/10.2174/1566523220999200716111502] [PMID: 32674730]
[18]
Ibrahim, A.M.; Pottoo, F.H.; Dahiya, E.S.; Khan, F.A.; Kumar, J.B.S. Neuron-glia interactions: Molecular basis of alzheimer’s disease and applications of neuroproteomics. Eur. J. Neurosci., 2020, 52(2), 2931-2943.
[http://dx.doi.org/10.1111/ejn.14838] [PMID: 32463535]
[19]
McDevitt, J. CNS voltage-gated calcium channel gene variation and prolonged recovery following sport-related concussion. Orthop. J. Sports Med., 2016, 4(3 Suppl 3), 2325967116S00074.
[http://dx.doi.org/10.1177/2325967116S00074]
[20]
Iqubal, A.; Iqubal, M.K.; Sharma, S.; Ansari, M.A.; Najmi, A.K.; Ali, S.M.; Ali, J.; Haque, S.E. Molecular mechanism involved in cyclophosphamide-induced cardiotoxicity: Old drug with a new vision. Life Sci., 2019, 218, 112-131.
[http://dx.doi.org/10.1016/j.lfs.2018.12.018] [PMID: 30552952]
[21]
Iqubal, A.; Sharma, S.; Ansari, M.A.; Najmi, A.K.; Syed, M.A.; Ali, J.; Alam, M.M.; Ahmad, S.; Haque, S.E. Nerolidol attenuates cyclophosphamide-induced cardiac inflammation, apoptosis and fibrosis in Swiss Albino mice. Eur. J. Pharmacol., 2019, 863, 172666.
[http://dx.doi.org/10.1016/j.ejphar.2019.172666] [PMID: 31541628]
[22]
Iqubal, A.; Sharma, S.; Najmi, A.K.; Syed, M.A.; Ali, J.; Alam, M.M.; Haque, S.E. Nerolidol ameliorates cyclophosphamide-induced oxidative stress, neuroinflammation and cognitive dysfunction: Plausible role of Nrf2 and NF- κB. Life Sci., 2019, 236, 116867.
[http://dx.doi.org/10.1016/j.lfs.2019.116867] [PMID: 31520598]
[23]
Lifshitz, J.; Sullivan, P.G.; Hovda, D.A.; Wieloch, T.; McIntosh, T.K. Mitochondrial damage and dysfunction in traumatic brain injury. Mitochondrion, 2004, 4(5-6), 705-713.
[http://dx.doi.org/10.1016/j.mito.2004.07.021] [PMID: 16120426]
[24]
Iqubal, A.; Sharma, S.; Sharma, K.; Bhavsar, A.; Hussain, I.; Iqubal, M.K.; Kumar, R. Intranasally administered pitavastatin ameliorates pentylenetetrazol-induced neuroinflammation, oxidative stress and cognitive dysfunction. Life Sci., 2018, 211, 172-181.
[http://dx.doi.org/10.1016/j.lfs.2018.09.025] [PMID: 30227132]
[25]
Yuan, J.; Zhang, J.; Cao, J.; Wang, G.; Bai, H. Geniposide alleviates traumatic brain Injury in rats via anti-inflammatory effect and MAPK/NF-kB inhibition. Cell. Mol. Neurobiol., 2020, 40(4), 511-520.
[http://dx.doi.org/10.1007/s10571-019-00749-6] [PMID: 31677006]
[26]
Pandey, M.; Nabi, J.; Tabassum, N.; Pottoo, F.H.; Khatik, R.; Ahmad, N. Molecular chaperones in neurodegeneration: mechanisms of regulation in cellular proteostasis. In: Quality Control of Cellular Protein in Neurodegenerative Disorders; Uddin, M.; Ashraf, G., Eds.; IGI Global, 2020; pp. 354-379.
[http://dx.doi.org/10.4018/978-1-7998-1317-0.ch014]
[27]
Pandey, M.; Saleem, S.; Nautiyal, H.; Pottoo, F.H.; Javed, M.N. PINK1/Parkin in neurodegenerative disorders: crosstalk between mitochondrial stress and neurodegeneration. In: Quality Control of Cellular Protein in Neurodegenerative Disorders; Uddin, M.; Ashraf, G., Eds.; IGI Global, 2020; pp. 282-301.
[http://dx.doi.org/10.4018/978-1-7998-1317-0.ch011]
[28]
Akhter, Y.; Nabi, J.; Hamid, H.; Tabassum, N.; Pottoo, F.H.; Sharma, A. Protein Quality Control in Neurodegeneration and Neuroprotection.Quality Control of Cellular Protein in Neurodegenerative Disorders; IGI Global, 2020, pp. 1-24.
[http://dx.doi.org/10.4018/978-1-7998-1317-0.ch001]
[29]
Uddin, M.S.; Kabir, M.T.; Tewari, D.; Mamun, A.A.; Mathew, B.; Aleya, L.; Barreto, G.E.; Bin-Jumah, M.N.; Abdel-Daim, M.M.; Ashraf, G.M. Revisiting the role of brain and peripheral Aβ in the pathogenesis of Alzheimer’s disease. J. Neurol. Sci., 2020, 416(416), 116974.
[http://dx.doi.org/10.1016/j.jns.2020.116974] [PMID: 32559516]
[30]
Uddin, M.; Kabir, M.; Jeandet, P.; Mathew, B.; Ashraf, G.M.; Perveen, A.; Bin-Jumah, M.N.; Mousa, S.A.; Abdel-Daim, M.M. Novel ANTI-Alzheimer’s therapeutic molecules targeting amyloid precursor protein processing. Oxid. Med. Cell Longev, 2020, 7039138.
[31]
Ling, H.; Hardy, J.; Zetterberg, H. Neurological consequences of traumatic brain injuries in sports. Mol. Cell. Neurosci., 2015, 66(Pt B), 114-122.
[http://dx.doi.org/10.1016/j.mcn.2015.03.012] [PMID: 25770439]
[32]
Parsons, J.T.; Anderson, S.A.; Casa, D.J.; Hainline, B. Preventing catastrophic injury and death in collegiate athletes: interassociation recommendations endorsed by 13 medical and sports medicine organisations. J. Athl. Train., 2019, 54(8), 843-851.
[http://dx.doi.org/10.4085/1062-6050-54.085] [PMID: 31536387]
[33]
Baird, L.C.; Newman, C.B.; Volk, H.; Svinth, J.R.; Conklin, J.; Levy, M.L. Mortality resulting from head injury in professional boxing: case report. Neurosurgery, 2010, 67(2), E519-E520.
[http://dx.doi.org/10.1227/01.NEU.0000373207.04297.13] [PMID: 20644386]
[34]
Pikstra, A.R.A.; Metting, Z.; Fock, J.M.; van der Naalt, J. The juvenile head trauma syndrome - Deterioration after mild TBI: Diagnosis and clinical presentation at the Emergency Department. Eur. J. Paediatr. Neurol., 2017, 21(2), 344-349.
[http://dx.doi.org/10.1016/j.ejpn.2016.09.005] [PMID: 27707655]
[35]
Engelhardt, J.; Brauge, D.; Loiseau, H. Second impact syndrome. Myth or reality? Neurochirurgie, 2020, S0028-3770(20)30033-3.
[PMID: 32169407]
[36]
Mori, T.; Katayama, Y.; Kawamata, T. Acute hemispheric swelling associated with thin subdural hematomas: pathophysiology of repetitive head injury in sports. In: Brain Edema XIII; Springer, 2006; pp. 40-43.
[http://dx.doi.org/10.1007/3-211-30714-1_10]
[37]
Banks, R.E.; Domínguez, D.C. Sports-related concussion: Neurometabolic aspects. Semin. Speech Lang., 2019, 40(5), 333-343.
[http://dx.doi.org/10.1055/s-0039-1679887] [PMID: 30763979]
[38]
McKee, A.C.; Stern, R.A.; Nowinski, C.J.; Stein, T.D.; Alvarez, V.E.; Daneshvar, D.H.; Lee, H-S.; Wojtowicz, S.M.; Hall, G.; Baugh, C.M.; Riley, D.O.; Kubilus, C.A.; Cormier, K.A.; Jacobs, M.A.; Martin, B.R.; Abraham, C.R.; Ikezu, T.; Reichard, R.R.; Wolozin, B.L.; Budson, A.E.; Goldstein, L.E.; Kowall, N.W.; Cantu, R.C. The spectrum of disease in chronic traumatic encephalopathy. Brain, 2013, 136(Pt 1), 43-64.
[http://dx.doi.org/10.1093/brain/aws307] [PMID: 23208308]
[39]
Musumeci, G.; Ravalli, S.; Amorini, A.M.; Lazzarino, G. Concussion in Sports. J. Funct. Morphol. Kinesiol., 2019, 4(2), 37.
[http://dx.doi.org/10.3390/jfmk4020037]
[40]
Leddy, J.J.; Baker, J.G.; Willer, B. Active rehabilitation of concussion and post-concussion syndrome. Phys. Med. Rehabil. Clin. N. Am., 2016, 27(2), 437-454.
[http://dx.doi.org/10.1016/j.pmr.2015.12.003] [PMID: 27154855]
[41]
Hall, R.C.; Hall, R.C.; Chapman, M.J. Definition, diagnosis, and forensic implications of postconcussional syndrome. Psychosomatics, 2005, 46(3), 195-202.
[http://dx.doi.org/10.1176/appi.psy.46.3.195] [PMID: 15883140]
[42]
Røe, C.; Sveen, U.; Alvsåker, K.; Bautz-Holter, E. Post-concussion symptoms after mild traumatic brain injury: influence of demographic factors and injury severity in a 1-year cohort study. Disabil. Rehabil., 2009, 31(15), 1235-1243.
[http://dx.doi.org/10.1080/09638280802532720] [PMID: 19116810]
[43]
Karibe, H.; Hayashi, T.; Narisawa, A.; Kameyama, M.; Nakagawa, A.; Tominaga, T. Clinical characteristics and outcome in elderly patients with traumatic brain injury: for establishment of management strategy. Neurol. Med. Chir. (Tokyo), 2017, 57(8), 418-425.
[http://dx.doi.org/10.2176/nmc.st.2017-0058] [PMID: 28679968]
[44]
Neurology, A.A. Practice parameter: the management of concussion in sports (summary statement). Report of the Quality Standards Subcommittee. Neurology, 1997, 48(3), 581-585.
[http://dx.doi.org/10.1212/WNL.48.3.581] [PMID: 9065530]
[45]
Sahler, C.S.; Greenwald, B.D. Traumatic brain injury in sports: a review. Rehabil. Res. Pract., 2012, 2012, 659652.
[http://dx.doi.org/10.1155/2012/659652] [PMID: 22848836]
[46]
Johnson, V.E.; Stewart, W.; Smith, D.H. Axonal pathology in traumatic brain injury. Exp. Neurol., 2013, 246, 35-43.
[http://dx.doi.org/10.1016/j.expneurol.2012.01.013] [PMID: 22285252]
[47]
Cruz-Haces, M.; Tang, J.; Acosta, G.; Fernandez, J.; Shi, R. Pathological correlations between traumatic brain injury and chronic neurodegenerative diseases. Transl. Neurodegener., 2017, 6(1), 20.
[http://dx.doi.org/10.1186/s40035-017-0088-2] [PMID: 28702179]
[48]
Black, A.M.; Miutz, L.N.; Kv, V.W.; Schneider, K.J.; Yeates, K.O.; Emery, C.A. Baseline performance of high school rugby players on the Sport Concussion Assessment Tool 5. J. Athl. Train., 2020, 55(2), 116-123.
[http://dx.doi.org/10.4085/1062-6050-123-19] [PMID: 31917599]
[49]
Filley, C.M. Progress in the diagnosis of traumatic brain injury. Neurology, 2020, 95(6), 235-236.
[http://dx.doi.org/10.1212/WNL.0000000000009992] [PMID: 32641522]
[50]
Eckner, J.T.; Kutcher, J.S. Concussion symptom scales and sideline assessment tools: a critical literature update. Curr. Sports Med. Rep., 2010, 9(1), 8-15.
[http://dx.doi.org/10.1249/JSR.0b013e3181caa778] [PMID: 20071915]
[51]
Bruce, D.A.; Alavi, A.; Bilaniuk, L.; Dolinskas, C.; Obrist, W.; Uzzell, B. Diffuse cerebral swelling following head injuries in children: the syndrome of “malignant brain edemaâ€. J. Neurosurg., 1981, 54(2), 170-178.
[http://dx.doi.org/10.3171/jns.1981.54.2.0170] [PMID: 7452330]
[52]
Stiell, I.G.; Wells, G.A.; McKnight, R.D.; Brison, R.; Lesiuk, H.; Clement, C.M.; Eisenhauer, M.A.; Greenberg, G.H.; MacPhail, I.; Reardon, M. Canadian CT Head and C-Spine (CCC) Study Group. Canadian C-Spine Rule study for alert and stable trauma patients: I. Background and rationale. CJEM, 2002, 4(2), 84-90.
[http://dx.doi.org/10.1017/S1481803500006175] [PMID: 17612425]
[53]
Raikes, A.C.; Bajaj, S.; Dailey, N.S.; Smith, R.S.; Alkozei, A.; Satterfield, B.C.; Killgore, W.D.S. Diffusion tensor imaging (DTI) correlates of self-reported sleep quality and depression following mild traumatic brain injury. Front. Neurol., 2018, 9, 468.
[http://dx.doi.org/10.3389/fneur.2018.00468] [PMID: 29973910]
[54]
VanItallie, T.B. Traumatic brain injury (TBI) in collision sports: Possible mechanisms of transformation into chronic traumatic encephalopathy (CTE). Metabolism, 2019, 100S, 153943.
[http://dx.doi.org/10.1016/j.metabol.2019.07.007] [PMID: 31610856]
[55]
Bieniek, K.F.; Blessing, M.M.; Heckman, M.G.; Diehl, N.N.; Serie, A.M.; Paolini, M.A., II; Boeve, B.F.; Savica, R.; Reichard, R.R.; Dickson, D.W. Association between contact sports participation and chronic traumatic encephalopathy: a retrospective cohort study. Brain Pathol., 2020, 30(1), 63-74.
[http://dx.doi.org/10.1111/bpa.12757] [PMID: 31199537]
[56]
Turner, R.C.; Lucke-Wold, B.P.; Robson, M.J.; Lee, J.M.; Bailes, J.E. Alzheimer’s disease and chronic traumatic encephalopathy: Distinct but possibly overlapping disease entities. Brain Inj., 2016, 30(11), 1279-1292.
[http://dx.doi.org/10.1080/02699052.2016.1193631] [PMID: 27715315]
[57]
Wong, J.C.; Hazrati, L-N. Parkinson’s disease, parkinsonism, and traumatic brain injury. Crit. Rev. Clin. Lab. Sci., 2013, 50(4-5), 103-106.
[http://dx.doi.org/10.3109/10408363.2013.844678] [PMID: 24156652]
[58]
Iverson, G.L.; Gardner, A.J.; McCrory, P.; Zafonte, R.; Castellani, R.J. A critical review of chronic traumatic encephalopathy. Neurosci. Biobehav. Rev., 2015, 56, 276-293.
[http://dx.doi.org/10.1016/j.neubiorev.2015.05.008] [PMID: 26183075]
[59]
Safinia, C.; Bershad, E.M.; Clark, H.B.; SantaCruz, K.; Alakbarova, N.; Suarez, J.I.; Divani, A.A. Chronic traumatic encephalopathy in athletes involved with high-impact sports. J. Vasc. Interv. Neurol., 2016, 9(2), 34-48.
[PMID: 27829969]
[60]
Lehman, E.J.; Hein, M.J.; Baron, S.L.; Gersic, C.M. Neurodegenerative causes of death among retired National Football League players. Neurology, 2012, 79(19), 1970-1974.
[http://dx.doi.org/10.1212/WNL.0b013e31826daf50] [PMID: 22955124]
[61]
Golden, C.J.; Zusman, M.R. Clinical Manifestations of CTE: Disruptions in Cognition, Mood, & Behavior. In: Chronic Traumatic Encephalopathy (CTE); Springer, 2019; pp. 11-38.
[http://dx.doi.org/10.1007/978-3-030-23288-7_2]
[62]
Filley, C.M.; Arciniegas, D.B.; Brenner, L.A.; Anderson, C.A.; Kelly, J.P. Chronic traumatic encephalopathy: a clinical perspective. J. Neuropsychiatry Clin. Neurosci., 2019, 31(2), 170-172.
[http://dx.doi.org/10.1176/appi.neuropsych.18100223] [PMID: 31012827]
[63]
McKee, A.C.; Cairns, N.J.; Dickson, D.W.; Folkerth, R.D.; Keene, C.D.; Litvan, I.; Perl, D.P.; Stein, T.D.; Vonsattel, J-P.; Stewart, W.; Tripodis, Y.; Crary, J.F.; Bieniek, K.F.; Dams-O’Connor, K.; Alvarez, V.E.; Gordon, W.A. TBI/CTE group. The first NINDS/NIBIB consensus meeting to define neuropathological criteria for the diagnosis of chronic traumatic encephalopathy. Acta Neuropathol., 2016, 131(1), 75-86.
[http://dx.doi.org/10.1007/s00401-015-1515-z] [PMID: 26667418]
[64]
Gavett, B.E.; Stern, R.A.; McKee, A.C. Chronic traumatic encephalopathy: a potential late effect of sport-related concussive and subconcussive head trauma. Clin. Sports Med., 2011, 30(1), 179-188, xi.
[http://dx.doi.org/10.1016/j.csm.2010.09.007] [PMID: 21074091]
[65]
Dickstein, D.L.; De Gasperi, R.; Gama Sosa, M.A.; Perez-Garcia, G.; Short, J.A.; Sosa, H.; Perez, G.M.; Tschiffely, A.E.; Dams-O’Connor, K.; Pullman, M.Y.; Knesaurek, K.; Knutsen, A.; Pham, D.L.; Soleimani, L.; Jordan, B.D.; Gordon, W.A.; Delman, B.N.; Shumyatsky, G.; Shahim, P.P.; DeKosky, S.T.; Stone, J.R.; Peskind, E.; Blennow, K.; Zetterberg, H.; Chance, S.A.; Torso, M.; Kostakoglu, L.; Sano, M.; Hof, P.R.; Ahlers, S.T.; Gandy, S.; Elder, G.A. Brain and blood biomarkers of tauopathy and neuronal injury in humans and rats with neurobehavioral syndromes following blast exposure. Mol. Psychiatry, 2020, 1-15.
[http://dx.doi.org/10.1038/s41380-020-0674-z] [PMID: 32094584]
[66]
Uddin, M.S.; Kabir, M.T.; Mamun, A.A.; Barreto, G.E.; Rashid, M.; Perveen, A.; Ashraf, G.M. Pharmacological approaches to mitigate neuroinflammation in Alzheimer’s disease. Int. Immunopharmacol., 2020, 84, 106479.
[http://dx.doi.org/10.1016/j.intimp.2020.106479] [PMID: 32353686]
[67]
Hof, P.R.; Bouras, C.; Buée, L.; Delacourte, A.; Perl, D.P.; Morrison, J.H. Differential distribution of neurofibrillary tangles in the cerebral cortex of dementia pugilistica and Alzheimer’s disease cases. Acta Neuropathol., 1992, 85(1), 23-30.
[http://dx.doi.org/10.1007/BF00304630] [PMID: 1285493]
[68]
McKee, A.C.; Cantu, R.C.; Nowinski, C.J.; Hedley-Whyte, E.T.; Gavett, B.E.; Budson, A.E.; Santini, V.E.; Lee, H-S.; Kubilus, C.A.; Stern, R.A. Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. J. Neuropathol. Exp. Neurol., 2009, 68(7), 709-735.
[http://dx.doi.org/10.1097/NEN.0b013e3181a9d503] [PMID: 19535999]
[69]
Yang, C.; Nag, S.; Xing, G.; Aggarwal, N.T.; Schneider, J.A. A Clinicopathological Report of a 93-Year-Old Former Street Boxer With Coexistence of Chronic Traumatic Encephalopathy, Alzheimer’s Disease, Dementia With Lewy Bodies, and Hippocampal Sclerosis With TDP-43 Pathology. Front. Neurol., 2020, 11, 42.
[http://dx.doi.org/10.3389/fneur.2020.00042] [PMID: 32117011]
[70]
McKee, A.C.; Gavett, B.E.; Stern, R.A.; Nowinski, C.J.; Cantu, R.C.; Kowall, N.W.; Perl, D.P.; Hedley-Whyte, E.T.; Price, B.; Sullivan, C.; Morin, P.; Lee, H.S.; Kubilus, C.A.; Daneshvar, D.H.; Wulff, M.; Budson, A.E. TDP-43 proteinopathy and motor neuron disease in chronic traumatic encephalopathy. J. Neuropathol. Exp. Neurol., 2010, 69(9), 918-929.
[http://dx.doi.org/10.1097/NEN.0b013e3181ee7d85] [PMID: 20720505]
[71]
Corsellis, J.A.; Bruton, C.J.; Freeman-Browne, D. The aftermath of boxing. Psychol. Med., 1973, 3(3), 270-303.
[http://dx.doi.org/10.1017/S0033291700049588] [PMID: 4729191]
[72]
Keefer, K. Pathogenesis of CTE: A Review of PTau, Lewy Bodies, and Cytokine Involvement in CTE. 2020.
[73]
Shahim, P.; Gill, J.M.; Blennow, K.; Zetterberg, H. Fluid Biomarkers for Chronic Traumatic Encephalopathy. Semin. Neurol., 2020, 40(4), 411-419.
[http://dx.doi.org/10.1055/s-0040-1715095] [PMID: 32740901]
[74]
DeKosky, S.T.; Blennow, K.; Ikonomovic, M.D.; Gandy, S. Acute and chronic traumatic encephalopathies: pathogenesis and biomarkers. Nat. Rev. Neurol., 2013, 9(4), 192-200.
[http://dx.doi.org/10.1038/nrneurol.2013.36] [PMID: 23558985]
[75]
Dickstein, D.L.; Pullman, M.Y.; Fernandez, C.; Short, J.A.; Kostakoglu, L.; Knesaurek, K.; Soleimani, L.; Jordan, B.D.; Gordon, W.A.; Dams-O’Connor, K.; Delman, B.N.; Wong, E.; Tang, C.Y.; DeKosky, S.T.; Stone, J.R.; Cantu, R.C.; Sano, M.; Hof, P.R.; Gandy, S. Cerebral [18 F]T807/AV1451 retention pattern in clinically probable CTE resembles pathognomonic distribution of CTE tauopathy. Transl. Psychiatry, 2016, 6(9), e900-e900.
[http://dx.doi.org/10.1038/tp.2016.175] [PMID: 27676441]
[76]
Cole, G.B.; Satyamurthy, N.; Liu, J.; Wong, K-P.; Small, G.W.; Huang, S-C.; KoÅ¡mrlj, J.; Barrio, J.R.; PetriÄ, A. The Value of In Vitro Binding as Predictor of In Vivo Results: A Case for [18F]FDDNP PET. Mol. Imaging Biol., 2019, 21(1), 25-34.
[http://dx.doi.org/10.1007/s11307-018-1210-2] [PMID: 29855843]
[77]
Barrio, J.R.; Small, G.W.; Wong, K-P.; Huang, S-C.; Liu, J.; Merrill, D.A.; Giza, C.C.; Fitzsimmons, R.P.; Omalu, B.; Bailes, J.; Kepe, V. In vivo characterization of chronic traumatic encephalopathy using [F-18]FDDNP PET brain imaging. Proc. Natl. Acad. Sci. USA, 2015, 112(16), E2039-E2047.
[http://dx.doi.org/10.1073/pnas.1409952112] [PMID: 25848027]
[78]
McKee, A.C.; Robinson, M.E. Military-related traumatic brain injury and neurodegeneration. Alzheimers Dement., 2014, 10(Suppl. 3), S242-S253.
[http://dx.doi.org/10.1016/j.jalz.2014.04.003] [PMID: 24924675]
[79]
Zetterberg, H.; Smith, D.H.; Blennow, K. Biomarkers of mild traumatic brain injury in cerebrospinal fluid and blood. Nat. Rev. Neurol., 2013, 9(4), 201-210.
[http://dx.doi.org/10.1038/nrneurol.2013.9] [PMID: 23399646]
[80]
Lenaerts, M.E.; Couch, J.R.; Couch, J.R. Posttraumatic headache. Curr. Treat. Options Neurol., 2004, 6(6), 507-517.
[http://dx.doi.org/10.1007/s11940-004-0008-5] [PMID: 15461928]
[81]
Collins, M.W.; Lovell, M.R.; Iverson, G.L.; Cantu, R.C.; Maroon, J.C.; Field, M. Cumulative effects of concussion in high school athletes. Neurosurgery, 2002, 51(5), 1175-1179.
[http://dx.doi.org/10.1097/00006123-200211000-00011] [PMID: 12383362]
[82]
Traeger, J.; Hoffman, B.; Misencik, J.; Hoffer, A.; Makii, J. Pharmacologic Treatment of Neurobehavioral Sequelae Following Traumatic Brain Injury. Crit. Care Nurs. Q., 2020, 43(2), 172-190.
[http://dx.doi.org/10.1097/CNQ.0000000000000301] [PMID: 32084061]
[83]
Sharma, S.; Wakode, S.; Sharma, A.; Nair, N.; Dhobi, M.; Wani, M.A.; Pottoo, F.H. Effect of environmental toxicants on neuronal functions. Environ. Sci. Pollut. Res. Int., 2020, 27(36), 44906-44921.
[http://dx.doi.org/10.1007/s11356-020-10950-6] [PMID: 32996088]
[84]
Iqubal, A.; Ahmed, M.; Ahmad, S.; Sahoo, C.R.; Iqubal, M.K.; Haque, S.E. Environmental neurotoxic pollutants: review. Environ. Sci. Pollut. Res. Int., 2020, 27(33), 41175-41198.
[http://dx.doi.org/10.1007/s11356-020-10539-z] [PMID: 32820440]
[85]
Collins, M.W.; Grindel, S.H.; Lovell, M.R.; Dede, D.E.; Moser, D.J.; Phalin, B.R.; Nogle, S.; Wasik, M.; Cordry, D.; Daugherty, K.M.; Sears, S.F.; Nicolette, G.; Indelicato, P.; McKeag, D.B. Relationship between concussion and neuropsychological performance in college football players. JAMA, 1999, 282(10), 964-970.
[http://dx.doi.org/10.1001/jama.282.10.964] [PMID: 10485682]
[86]
Martland, H.S. Punch drunk. JAMA, 1928, 91(15), 1103-1107.
[http://dx.doi.org/10.1001/jama.1928.02700150029009]
[87]
Critchley, M. Medical aspects of boxing, particularly from a neurological standpoint. BMJ, 1957, 1(5015), 357-362.
[http://dx.doi.org/10.1136/bmj.1.5015.357] [PMID: 13396257]
[88]
Pound, P. Animal models and the search for drug treatments for traumatic brain injury. In: Neuroethics and Nonhuman Animals; Springer, 2020; pp. 87-302.
[http://dx.doi.org/10.1007/978-3-030-31011-0_17]
[89]
Goldstein, L.E.; McKee, A.C.; Stanton, P.K. Considerations for animal models of blast-related traumatic brain injury and chronic traumatic encephalopathy. Alzheimers Res. Ther., 2014, 6(5), 64.
[http://dx.doi.org/10.1186/s13195-014-0064-3] [PMID: 25478023]
[90]
Hiskens, M.I.; Angoa-Pérez, M.; Schneiders, A.G.; Vella, R.K.; Fenning, A.S. Modeling sports-related mild traumatic brain injury in animals-A systematic review. J. Neurosci. Res., 2019, 97(10), 1194-1222.
[http://dx.doi.org/10.1002/jnr.24472] [PMID: 31135069]
[91]
Ojo, J.O.; Mouzon, B.C.; Crawford, F. Repetitive head trauma, chronic traumatic encephalopathy and tau: Challenges in translating from mice to men. Exp. Neurol., 2016, 275(Pt 3), 389-404.
[http://dx.doi.org/10.1016/j.expneurol.2015.06.003] [PMID: 26054886]
[92]
Osier, N.D.; Dixon, C.E. The controlled cortical impact model: applications, considerations for researchers, and future directions. Front. Neurol., 2016, 7, 134.
[http://dx.doi.org/10.3389/fneur.2016.00134] [PMID: 27582726]
[93]
Angoa-Pérez, M.; Kane, M.J.; Briggs, D.I.; Herrera-Mundo, N.; Viano, D.C.; Kuhn, D.M. Animal models of sports-related head injury: bridging the gap between pre-clinical research and clinical reality. J. Neurochem., 2014, 129(6), 916-931.
[http://dx.doi.org/10.1111/jnc.12690] [PMID: 24673291]
[94]
Marmarou, C.R.; Prieto, R.; Taya, K.; Young, H.F.; Marmarou, A. Marmarou weight drop injury model. In: Animal models of acute neurological injuries; Springer, 2009; pp. 393-407.
[http://dx.doi.org/10.1007/978-1-60327-185-1_34]
[95]
Clausen, F.; Hillered, L.; Marklund, N. The Fluid Percussion Injury Rodent Model in Preclinical Research on Traumatic Brain Injury. In: Animal Models of Neurotrauma; Springer, 2019; pp. 3-18.
[http://dx.doi.org/10.1007/978-1-4939-9711-4_1]
[96]
Hamberger, A.; Viano, D.C.; Säljö, A.; Bolouri, H. Concussion in professional football: morphology of brain injuries in the NFL concussion model- part 16. Neurosurgery, 2009, 64(6), 1174-1182.
[http://dx.doi.org/10.1227/01.NEU.0000316855.40986.2A] [PMID: 19487898]
[97]
Kane, M.J.; Angoa-Pérez, M.; Briggs, D.I.; Viano, D.C.; Kreipke, C.W.; Kuhn, D.M. A mouse model of human repetitive mild traumatic brain injury. J. Neurosci. Methods, 2012, 203(1), 41-49.
[http://dx.doi.org/10.1016/j.jneumeth.2011.09.003] [PMID: 21930157]
[98]
Meehan, W.P., III; Zhang, J.; Mannix, R.; Whalen, M.J. Increasing recovery time between injuries improves cognitive outcome after repetitive mild concussive brain injuries in mice. Neurosurgery, 2012, 71(4), 885-891.
[http://dx.doi.org/10.1227/NEU.0b013e318265a439] [PMID: 22743360]
[99]
Ren, Z.; Iliff, J.J.; Yang, L.; Yang, J.; Chen, X.; Chen, M.J.; Giese, R.N.; Wang, B.; Shi, X.; Nedergaard, M. ‘Hit & Run’ model of closed-skull traumatic brain injury (TBI) reveals complex patterns of post-traumatic AQP4 dysregulation. J. Cereb. Blood Flow Metab., 2013, 33(6), 834-845.
[http://dx.doi.org/10.1038/jcbfm.2013.30] [PMID: 23443171]
[100]
Dey, A.; Nandy, S.; Mukherjee, A.; Pandey, D.K. Plant natural products as neuroprotective nutraceuticals: preclinical and clinical studies and future implications. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci., 2020, 5, 929-943.
[http://dx.doi.org/10.1007/s40011-020-01170-6]
[101]
Husain, I.; Zameer, S.; Madaan, T.; Minhaj, A.; Ahmad, W.; Iqubaal, A.; Ali, A.; Najmi, A.K. Exploring the multifaceted neuroprotective actions of Emblica officinalis (Amla): a review. Metab. Brain Dis., 2019, 34(4), 957-965.
[http://dx.doi.org/10.1007/s11011-019-00400-9] [PMID: 30848470]
[102]
Ansari, M.A.; Iqubal, A.; Ekbbal, R.; Haque, S.E. Effects of nimodipine, vinpocetine and their combination on isoproterenol-induced myocardial infarction in rats. Biomed. Pharmacother., 2019, 109, 1372-1380.
[http://dx.doi.org/10.1016/j.biopha.2018.10.199] [PMID: 30551388]
[103]
Larsen, E.L.; Ashina, H.; Iljazi, A.; Al-Khazali, H.M.; Seem, K.; Ashina, M.; Ashina, S.; Schytz, H.W. Acute and preventive pharmacological treatment of post-traumatic headache: a systematic review. J. Headache Pain, 2019, 20(1), 98.
[http://dx.doi.org/10.1186/s10194-019-1051-7] [PMID: 31638888]
[104]
Marklund, N.; Bakshi, A.; Castelbuono, D.J.; Conte, V.; McIntosh, T.K. Evaluation of pharmacological treatment strategies in traumatic brain injury. Curr. Pharm. Des., 2006, 12(13), 1645-1680.
[http://dx.doi.org/10.2174/138161206776843340] [PMID: 16729876]
[105]
Horn, S. D.; Corrigan, J. D.; Bogner, J.; Hammond, F. M.; Seel, R. T.; Smout, R. J.; Barrett, R. S.; Dijkers, M. P.; Whiteneck, G. G. Traumatic Brain Injury–Practice Based Evidence study: design and patients, centers, treatments, and outcomes. Arch. Phys. Med. Rehabil., 2015, 96(8), S178-196.
[http://dx.doi.org/10.1016/j.apmr.2014.09.042]
[106]
Vaduvathiriyan, P.; Ludwig, R.; Siengsukon, C. Does cognitive–behavioral therapy (cbt) for insomnia improve sleep outcomes in individuals with traumatic brain injury (TBI)? A scoping review. Am. J. Occup. Ther., 2020, 74(4 Suppl. 1), 7411515427p1-7411515427p1.
[107]
Dinsmore, J. Traumatic brain injury: an evidence-based review of management. Contin. Educ. Anaesth. Crit. Care Pain, 2013, 13(6), 189-195.
[http://dx.doi.org/10.1093/bjaceaccp/mkt010]
[108]
Cantor, J.B.; Gumber, S. Use of complementary and alternative medicine in treating individuals with traumatic brain injury. Curr. Phys. Med. Rehabil. Rep., 2013, 1(3), 159-168.
[http://dx.doi.org/10.1007/s40141-013-0019-9]
[109]
McFadden, K.L.; Healy, K.M.; Dettmann, M.L.; Kaye, J.T.; Ito, T.A.; Hernández, T.D. Acupressure as a non-pharmacological intervention for traumatic brain injury (TBI). J. Neurotrauma, 2011, 28(1), 21-34.
[http://dx.doi.org/10.1089/neu.2010.1515] [PMID: 20979460]
[110]
Wong, V.; Cheuk, D. K.; Lee, S.; Chu, V. Acupuncture for acute management and rehabilitation of traumatic brain injury. Cochrane Database Syst. Rev, 2011, (5), CD007700.
[http://dx.doi.org/10.1002/14651858.CD007700.pub2]
[111]
McMillan, T.; Robertson, I.H.; Brock, D.; Chorlton, L. Brief mindfulness training for attentional problems after traumatic brain injury: A randomised control treatment trial. Neuropsychol. Rehabil., 2002, 12(2), 117-125.
[http://dx.doi.org/10.1080/09602010143000202]
[112]
Holbach, K.H.; Wassmann, H.; Kolberg, T. [Improved reversibility of the traumatic midbrain syndrome using hyperbaric oxygen]. Acta Neurochir. (Wien), 1974, 30(3-4), 247-256.
[http://dx.doi.org/10.1007/BF01405583] [PMID: 4432786]
[113]
Chapman, E.H.; Weintraub, R.J.; Milburn, M.A.; Pirozzi, T.O.N.; Woo, E. Homeopathic treatment of mild traumatic brain injury: A randomized, double-blind, placebo-controlled clinical trial. J. Head Trauma Rehabil., 1999, 14(6), 521-542.
[http://dx.doi.org/10.1097/00001199-199912000-00002] [PMID: 10671699]
[114]
Silverthorne, C.; Khalsa, S.B.; Gueth, R.; DeAvilla, N.; Pansini, J. Respiratory, physical, and psychological benefits of breath-focused yoga for adults with severe traumatic brain injury (TBI): a brief pilot study report. Int. J. Yoga Therap., 2012, 22(22), 47-51.
[http://dx.doi.org/10.17761/ijyt.22.1.1l804u9511623u25] [PMID: 23070671]
[115]
Iqubal, M.K.; Saleem, S.; Iqubal, A.; Chaudhuri, A.; Pottoo, F.H.; Ali, J.; Baboota, S. Natural, synthetic and their combinatorial nanocarriers based drug delivery system in treatment paradigm for wound healing via dermal targeting. Curr. Pharm. Des., 2020, 26(36), 4551-4568.
[http://dx.doi.org/10.2174/1381612826666200612164511] [PMID: 32532188]
[116]
Iqubal, A.; Syed, M.A.; Najmi, A.K.; Ali, J.; Haque, S.E. Ameliorative effect of nerolidol on cyclophosphamide-induced gonadal toxicity in Swiss Albino mice: Biochemical-, histological- and immunohistochemical-based evidences. Andrologia, 2020, 52(4), e13535.
[http://dx.doi.org/10.1111/and.13535] [PMID: 32048763]
[117]
Patravale, V.B.; Naik, S.V.; Dhage, S.N. Role of diet, functional foods, and nutraceuticals in brain disorders. In: Nutraceutical and Functional Foods in Disease Prevention; IGI Global, 2019; pp. 256-287.
[http://dx.doi.org/10.4018/978-1-5225-3267-5.ch009]
[118]
Dadhania, V.P.; Trivedi, P.P.; Vikram, A.; Tripathi, D.N. Nutraceuticals against Neurodegeneration: A Mechanistic Insight. Curr. Neuropharmacol., 2016, 14(6), 627-640.
[http://dx.doi.org/10.2174/1570159X14666160104142223] [PMID: 26725888]
[119]
Sharma, S.; Rabbani, S.A.; Narang, J.K.; Hyder Pottoo, F.; Ali, J.; Kumar, S.; Baboota, S. Role of rutin nanoemulsion in ameliorating oxidative stress: pharmacokinetic and pharmacodynamics studies. Chem. Phys. Lipids, 2020, 228, 104890.
[http://dx.doi.org/10.1016/j.chemphyslip.2020.104890] [PMID: 32032570]
[120]
Iqubal, A.; Syed, M.A.; Ali, J.; Najmi, A.K.; Haque, M.M.; Haque, S.E. Nerolidol protects the liver against cyclophosphamide-induced hepatic inflammation, apoptosis, and fibrosis via modulation of Nrf2, NF-κB p65, and caspase-3 signaling molecules in Swiss albino mice. Biofactors, 2020, 46(6), 963-973.
[http://dx.doi.org/10.1002/biof.1679] [PMID: 32941697]
[121]
Iqubal, A.; Syed, M.A.; Najmi, A.K.; Azam, F.; Barreto, G.E.; Iqubal, M.K.; Ali, J.; Haque, S.E. Nano-engineered nerolidol loaded lipid carrier delivery system attenuates cyclophosphamide neurotoxicity - Probable role of NLRP3 inflammasome and caspase-1. Exp. Neurol., 2020, 334(334), 113464.
[http://dx.doi.org/10.1016/j.expneurol.2020.113464] [PMID: 32941795]
[122]
Mir, R.H.; Pottoo, F.H.; Sawhney, G.; Masoodi, M.H.; Bhat, Z.A. Nanophytomedicine Ethical Issues, Regulatory Aspects, and Challenges. In: Nanophytomedicine; Springer, 2020; pp. 173-192.
[123]
Makkar, R.; Behl, T.; Bungau, S.; Zengin, G.; Mehta, V.; Kumar, A.; Uddin, M.S.; Ashraf, G.M.; Abdel-Daim, M.M.; Arora, S.; Oancea, R. Nutraceuticals in neurological disorders. Int. J. Mol. Sci., 2020, 21(12), 4424.
[http://dx.doi.org/10.3390/ijms21124424] [PMID: 32580329]
[124]
Iqubal, A.; Syed, M.A.; Haque, M.M.; Najmi, A.K.; Ali, J.; Haque, S.E. Effect of nerolidol on cyclophosphamide-induced bone marrow and hematologic toxicity in Swiss albino mice. Exp. Hematol., 2020, 82, 24-32.
[http://dx.doi.org/10.1016/j.exphem.2020.01.007] [PMID: 31987924]
[125]
Sharma, P.; Sharma, A.; Fayaz, F.; Wakode, S.; Pottoo, F.H. Biological signatures of Alzheimer’s disease. Curr. Top. Med. Chem., 2020, 20(9), 770-781.
[http://dx.doi.org/10.2174/1568026620666200228095553] [PMID: 32108008]
[126]
Suhett, L.G.; de Miranda Monteiro Santos, R.; Silveira, B.K.S.; Leal, A.C.G.; de Brito, A.D.M.; de Novaes, J.F.; Lucia, C.M.D. Effects of curcumin supplementation on sport and physical exercise: a systematic review. Crit. Rev. Food Sci. Nutr., 2020, 13, 1-13.
[PMID: 32282223]
[127]
Garodia, P.; Ichikawa, H.; Malani, N.; Sethi, G.; Aggarwal, B.B. From ancient medicine to modern medicine: ayurvedic concepts of health and their role in inflammation and cancer. J. Soc. Integr. Oncol., 2007, 5(1), 25-37.
[http://dx.doi.org/10.2310/7200.2006.029] [PMID: 17309811]
[128]
Zhu, H.T.; Bian, C.; Yuan, J.C.; Chu, W.H.; Xiang, X.; Chen, F.; Wang, C.S.; Feng, H.; Lin, J.K. Curcumin attenuates acute inflammatory injury by inhibiting the TLR4/MyD88/NF-κB signaling pathway in experimental traumatic brain injury. J. Neuroinflammation, 2014, 11(1), 59.
[http://dx.doi.org/10.1186/1742-2094-11-59] [PMID: 24669820]
[129]
Petraglia, A.L.; Winkler, E.A.; Bailes, J.E. Stuck at the bench: Potential natural neuroprotective compounds for concussion. Surg. Neurol. Int., 2011, 2, 146.
[http://dx.doi.org/10.4103/2152-7806.85987] [PMID: 22059141]
[130]
Sharma, S.; Zhuang, Y.; Ying, Z.; Wu, A.; Gomez-Pinilla, F. Dietary curcumin supplementation counteracts reduction in levels of molecules involved in energy homeostasis after brain trauma. Neuroscience, 2009, 161(4), 1037-1044.
[http://dx.doi.org/10.1016/j.neuroscience.2009.04.042] [PMID: 19393301]
[131]
Farkhondeh, T.; Samarghandian, S.; Roshanravan, B.; Peivasteh-Roudsari, L. Impact of curcumin on traumatic brain injury and involved molecular signaling pathways. Recent Pat. Food Nutr. Agric., 2020, 11(2), 137-144.
[http://dx.doi.org/10.2174/2212798410666190617161523] [PMID: 31288732]
[132]
Trojian, T.H.; Wang, D.H.; Leddy, J.J. Nutritional supplements for the treatment and prevention of sports-related concussion—Evidence still lacking. Curr. Sports Med. Rep., 2017, 16(4), 247-255.
[http://dx.doi.org/10.1249/JSR.0000000000000387] [PMID: 28696987]
[133]
Li, W.; Dai, S.; An, J.; Li, P.; Chen, X.; Xiong, R.; Liu, P.; Wang, H.; Zhao, Y.; Zhu, M.; Liu, X.; Zhu, P.; Chen, J.F.; Zhou, Y. Chronic but not acute treatment with caffeine attenuates traumatic brain injury in the mouse cortical impact model. Neuroscience, 2008, 151(4), 1198-1207.
[http://dx.doi.org/10.1016/j.neuroscience.2007.11.020] [PMID: 18207647]
[134]
Chen, J-F.; Chern, Y. Impacts of methylxanthines and adenosine receptors on neurodegeneration: human and experimental studies. In: Methylxanthines; Springer, 2011; pp. 267-310.
[http://dx.doi.org/10.1007/978-3-642-13443-2_10]
[135]
Lopez, M.S.; Dempsey, R.J.; Vemuganti, R. Resveratrol neuroprotection in stroke and traumatic CNS injury. Neurochem. Int., 2015, 89, 75-82.
[http://dx.doi.org/10.1016/j.neuint.2015.08.009] [PMID: 26277384]
[136]
Lusardi, T.A.; Lytle, N.K.; Szybala, C.; Boison, D. Caffeine prevents acute mortality after TBI in rats without increased morbidity. Exp. Neurol., 2012, 234(1), 161-168.
[http://dx.doi.org/10.1016/j.expneurol.2011.12.026] [PMID: 22226594]
[137]
Health, N.I.O. Office of dietary supplements. Omega-3 fatty acids. 2018.
[138]
Haag, M. Essential fatty acids and the brain. Can. J. Psychiatry, 2003, 48(3), 195-203.
[http://dx.doi.org/10.1177/070674370304800308] [PMID: 12728744]
[139]
Arterburn, L.M.; Hall, E.B.; Oken, H. Distribution, interconversion, and dose response of n-3 fatty acids in humans. Am. J. Clin. Nutr., 2006, 83(Suppl. 6), 1467S-1476S.
[http://dx.doi.org/10.1093/ajcn/83.6.1467S] [PMID: 16841856]
[140]
Kolanowski, W. Omega-3 LC PUFA contents and oxidative stability of encapsulated fish oil dietary supplements. Int. J. Food Prop., 2010, 13(3), 498-511.
[http://dx.doi.org/10.1080/10942910802652222]
[141]
Trojian, T.H.; Jackson, E. Ω-3 polyunsaturated fatty acids and concussions: treatment or not? Curr. Sports Med. Rep., 2011, 10(4), 180-185.
[http://dx.doi.org/10.1249/JSR.0b013e31822458d5] [PMID: 23531891]
[142]
Ryan, K.M.; Allers, K.A.; Harkin, A.; McLoughlin, D.M. Blood plasma B vitamins in depression and the therapeutic response to electroconvulsive therapy. Brain Behav. Immun., 2020, 4, 100063.
[143]
Chi, Y.; Sauve, A.A. Nicotinamide riboside, a trace nutrient in foods, is a vitamin B3 with effects on energy metabolism and neuroprotection. Curr. Opin. Clin. Nutr. Metab. Care, 2013, 16(6), 657-661.
[http://dx.doi.org/10.1097/MCO.0b013e32836510c0] [PMID: 24071780]
[144]
Gerdts, J.; Summers, D.W.; Milbrandt, J.; DiAntonio, A. Axon self-destruction: new links among SARM1, MAPKs, and NAD+ metabolism. Neuron, 2016, 89(3), 449-460.
[http://dx.doi.org/10.1016/j.neuron.2015.12.023] [PMID: 26844829]
[145]
Tardy, A-L.; Pouteau, E.; Marquez, D.; Yilmaz, C.; Scholey, A. Vitamins and minerals for energy, fatigue and cognition: a narrative review of the biochemical and clinical evidence. Nutrients, 2020, 12(1), 228.
[http://dx.doi.org/10.3390/nu12010228] [PMID: 31963141]
[146]
Soba, D.; Müller, M.; Aranjuelo, I.; Munné-Bosch, S. Vitamin E in legume nodules: Occurrence and antioxidant function. Phytochemistry, 2020, 172, 112261.
[http://dx.doi.org/10.1016/j.phytochem.2020.112261] [PMID: 31962208]
[147]
Shen, Q.; Hiebert, J.B.; Hartwell, J.; Thimmesch, A.R.; Pierce, J.D. Systematic review of traumatic brain injury and the impact of antioxidant therapy on clinical outcomes. Worldviews Evid. Based Nurs., 2016, 13(5), 380-389.
[http://dx.doi.org/10.1111/wvn.12167] [PMID: 27243770]
[148]
Aiguo Wu, ; Zhe Ying, ; Gomez-Pinilla, F. Vitamin E protects against oxidative damage and learning disability after mild traumatic brain injury in rats. Neurorehabil. Neural Repair, 2010, 24(3), 290-298.
[http://dx.doi.org/10.1177/1545968309348318] [PMID: 19841436]
[149]
Conte, V.; Uryu, K.; Fujimoto, S.; Yao, Y.; Rokach, J.; Longhi, L.; Trojanowski, J.Q.; Lee, V.M.Y.; McIntosh, T.K.; Praticò, D. Vitamin E reduces amyloidosis and improves cognitive function in Tg2576 mice following repetitive concussive brain injury. J. Neurochem., 2004, 90(3), 758-764.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02560.x] [PMID: 15255955]
[150]
Hall, E.D.; Vaishnav, R.A.; Mustafa, A.G. Antioxidant therapies for traumatic brain injury. Neurotherapeutics, 2010, 7(1), 51-61.
[http://dx.doi.org/10.1016/j.nurt.2009.10.021] [PMID: 20129497]
[151]
Ishaq, G.M.; Saidu, Y.; Bilbis, L.S.; Muhammad, S.A.; Jinjir, N.; Shehu, B.B. Effects of α-tocopherol and ascorbic acid in the severity and management of traumatic brain injury in albino rats. J. Neurosci. Rural Pract., 2013, 4(3), 292-297.
[http://dx.doi.org/10.4103/0976-3147.118784] [PMID: 24250162]
[152]
Groves, N.J.; McGrath, J.J.; Burne, T.H. Vitamin D as a neurosteroid affecting the developing and adult brain. Annu. Rev. Nutr., 2014, 34, 117-141.
[http://dx.doi.org/10.1146/annurev-nutr-071813-105557] [PMID: 25033060]
[153]
Backx, E.; van der Avoort, C.; Tieland, M.; Maase, K.; Kies, A.; van Loon, L.; de Groot, L.; Mensink, M. Seasonal variation in vitamin D status in elite athletes: a longitudinal study. Int. J. Sport Nutr. Exerc. Metab., 2017, 27(1), 6-10.
[http://dx.doi.org/10.1123/ijsnem.2016-0177] [PMID: 27710147]
[154]
Maruyama-Nagao, A.; Sakuraba, K.; Suzuki, Y. Seasonal variations in vitamin D status in indoor and outdoor female athletes. Biomed. Rep., 2016, 5(1), 113-117.
[http://dx.doi.org/10.3892/br.2016.671] [PMID: 27347414]
[155]
Tang, H.; Hua, F.; Wang, J.; Yousuf, S.; Atif, F.; Sayeed, I.; Stein, D.G. Progesterone and vitamin D combination therapy modulates inflammatory response after traumatic brain injury. Brain Inj., 2015, 29(10), 1165-1174.
[http://dx.doi.org/10.3109/02699052.2015.1035330] [PMID: 26083048]
[156]
Wyss, M.; Kaddurah-Daouk, R. Creatine and creatinine metabolism. Physiol. Rev., 2000, 80(3), 1107-1213.
[http://dx.doi.org/10.1152/physrev.2000.80.3.1107] [PMID: 10893433]
[157]
Jäger, R.; Purpura, M.; Shao, A.; Inoue, T.; Kreider, R.B. Analysis of the efficacy, safety, and regulatory status of novel forms of creatine. Amino Acids, 2011, 40(5), 1369-1383.
[http://dx.doi.org/10.1007/s00726-011-0874-6] [PMID: 21424716]
[158]
Buczek, M.; Alvarez, J.; Azhar, J.; Zhou, Y.; Lust, W.D.; Selman, W.R.; Ratcheson, R.A. Delayed changes in regional brain energy metabolism following cerebral concussion in rats. Metab. Brain Dis., 2002, 17(3), 153-167.
[http://dx.doi.org/10.1023/A:1019973921217] [PMID: 12322786]
[159]
Braissant, O.; Henry, H.; Loup, M.; Eilers, B.; Bachmann, C. Endogenous synthesis and transport of creatine in the rat brain: an in situ hybridization study. Brain Res. Mol. Brain Res., 2001, 86(1-2), 193-201.
[http://dx.doi.org/10.1016/S0169-328X(00)00269-2] [PMID: 11165387]
[160]
Sharma, B.; Lawrence, D.W.; Hutchison, M.G.; Malec, J.; Sharma, B.; Lawrence, D.W.; Hutchison, M.G. Branched chain amino acids (BCAAs) and traumatic brain injury: a systematic review. J. Head Trauma Rehabil., 2018, 33(1), 33-45.
[http://dx.doi.org/10.1097/HTR.0000000000000280] [PMID: 28060208]
[161]
Jeter, C.B.; Hergenroeder, G.W.; Ward, N.H., III; Moore, A.N.; Dash, P.K. Human mild traumatic brain injury decreases circulating branched-chain amino acids and their metabolite levels. J. Neurotrauma, 2013, 30(8), 671-679.
[http://dx.doi.org/10.1089/neu.2012.2491] [PMID: 23560894]
[162]
Aquilani, R.; Boselli, M.; Boschi, F.; Viglio, S.; Iadarola, P.; Dossena, M.; Pastoris, O.; Verri, M. Branched-chain amino acids may improve recovery from a vegetative or minimally conscious state in patients with traumatic brain injury: a pilot study. Arch. Phys. Med. Rehabil., 2008, 89(9), 1642-1647.
[http://dx.doi.org/10.1016/j.apmr.2008.02.023] [PMID: 18760149]
[163]
Naseem, M.; Parvez, S. Role of melatonin in traumatic brain injury and spinal cord injury. ScientificWorldJournal, 2014, 2014, 586270.
[http://dx.doi.org/10.1155/2014/586270] [PMID: 25587567]
[164]
Grima, N.A.; Ponsford, J.L.; St Hilaire, M.A.; Mansfield, D.; Rajaratnam, S.M. Circadian melatonin rhythm following traumatic brain injury. Neurorehabil. Neural Repair, 2016, 30(10), 972-977.
[http://dx.doi.org/10.1177/1545968316650279] [PMID: 27221043]
[165]
Gonçalves, A.L.; Martini Ferreira, A.; Ribeiro, R.T.; Zukerman, E.; Cipolla-Neto, J.; Peres, M.F.P. Randomised clinical trial comparing melatonin 3 mg, amitriptyline 25 mg and placebo for migraine prevention. J. Neurol. Neurosurg. Psychiatry, 2016, 87(10), 1127-1132.
[http://dx.doi.org/10.1136/jnnp-2016-313458] [PMID: 27165014]
[166]
Gelfand, A.A.; Goadsby, P.J. The role of melatonin in the treatment of primary headache disorders. Headache, 2016, 56(8), 1257-1266.
[http://dx.doi.org/10.1111/head.12862] [PMID: 27316772]
[167]
Filardo, S.; Di Pietro, M.; Mastromarino, P.; Sessa, R. Therapeutic potential of resveratrol against emerging respiratory viral infections. Pharmacol. Ther., 2020, 214, 107613.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107613] [PMID: 32562826]
[168]
Zheng, Y.; Hu, G.; Wu, W.; Zhao, Z.; Meng, S.; Fan, L.; Song, C.; Qiu, L.; Chen, J. Transcriptome analysis of juvenile genetically improved farmed tilapia (Oreochromis niloticus) livers by dietary resveratrol supplementation. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2019, 223, 1-8.
[http://dx.doi.org/10.1016/j.cbpc.2019.04.011] [PMID: 31028934]
[169]
Gonçalves, S.; Mansinhos, I.; Romano, A. Neuroprotective Compounds from Plant Sources and their Modes of Action: An Update. In: Plant-derived Bioactives; Springer, 2020; pp. 417-440.
[http://dx.doi.org/10.1007/978-981-15-2361-8_19]
[170]
Tian, B.; Liu, J. Resveratrol: a review of plant sources, synthesis, stability, modification and food application. J. Sci. Food Agric., 2020, 100(4), 1392-1404.
[http://dx.doi.org/10.1002/jsfa.10152] [PMID: 31756276]
[171]
Zheng, Y.; Zhao, Z.; Wu, W.; Song, C.; Meng, S.; Fan, L.; Bing, X.; Chen, J. Effects of dietary resveratrol supplementation on hepatic and serum pro-/anti-inflammatory activity in juvenile GIFT tilapia, Oreochromis niloticus. Dev. Comp. Immunol., 2017, 73, 220-228.
[http://dx.doi.org/10.1016/j.dci.2017.03.030] [PMID: 28390933]
[172]
Zheng, Y.; Wu, W.; Hu, G.; Zhao, Z.; Meng, S.; Fan, L.; Song, C.; Qiu, L.; Chen, J. Hepatic transcriptome analysis of juvenile GIFT tilapia (Oreochromis niloticus), fed diets supplemented with different concentrations of resveratrol. Ecotoxicol. Environ. Saf., 2018, 147, 447-454.
[http://dx.doi.org/10.1016/j.ecoenv.2017.08.006] [PMID: 28892663]
[173]
Katekar, R.; Thombre, G.; Riyazuddin, M.; Husain, A.; Rani, H.; Praveena, K.S.; Gayen, J.R. Pharmacokinetics and brain targeting of trans-resveratrol loaded mixed micelles in rats following intravenous administration. Pharm. Dev. Technol., 2020, 25(3), 300-307.
[http://dx.doi.org/10.1080/10837450.2019.1680690] [PMID: 31609159]
[174]
Di Pietro, V.; Yakoub, K.M.; Caruso, G.; Lazzarino, G.; Signoretti, S.; Barbey, A.K.; Tavazzi, B.; Lazzarino, G.; Belli, A.; Amorini, A.M. Antioxidant Therapies in Traumatic Brain Injury. Antioxidants, 2020, 9(3), 260.
[http://dx.doi.org/10.3390/antiox9030260] [PMID: 32235799]
[175]
Katayama, Y.; Becker, D.P.; Tamura, T.; Hovda, D.A. Massive increases in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury. J. Neurosurg., 1990, 73(6), 889-900.
[http://dx.doi.org/10.3171/jns.1990.73.6.0889] [PMID: 1977896]
[176]
Sönmez, U.; Sönmez, A.; Erbil, G.; Tekmen, I.; Baykara, B. Neuroprotective effects of resveratrol against traumatic brain injury in immature rats. Neurosci. Lett., 2007, 420(2), 133-137.
[http://dx.doi.org/10.1016/j.neulet.2007.04.070] [PMID: 17531385]
[177]
Eakin, K.; Baratz-Goldstein, R.; Pick, C.G.; Zindel, O.; Balaban, C.D.; Hoffer, M.E.; Lockwood, M.; Miller, J.; Hoffer, B.J. Efficacy of N-acetyl cysteine in traumatic brain injury. PLoS One, 2014, 9(4), e90617.
[http://dx.doi.org/10.1371/journal.pone.0090617] [PMID: 24740427]
[178]
Şenol, N.; Nazıroğlu, M.; Yürüker, V. N-acetylcysteine and selenium modulate oxidative stress, antioxidant vitamin and cytokine values in traumatic brain injury-induced rats. Neurochem. Res., 2014, 39(4), 685-692.
[http://dx.doi.org/10.1007/s11064-014-1255-9] [PMID: 24519543]
[179]
Ellis, E.F.; Dodson, L.Y.; Police, R.J. Restoration of cerebrovascular responsiveness to hyperventilation by the oxygen radical scavenger n-acetylcysteine following experimental traumatic brain injury. J. Neurosurg., 1991, 75(5), 774-779.
[http://dx.doi.org/10.3171/jns.1991.75.5.0774] [PMID: 1919701]
[180]
Bavarsad Shahripour, R.; Harrigan, M.R.; Alexandrov, A.V. N-acetylcysteine (NAC) in neurological disorders: mechanisms of action and therapeutic opportunities. Brain Behav., 2014, 4(2), 108-122.
[http://dx.doi.org/10.1002/brb3.208] [PMID: 24683506]
[181]
Hoffer, M.E.; Balaban, C.; Slade, M.D.; Tsao, J.W.; Hoffer, B. Amelioration of acute sequelae of blast induced mild traumatic brain injury by N-acetyl cysteine: a double-blind, placebo controlled study. PLoS One, 2013, 8(1), e54163.
[http://dx.doi.org/10.1371/journal.pone.0054163] [PMID: 23372680]
[182]
Deepmala, ; Slattery, J.; Kumar, N.; Delhey, L.; Berk, M.; Dean, O.; Spielholz, C.; Frye, R. Clinical trials of N-acetylcysteine in psychiatry and neurology: A systematic review. Neurosci. Biobehav. Rev., 2015, 55, 294-321.
[http://dx.doi.org/10.1016/j.neubiorev.2015.04.015] [PMID: 25957927]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy