Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

The Role of Biosynthesized Silver Nanoparticles in Antimicrobial Mechanisms

Author(s): Bianca P. Backx*, Mayara S. dos Santos, Otávio A.L. dos Santos and Sérgio A. Filho

Volume 22, Issue 6, 2021

Published on: 02 February, 2021

Page: [762 - 772] Pages: 11

DOI: 10.2174/1389201022666210202143755

Price: $65

Abstract

Nanotechnology is an area of science in which new materials are developed. The correlation between nanotechnology and microbiology is essential for the development of new drugs and vaccines. The main advantage of combining these areas is to associate the latest technology in order to obtain new ways for solving problems related to microorganisms. This review seeks to investigate nanoparticle formation's antimicrobial properties, primarily when connected to the green synthesis of silver nanoparticles. The development of new sustainable methods for nanoparticle production has been instrumental in designing alternative, non-toxic, energy-friendly, and environmentally friendly routes. In this sense, it is necessary to study silver nanoparticles' green synthesis concerning their antimicrobial properties. Antimicrobial silver nanoparticles' mechanisms demonstrate efficiency to gram-positive bacteria, gram-negative bacteria, fungi, viruses, and parasites. However, attention is needed with the emergence of resistance to these antimicrobials. This article seeks to relate the parameters of green silver- based nanosystems with the efficiency of antimicrobial activity.

Keywords: Silver nanoparticles, green synthesis, biotechnology, nanotechnology antimicrobial mechanisms, nanosystems, applications.

Graphical Abstract

[1]
Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv., 2009, 27(1), 76-83.
[http://dx.doi.org/10.1016/j.biotechadv.2008.09.002] [PMID: 18854209]
[2]
Mecha, C.A.; Pillay, V.L. Development and evaluation of woven fabric microfiltration membranes impregnated with silver nanoparticles for potable water treatment. J. Membr. Sci., 2014, 458, 149-156.
[http://dx.doi.org/10.1016/j.memsci.2014.02.001]
[3]
Monteiro, D.R.; Gorup, L.F.; Takamiya, A.S.; Ruvollo-Filho, A.C.; de Camargo, E.R.; Barbosa, D.B. The growing importance of materials that prevent microbial adhesion: Antimicrobial effect of medical devices containing silver. Int. J. Antimicrob. Agents, 2009, 34(2), 103-110.
[http://dx.doi.org/10.1016/j.ijantimicag.2009.01.017] [PMID: 19339161]
[4]
Petala, M.; Tsiridis, V.; Mintsouli, I.; Pliatsikas, N.; Spanos, Th.; Rebeyre, P.; Darakas, E.; Patsalas, P.; Vourlias, G.; Kostoglou, M.; Sotiropoulos, S.; Karapantsios, Th. Silver deposition on stainless steel container surfaces in contact with disinfectant silver aqueous solutions. Appl. Surf. Sci., 2017, 396, 1067-1075.
[http://dx.doi.org/10.1016/j.apsusc.2016.11.090]
[5]
Klasen, H. A historical review of the use of silver in the treatment of burns. Part I Early uses. Burns, 2000, 26, 117-130.
[6]
Binnig, G.; Quate, C.F.; Gerber, C. Atomic force microscope. Phys. Rev. Lett., 1986, 56(9), 930-933.
[http://dx.doi.org/10.1103/PhysRevLett.56.930] [PMID: 10033323]
[7]
Filho, S.A.; Backx, B.P. Nanotechnology and its impacts on society. Rev. Tecnol. Eur. Soc., 2020, 16(40), 1-15.
[http://dx.doi.org/10.3895/rts.v16n40.9870]
[8]
Yevale, R.; Khan, N.; Bhadane, S. An overview on nanoparticles. J. Drug Deliv. Ther., 2019, 9(5), 181-184.
[http://dx.doi.org/10.22270/jddt.v9i5.3569]
[9]
Pambuk, C.I.A.; Muhammad, F.M. Nanoparticles in medicine: applications and hope. Biosci. Biotechnol. Res. Asia, 2019, 16(3), 565-568.
[http://dx.doi.org/10.13005/bbra/2771]
[10]
Sable, S.V.; Kawade, S.; Ranade, S.; Joshi, S. Bioreduction mechanism of silver nanoparticles. Mater. Sci. Eng. C, 2020, 107, 110299.
[http://dx.doi.org/10.1016/j.msec.2019.110299] [PMID: 31761186]
[11]
Jiang, W.; Kim, B.Y.S.; Rutka, J.T.; Chan, W.C.W. Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol., 2008, 3(3), 145-150.
[http://dx.doi.org/10.1038/nnano.2008.30] [PMID: 18654486]
[12]
Freire, P.L.L.; Stamford, T.C.M.; Albuquerque, A.J.R.; Sampaio, F.C.; Cavalcante, H.M.M.; Macedo, R.O.; Galembeck, A.; Flores, M.A.P.; Rosenblatt, A. Action of silver nanoparticles towards biological systems: Cytotoxicity evaluation using hen’s egg test and inhibition of Streptococcus mutans biofilm formation. Int. J. Antimicrob. Agents, 2015, 45(2), 183-187.
[http://dx.doi.org/10.1016/j.ijantimicag.2014.09.007] [PMID: 25455849]
[13]
Grassian, V.H. When size really matters : Size-dependent properties and surface chemistry of metal and metal oxide nanoparticles in gas and liquid phase environments. J. Phys. Chem. C, 2008, 112(47), 18303-18313.
[http://dx.doi.org/10.1021/jp806073t]
[14]
Syafiuddin, A. Salmiati; Salim, M.R.; Kueh, A.B.H.; Hadibarata, T.; Nur, H. A review of silver nanoparticles: research trends, global consumption, synthesis, properties, and future challenges. J. Chin. Chem. Soc. (Taipei), 2017, 64(7), 732-756.
[http://dx.doi.org/10.1002/jccs.201700067]
[15]
Pal, S.; Tak, Y.K.; Song, J.M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol., 2007, 73(6), 1712-1720.
[http://dx.doi.org/10.1128/AEM.02218-06] [PMID: 17261510]
[16]
Auría-Soro, C.; Nesma, T.; Juanes-Velasco, P.; Landeira-Viñuela, A.; Fidalgo-Gomez, H.; Acebes-Fernandez, V.; Gongora, R.; Almendral Parra, M.J.; Manzano-Roman, R.; Fuentes, M. Interactions of nanoparticles and biosystems: Microenvironment of nanoparticles and biomolecules in nanomedicine. Nanomaterials (Basel), 2019, 9(10), E1365.
[http://dx.doi.org/10.3390/nano9101365] [PMID: 31554176]
[17]
Aydogdu, M.O.; Altun, E.; Chung, E.; Ren, G.; Homer-Vanniasinkam, S.; Chen, B.; Edirisinghe, M. Surface interactions and viability of coronaviruses. J. R. Soc. Interface, 2021, 18(174), 20200798.
[http://dx.doi.org/10.1098/rsif.2020.0798] [PMID: 33402019]
[18]
Gopinath, V.; Priyadarshini, S.; Loke, M.F.; Arunkumar, J.; Marsili, E. MubarakAli, D.; Velusamy, P.; Vadivelu, J. Biogenic synthesis, characterization of antibacterial silver nanoparticles and Its cell cytotoxicity. Arab. J. Chem., 2017, 10(8), 1107-1117.
[http://dx.doi.org/10.1016/j.arabjc.2015.11.011]
[19]
Moradi, F.; Sedaghat, S.; Moradi, O.; Salmanabadi, S.A. Review on green nano-biosynthesis of silver nanoparticles and their biological activities: With an emphasis on medicinal plants. Inorg. Nano-Metal Chem., 2021, 51(1), 133-142.
[http://dx.doi.org/10.1080/24701556.2020.1769662]
[20]
Siegel, J.; Řezníčková, A.; Slepička, P.; Švorčík, V. Noble metal nanoparticles prepared by metal sputtering into glycerol and their grafting to polymer surface; Nanoparticles Technol, 2015.
[http://dx.doi.org/10.5772/61403]
[21]
Fahlman, B.D. What is materials chemistry? Materials Chemistry; Fahlman, B.D., Ed.; Springer Netherlands: Dordrecht, 2007, pp. 1-11.
[http://dx.doi.org/10.1007/978-1-4020-6120-2_1]
[22]
Advanced Nanomaterials for Membrane Synthesis and Its Applications - 1st Edition.. https://www.elsevier.com/books/advanced-nanomaterials-for-membrane-synthesis-and-its-applications/lau/978-0-12-814503-6
[23]
Natsuki, J. A review of silver nanoparticles: Synthesis methods, properties and applications. Int. J. Mater. Sci. Appl., 2015, 4, 325.
[http://dx.doi.org/10.11648/j.ijmsa.20150405.17]
[24]
Santos, M.; Santos, O.; Filho, S.; Santana, J.; Souza, F.; Backx, B. Can green synthesis of nanoparticles be efficient all year long? Nanomater. Chem. Technol., 2019, 1(1), 32-36.
[http://dx.doi.org/10.33805/2690-2575.110]
[25]
Muzamil, M.; Khalid, N. Danish Aziz, M.; Aun Abbas, S. Synthesis of silver nanoparticles by silver salt reduction and its characterization. IOP Conf. Series Mater. Sci. Eng., 2014, 60, 012034.
[http://dx.doi.org/10.1088/1757-899X/60/1/012034]
[26]
Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V.; Zolfaghari, B. Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res. Pharm. Sci., 2014, 9(6), 385-406.
[PMID: 26339255]
[27]
Toisawa, K.; Hayashi, Y.; Takizawa, H. Synthesis of highly concentrated Ag nanoparticles in a heterogeneous solid-liquid system under ultrasonic irradiation., Mats. Transact., 2010, 51(10), 1764- 1768.. https://www.jstage.jst.go.jp/article/matertrans/51/10/51_MJ201005/article
[28]
Thanh, N.T.K.; Maclean, N.; Mahiddine, S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev., 2014, 114(15), 7610-7630.
[http://dx.doi.org/10.1021/cr400544s] [PMID: 25003956]
[29]
Reimers, J.R.; Ford, M.J.; Marcuccio, S.M.; Ulstrup, J.; Hush, N.S. Competition of van der waals and chemical forces on gold-sulfur surfaces and nanoparticles. Nat. Rev. Chem., 2017, 1(2), 1-13.
[http://dx.doi.org/10.1038/s41570-017-0017]
[30]
Kang, H.; Buchman, J.T.; Rodriguez, R.S.; Ring, H.L.; He, J.; Bantz, K.C.; Haynes, C.L. Stabilization of silver and gold nanoparticles: Preservation and improvement of plasmonic functionalities. Chem. Rev., 2019, 119(1), 664-699.
[http://dx.doi.org/10.1021/acs.chemrev.8b00341] [PMID: 30346757]
[31]
Backx, B.P.; Delazare, T. Dispersive medium in the efficient synthesis of silver nanoparticles for application in antimicrobial tissues. Rev. Verde Agroecol. Desenvolv. Sustent., 2019, 14(2), 252-257.
[http://dx.doi.org/10.18378/rvads.v14i2.6163]
[32]
Gour, A.; Jain, N.K. Advances in green synthesis of nanoparticles. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 844-851.
[http://dx.doi.org/10.1080/21691401.2019.1577878] [PMID: 30879351]
[33]
Kumar, I.; Mondal, M.; Sakthivel, N. Green synthesis of phytogenic nanoparticles. Green synthesis, characterization and applications of nanoparticles., Micro Nano Technol. 2019, 37-73.
[34]
Cauerhff, A.; Castro, G.R. Bionanoparticles, a green nanochemistry approach. Electron. J. Biotechnol., 2013, 16(3), 11-11.
[http://dx.doi.org/10.2225/vol16-issue3-fulltext-3]
[35]
Pillai, Z.; Kamat, P. What factors control the size and shape of silver nanoparticles in the citrate ion reduction method? J. Phys. Chem. B, 2003, 108.
[http://dx.doi.org/10.1021/jp037018r]
[36]
Gavamukulya, Y.; El-Shemy, H.A.; Meroka, A.M.; Madivoli, E.S.; Maina, E.N.; Wamunyokoli, F.; Magoma, G. Advances in green nanobiotechnology: Data for synthesis and characterization of silver nanoparticles from ethanolic extracts of fruits and leaves of Annona muricata. Data Brief, 2019, 25, 104194.
[http://dx.doi.org/10.1016/j.dib.2019.104194] [PMID: 31321276]
[37]
Zhang, H.; Chen, S.; Jia, X.; Huang, Y.; Ji, R.; Zhao, L. Comparation of the phytotoxicity between chemically and green synthesized silver nanoparticles. Sci. Total Environ., 2021, 752, 142264.
[http://dx.doi.org/10.1016/j.scitotenv.2020.142264] [PMID: 33207511]
[38]
Aziz, N.; Fatma, T.; Varma, A.; Prasad, R. Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. J. Nanoparticles, 2014, Article ID 689419..
[39]
Al-Otibi, F.; Al-Ahaidib, R.A.; Alharbi, R.I.; Al-Otaibi, R.M.; Albasher, G. Antimicrobial potential of biosynthesized silver nanoparticles by Aaronsohnia factorovskyi extract. Molecules, 2020, 26(1), 130.
[http://dx.doi.org/10.3390/molecules26010130] [PMID: 33396590]
[40]
Garg, D.; Sarkar, A.; Chand, P.; Bansal, P.; Gola, D.; Sharma, S.; Khantwal, S.; Surabhi, M.R.; Chauhan, N.; Bharti, R.K. Synthesis of silver nanoparticles utilizing various biological systems: Mechanisms and applications-a review. Prog. Biomater., 2020, 9(3), 81-95.
[http://dx.doi.org/10.1007/s40204-020-00135-2] [PMID: 32654045]
[41]
Santos, O.A.L.; Backx, B.P. Sudy of the efficiency of the summary of nanoparticles of silver in extract of beta vulgaris for application in textiles with antimicrobial activity; . Ciências da saúde., (1st ed.) 2019, 143-157..
[42]
Backx, B.P.; Pedrosa, B.R.; Delazare, T.F.; Damasceno, R.D.C.; Santos, O.A.L.D. Green synthesis of silver nanoparticles: A study of the dispersive efficiency and antimicrobial potential of the extracts of Plinia cauliflora for application in smart textiles materials for healthcare. J. Nanomater. Mol. Nanotechnol., 2018, 7(1)
[http://dx.doi.org/10.4172/2324-8777.1000236]
[43]
Velayutham, K.; Rahuman, A.A.; Rajakumar, G.; Roopan, S.M.; Elango, G.; Kamaraj, C.; Marimuthu, S.; Santhoshkumar, T.; Iyappan, M.; Siva, C. Larvicidal activity of green synthesized silver nanoparticles using bark aqueous extract of Ficus racemosa against Culex quinquefasciatus and Culex gelidus. Asian Pac. J. Trop. Med., 2013, 6(2), 95-101.
[http://dx.doi.org/10.1016/S1995-7645(13)60002-4] [PMID: 23339909]
[44]
Zhang, Z.; Shen, W.; Xue, J.; Liu, Y.; Liu, Y.; Yan, P.; Liu, J.; Tang, J. Recent advances in synthetic methods and applications of silver nanostructures. Nanoscale Res. Lett., 2018, 13(1), 54.
[http://dx.doi.org/10.1186/s11671-018-2450-4] [PMID: 29457198]
[45]
Shanmugam, R.; Dayalan, S. Biomedical applications of zinc oxide nanoparticles synthesized using eco-friendly method; Nanoparticles Biomed. Appl, 2020, 65-93..
[46]
Santos, M.S.; Backx, B.P. A própolis e a bionanotecnologia.A Interface do Conhecimento sobre Abelhas, 1st ed; Atena Editora, 2019.
[47]
Polte, J.; Tuaev, X.; Wuithschick, M.; Fischer, A.; Thuenemann, A.F.; Rademann, K.; Kraehnert, R.; Emmerling, F. Formation mechanism of colloidal silver nanoparticles: Analogies and differences to the growth of gold nanoparticles. ACS Nano, 2012, 6(7), 5791-5802.
[http://dx.doi.org/10.1021/nn301724z] [PMID: 22681612]
[48]
Chitra, K.; Annadurai, G. Antibacterial activity of pH-dependent biosynthesized silver nanoparticles against clinical pathogen. BioMed Res. Int., 2014, 2014, 725165.
[http://dx.doi.org/10.1155/2014/725165] [PMID: 24967396]
[49]
Mandal, D.; Bolander, M.E.; Mukhopadhyay, D.; Sarkar, G.; Mukherjee, P. The use of microorganisms for the formation of metal nanoparticles and their application. Appl. Microbiol. Biotechnol., 2006, 69(5), 485-492.
[http://dx.doi.org/10.1007/s00253-005-0179-3] [PMID: 16317546]
[50]
López-Esparza, R.; Balderas Altamirano, M.A.; Pérez, E.; Gama Goicochea, A. Importance of molecular interactions in colloidal dispersions., https://www.hindawi.com/journals/acmp/2015/683716/
[http://dx.doi.org/10.1155/2015/683716]
[51]
Zhang, X-F.; Liu, Z-G.; Shen, W.; Gurunathan, S. Silver Nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci., 2016, 17(9), E1534.
[http://dx.doi.org/10.3390/ijms17091534] [PMID: 27649147]
[52]
Makarov, V.V.; Love, A.J.; Sinitsyna, O.V.; Makarova, S.S.; Yaminsky, I.V.; Taliansky, M.E. Kalinina. N.O. “Green” Nanotechnologies: Synthesis of metal nanoparticles using plants. Acta Naturae, 2014, 6(1), 35-44.
[53]
Liu, Y.S.; Chang, Y.C.; Chen, H.H. Silver nanoparticle biosynthesis by using phenolic acids in rice husk extract as reducing agents and dispersants. Yao Wu Shi Pin Fen Xi, 2018, 26(2), 649-656.
[http://dx.doi.org/10.1016/j.jfda.2017.07.005] [PMID: 29567234]
[54]
Ingale, G.A. Biogenic synthesis of nanoparticles and potential applications: An eco-friendly approach. J. Nanomed. Nanotechnol., 2013, 04(02)
[http://dx.doi.org/10.4172/2157-7439.1000165]
[55]
Kharissova, O.V.; Dias, H.V.R.; Kharisov, B.I.; Pérez, B.O.; Pérez, V.M.J. The greener synthesis of nanoparticles. Trends Biotechnol., 2013, 31(4), 240-248.
[http://dx.doi.org/10.1016/j.tibtech.2013.01.003] [PMID: 23434153]
[56]
Ahmed, S.; Ahmad, M.; Swami, B.L.; Ikram, S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res., 2016, 7(1), 17-28.
[http://dx.doi.org/10.1016/j.jare.2015.02.007] [PMID: 26843966]
[57]
Prasad, R. Synthesis of silver nanoparticles in photosynthetic plants., https://www.hindawi.com/journals/jnp/2014/963961/
[http://dx.doi.org/10.1155/2014/963961]
[58]
Logeswari, P.; Silambarasan, S.; Abraham, J. Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property. J. Saudi Chem. Soc., 2015, 19(3), 311-317.
[http://dx.doi.org/10.1016/j.jscs.2012.04.007]
[59]
Mohammed, S.S.S.; Lawrance, A.V.; Sampath, S.; Sunderam, V.; Madhavan, Y. Facile green synthesis of silver nanoparticles from sprouted zingiberaceae species: Spectral characterisation and its potential biological applications. Mater. Technol., 2020, 1-14.
[http://dx.doi.org/10.1080/10667857.2020.1863571]
[60]
Alves, T.; Girardi, R.; Pinheiro, A. Organic micropollutants: Occurrence, removal and regulation. Rev. Gest. Água América Lat., 2017, 14(1), 1-1..
[61]
Zakharova, O.V.; Godymchuk, A.Y.; Gusev, A.A.; Gulchenko, S.I.; Vasyukova, I.A.; Kuznetsov, D.V. Considerable variation of antibacterial activity of Cu nanoparticles suspensions depending on the storage time, dispersive medium, and particle sizes., https://www.hindawi.com/journals/bmri/2015/412530/
[62]
Buford, M.C.; Hamilton, R.F., Jr; Holian, A. A comparison of dispersing media for various engineered carbon nanoparticles. Part. Fibre Toxicol., 2007, 4, 6.
[http://dx.doi.org/10.1186/1743-8977-4-6] [PMID: 17655771]
[63]
Naito, M.; Yokoyama, T.; Hosokawa, K.; Nogi, K. Nanoparticle Technology Handbook, 3rd ed; Elsevier, 2018.
[64]
Li, B.; Feng, Z.; He, L.; Li, W.; Wang, Q.; Liu, J.; Huang, J.; Zheng, Y.; Ma, Y.; Yang, X.; Wang, K. Self-assembled supramolecular nanoparticles for targeted delivery and combination chemotherapy. ChemMedChem, 2018, 13(19), 2037-2044.
[http://dx.doi.org/10.1002/cmdc.201800291] [PMID: 30024095]
[65]
Fariq, A.; Khan, T.; Yasmin, A. Microbial synthesis of nanoparticles and their potential applications in biomedicine. J. Appl. Biomed., 2017, 15(4), 241-248.
[http://dx.doi.org/10.1016/j.jab.2017.03.004]
[66]
Filho, S.A.; dos Santos, O.A.L.; dos Santos, M.S.; Backx, B.P. exploiting nanotechnology to target viruses. J. Nanotechnol. Nanomater., 2020, 1(1)
[67]
Patra, J.K.; Baek, K.H. antibacterial activity and synergistic antibacterial potential of biosynthesized silver nanoparticles against foodborne pathogenic bacteria along with its anticandidal and antioxidant effects. Front. Microbiol., 2017, 8, 167.
[http://dx.doi.org/10.3389/fmicb.2017.00167] [PMID: 28261161]
[68]
Moore, T.L.; Rodriguez-Lorenzo, L.; Hirsch, V.; Balog, S.; Urban, D.; Jud, C.; Rothen-Rutishauser, B.; Lattuada, M.; Petri-Fink, A. Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem. Soc. Rev., 2015, 44(17), 6287-6305.
[http://dx.doi.org/10.1039/C4CS00487F] [PMID: 26056687]
[69]
Akhtar, M.S.; Panwar, J.; Yun, Y.S. Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustain. Chem.& Eng., 2013, 1(6), 591-602.
[http://dx.doi.org/10.1021/sc300118u]
[70]
Loo, S-L.; Krantz, W.B.; Fane, A.G.; Hu, X.; Lim, T-T. Effect of synthesis routes on the properties and bactericidal activity of cryogels incorporated with silver nanoparticles. RSC Advances, 2015, 5(55), 44626-44635.
[http://dx.doi.org/10.1039/C5RA08449K]
[71]
Martínez-Castañón, G.A.; Niño-Martínez, N.; Martínez-Gutierrez, F.; Martínez-Mendoza, J.R.; Ruiz, F. Synthesis and antibacterial activity of silver nanoparticles with different sizes. J. Nanopart. Res., 2008, 10(8), 1343-1348.
[http://dx.doi.org/10.1007/s11051-008-9428-6]
[72]
Wei, L.; Lu, J.; Xu, H.; Patel, A.; Chen, Z-S.; Chen, G. Silver nanoparticles: Synthesis, properties, and therapeutic applications. Drug Discov. Today, 2015, 20(5), 595-601.
[http://dx.doi.org/10.1016/j.drudis.2014.11.014] [PMID: 25543008]
[73]
Husen, A.; Siddiqi, K.S. Phytosynthesis of nanoparticles: Concept, controversy and application. Nanoscale Res. Lett., 2014, 9(1), 229.
[http://dx.doi.org/10.1186/1556-276X-9-229] [PMID: 24910577]
[74]
Lee, H.J.; Jeong, S.H. Bacteriostasis of nanosized colloidal silver on polyester nonwovens. Text. Res. J., 2004, 74(5), 442-447.
[http://dx.doi.org/10.1177/004051750407400511]
[75]
Sabuncu, A.C.; Grubbs, J.; Qian, S.; Abdel-Fattah, T.M.; Stacey, M.W.; Beskok, A. Probing nanoparticle interactions in cell culture media. Colloids Surf. B Biointerfaces, 2012, 95, 96-102.
[http://dx.doi.org/10.1016/j.colsurfb.2012.02.022] [PMID: 22421416]
[76]
Madigan, M.T.; Bender, K.S.; Buckley, D.H.; Sattley, W.M.; Stahl, D.A. Brock Biology of Microorganisms; Edição: 15; Pearson: NY, 2017.
[77]
Prasad, R.; Pandey, R.; Barman, I. Engineering tailored nanoparticles with microbes: Quo vadis? Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2016, 8(2), 316-330.
[http://dx.doi.org/10.1002/wnan.1363] [PMID: 26271947]
[78]
Hong, X.; Wen, J.; Xiong, X.; Hu, Y. Shape effect on the antibacterial activity of silver nanoparticles synthesized via a microwave-assisted method. Environ. Sci. Pollut. Res. Int., 2016, 23(5), 4489-4497.
[http://dx.doi.org/10.1007/s11356-015-5668-z] [PMID: 26511259]
[79]
Helmlinger, J.; Sengstock, C.; Groß-Heitfeld, C.; Mayer, C.; Schildhauer, T.A.; Köller, M.; Epple, M. Silver nanoparticles with different size and shape: Equal cytotoxicity, but different antibacterial effects. RSC Advances, 2016, 6(22), 18490-18501.
[http://dx.doi.org/10.1039/C5RA27836H]
[80]
Dakal, T.C.; Kumar, A.; Majumdar, R.S.; Yadav, V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front. Microbiol., 2016, 7, 1831.
[http://dx.doi.org/10.3389/fmicb.2016.01831] [PMID: 27899918]
[81]
Fraceto, L.F.; de Lima, R.; Oliveira, H.C.; Ávila, D.S.; Chen, B. Future trends in nanotechnology aiming environmental applications. Energy Ecol. Environ., 2018, 3(2), 69-71.
[http://dx.doi.org/10.1007/s40974-018-0087-x]
[82]
Kolodziejczyk, B. Nanotechnology, nanowaste and their effects on ecosystems: A need for efficient monitoring, disposal and recycling., Brief for GSDR - 2016 Update, 5..
[83]
Prasher, P.; Singh, M.; Mudila, H. Silver nanoparticles as antimicrobial therapeutics: Current perspectives and future challenges. 3 Biotech., 2018, 8(10), 411.
[84]
Kumar, N.; Das, S.; Jyoti, A.; Kaushik, S. Synergistic effect of silver nanoparticles with doxycycline against Klebsiella pneumonia. Int. J. Pharm. Pharmaceut Sci., 2016, 8(7), 183-186.
[85]
Ramalingam, B.; Parandhaman, T.; Das, S.K. Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure and nanomechanical properties of gram-negative bacteria viz. Escherichia coli and Pseudomonas aeruginosa. ACS Appl. Mater. Interfaces, 2016, 8(7), 4963-4976.
[http://dx.doi.org/10.1021/acsami.6b00161] [PMID: 26829373]
[86]
Abbaszadegan, A.; Ghahramani, Y.; Gholami, A.; Hemmateenejad, B.; Dorostkar, S.; Nabavizadeh, M.; Sharghi, H. The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: A preliminary study. J. Nanomaterials, 2015.,Article ID 720654.
[http://dx.doi.org/10.1155/2015/720654]
[87]
Tavares, W. Problems with gram-positive bacteria: Resistance in staphylococci, enterococci, and pneumococci to antimicrobial drugs. Rev. Soc. Bras. Med. Trop., 2000, 33(3), 281-301.
[http://dx.doi.org/10.1590/S0037-86822000000300008] [PMID: 10967598]
[88]
Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.H.; Park, S.J.; Lee, H.J.; Kim, S.H.; Park, Y.K.; Park, Y.H.; Hwang, C.Y.; Kim, Y.K.; Lee, Y.S.; Jeong, D.H.; Cho, M.H. Antimicrobial effects of silver nanoparticles. Nanomedicine (Lond.), 2007, 3(1), 95-101.
[http://dx.doi.org/10.1016/j.nano.2006.12.001] [PMID: 17379174]
[89]
Durán, N.; Durán, M.; de Jesus, M.B.; Seabra, A.B.; Fávaro, W.J.; Nakazato, G. Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomedicine (Lond.), 2016, 12(3), 789-799.
[http://dx.doi.org/10.1016/j.nano.2015.11.016] [PMID: 26724539]
[90]
Salas-Orozco, M.; Niño-Martínez, N.; Martínez-Castañón, G.A.; Méndez, F.T.; Jasso, M.E.C.; Ruiz, F. Mechanisms of resistance to silver nanoparticles in endodontic bacteria: A literature review. J. Nanomater., 2019.,Article ID 7630316.
[http://dx.doi.org/10.1155/2019/7630316]
[91]
Sondi, I.; Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci., 2004, 275(1), 177-182.
[http://dx.doi.org/10.1016/j.jcis.2004.02.012] [PMID: 15158396]
[92]
Siddiqi, K.S.; Husen, A.; Rao, R.A.K. A review on biosynthesis of silver nanoparticles and their biocidal properties. J. Nanobiotechnology, 2018, 16(1), 14.
[http://dx.doi.org/10.1186/s12951-018-0334-5] [PMID: 29452593]
[93]
Lokina, S.; Stephen, A.; Kaviyarasan, V.; Arulvasu, C.; Narayanan, V. Cytotoxicity and antimicrobial activities of green synthesized silver nanoparticles. Eur. J. Med. Chem., 2014, 76, 256-263.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.010] [PMID: 24583606]
[94]
Morones, J.R.; Elechiguerra, J.L.; Camacho, A.; Holt, K.; Kouri, J.B.; Ramírez, J.T.; Yacaman, M.J. The bactericidal effect of silver nanoparticles. Nanotechnology, 2005, 16(10), 2346-2353.
[http://dx.doi.org/10.1088/0957-4484/16/10/059] [PMID: 20818017]
[95]
Sharma, V.K.; Yngard, R.A.; Lin, Y. Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci., 2009, 145(1-2), 83-96.
[http://dx.doi.org/10.1016/j.cis.2008.09.002] [PMID: 18945421]
[96]
Mohanty, S.; Mishra, S.; Jena, P.; Jacob, B.; Sarkar, B.; Sonawane, A. An investigation on the antibacterial, cytotoxic, and antibiofilm efficacy of starch-stabilized silver nanoparticles. Nanomedicine (Lond.), 2012, 8(6), 916-924.
[http://dx.doi.org/10.1016/j.nano.2011.11.007] [PMID: 22115597]
[97]
Singh, R.; Shedbalkar, U.U.; Wadhwani, S.A.; Chopade, B.A. Bacteriagenic silver nanoparticles: Synthesis, mechanism, and applications. Appl. Microbiol. Biotechnol., 2015, 99(11), 4579-4593.
[http://dx.doi.org/10.1007/s00253-015-6622-1] [PMID: 25952110]
[98]
Reidy, B.; Haase, A.; Luch, A.; Dawson, K.A.; Lynch, I. Mechanisms of silver nanoparticle release, transformation and toxicity: A critical review of current knowledge and recommendations for future studies and applications. Materials (Basel), 2013, 6(6), 2295-2350.
[http://dx.doi.org/10.3390/ma6062295] [PMID: 28809275]
[99]
Elechiguerra, J.L.; Burt, J.L.; Morones, J.R.; Camacho-Bragado, A.; Gao, X.; Lara, H.H.; Yacaman, M.J. Interaction of silver nanoparticles with HIV-1. J. Nanobiotechnology, 2005, 3(1), 6.
[http://dx.doi.org/10.1186/1477-3155-3-6] [PMID: 15987516]
[100]
Kim, S.W.; Jung, J.H.; Lamsal, K.; Kim, Y.S.; Min, J.S.; Lee, Y.S. Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology, 2012, 40(1), 53-58.
[http://dx.doi.org/10.5941/MYCO.2012.40.1.053] [PMID: 22783135]
[101]
Prasher, P.; Singh, M.; Mudila, H. Green synthesis of silver nanoparticles and their antifungal properties. Bionanoscience, 2018, 8(1), 254-263.
[http://dx.doi.org/10.1007/s12668-017-0481-4]
[102]
Lara, H.H.; Ayala-Nuñez, N.V.; Ixtepan-Turrent, L.; Rodriguez-Padilla, C. Mode of antiviral action of silver nanoparticles against HIV-1. J. Nanobiotechnology, 2010, 8(1), 1.
[http://dx.doi.org/10.1186/1477-3155-8-1] [PMID: 20145735]
[103]
Lara, H.H.; Garza-Treviño, E.N.; Ixtepan-Turrent, L.; Singh, D.K. Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J. Nanobiotechnology, 2011, 9(1), 30.
[http://dx.doi.org/10.1186/1477-3155-9-30] [PMID: 21812950]
[104]
Lu, L.; Sun, R.W.; Chen, R.; Hui, C.K.; Ho, C.M.; Luk, J.M.; Lau, G.K.; Che, C.M. Silver nanoparticles inhibit hepatitis B virus replication. Antivir. Ther., 2008, 13(2), 253-262.
[PMID: 18505176]
[105]
Jaganathan, A.; Murugan, K.; Panneerselvam, C.; Madhiyazhagan, P.; Dinesh, D.; Vadivalagan, C.; Aziz, A.T.; Chandramohan, B.; Suresh, U.; Rajaganesh, R.; Subramaniam, J.; Nicoletti, M.; Higuchi, A.; Alarfaj, A.A.; Munusamy, M.A.; Kumar, S.; Benelli, G. Earthworm-mediated synthesis of silver nanoparticles: A potent tool against hepatocellular carcinoma, Plasmodium falciparum parasites and malaria mosquitoes. Parasitol. Int., 2016, 65(3), 276-284.
[http://dx.doi.org/10.1016/j.parint.2016.02.003] [PMID: 26873539]
[106]
Rai, M.; Ingle, A.P.; Paralikar, P.; Gupta, I.; Medici, S.; Santos, C.A. Recent advances in use of silver nanoparticles as antimalarial agents. Int. J. Pharm., 2017, 526(1-2), 254-270.
[http://dx.doi.org/10.1016/j.ijpharm.2017.04.042] [PMID: 28450172]
[107]
Veerakumar, K.; Govindarajan, M.; Hoti, S.L. Evaluation of plant-mediated synthesized silver nanoparticles against vector mosquitoes. Parasitol. Res., 2014, 113(12), 4567-4577.
[http://dx.doi.org/10.1007/s00436-014-4147-7] [PMID: 25300419]
[108]
Ponarulselvam, S.; Panneerselvam, C.; Murugan, K.; Aarthi, N.; Kalimuthu, K.; Thangamani, S. Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian Pac. J. Trop. Biomed., 2012, 2(7), 574-580.
[http://dx.doi.org/10.1016/S2221-1691(12)60100-2] [PMID: 23569974]
[109]
Baiocco, P.; Ilari, A.; Ceci, P.; Orsini, S.; Gramiccia, M.; Di Muccio, T.; Colotti, G. Inhibitory effect of silver nanoparticles on trypanothione reductase activity and Leishmania infantum proliferation. ACS Med. Chem. Lett., 2010, 2(3), 230-233.
[http://dx.doi.org/10.1021/ml1002629] [PMID: 24900299]
[110]
Allahverdiyev, A.M.; Abamor, E.S.; Bagirova, M.; Ustundag, C.B.; Kaya, C.; Kaya, F.; Rafailovich, M. Antileishmanial effect of silver nanoparticles and their enhanced antiparasitic activity under ultraviolet light. Int. J. Nanomedicine, 2011, 6, 2705-2714.
[http://dx.doi.org/10.2147/IJN.S23883] [PMID: 22114501]
[111]
Fanti, J.R.; Tomiotto-Pellissier, F.; Miranda-Sapla, M.M.; Cataneo, A.H.D.; Andrade, C.G.T.J.; Panis, C.; Rodrigues, J.H.D.S.; Wowk, P.F.; Kuczera, D.; Costa, I.N.; Nakamura, C.V.; Nakazato, G.; Durán, N.; Pavanelli, W.R.; Conchon-Costa, I. Biogenic silver nanoparticles inducing Leishmania amazonensis promastigote and amastigote death in vitro. Acta Trop., 2018, 178, 46-54.
[http://dx.doi.org/10.1016/j.actatropica.2017.10.027] [PMID: 29111137]
[112]
Panáček, A.; Kvítek, L.; Smékalová, M.; Večeřová, R.; Kolář, M.; Röderová, M.; Dyčka, F.; Šebela, M.; Prucek, R.; Tomanec, O.; Zbořil, R. Bacterial resistance to silver nanoparticles and how to overcome it. Nat. Nanotechnol., 2018, 13(1), 65-71.
[http://dx.doi.org/10.1038/s41565-017-0013-y] [PMID: 29203912]
[113]
Niño-Martínez, N.; Salas Orozco, M.F.; Martínez-Castañón, G.A.; Torres Méndez, F.; Ruiz, F. Molecular mechanisms of bacterial resistance to metal and metal oxide nanoparticles. Int. J. Mol. Sci., 2019, 20(11), 2808.
[http://dx.doi.org/10.3390/ijms20112808] [PMID: 31181755]
[114]
Jelenko, C. III Silver nitrate resistant E. coli: Report of case. Ann. Surg., 1969, 170(2), 296-299.
[http://dx.doi.org/10.1097/00000658-196908000-00021] [PMID: 4894351]
[115]
Haefeli, C.; Franklin, C.; Hardy, K. Plasmid-determined silver resistance in Pseudomonas stutzeri isolated from a silver mine. J. Bacteriol., 1984, 158(1), 389-392.
[http://dx.doi.org/10.1128/JB.158.1.389-392.1984] [PMID: 6715284]
[116]
Mijnendonckx, K.; Leys, N.; Mahillon, J.; Silver, S.; Van Houdt, R. Antimicrobial silver: Uses, toxicity and potential for resistance. Biometals, 2013, 26(4), 609-621.
[http://dx.doi.org/10.1007/s10534-013-9645-z] [PMID: 23771576]
[117]
Kędziora, A.; Speruda, M.; Krzyżewska, E.; Rybka, J.; Łukowiak, A.; Bugla-Płoskońska, G. Similarities and differences between silver ions and silver in nanoforms as antibacterial agents. Int. J. Mol. Sci., 2018, 19(2), 444.
[http://dx.doi.org/10.3390/ijms19020444] [PMID: 29393866]
[118]
Silver, S.; Gupta, A.; Matsui, K.; Lo, J.F. Resistance to Ag(i) cations in bacteria: Environments, genes and proteins. Met. Based Drugs, 1999, 6(4-5), 315-320.
[http://dx.doi.org/10.1155/MBD.1999.315] [PMID: 18475907]
[119]
Muller, M. Bacterial silver resistance gained by cooperative interspecies redox behavior. Antimicrob. Agents Chemother., 2018, 62(8), e00672-e18.
[http://dx.doi.org/10.1128/AAC.00672-18] [PMID: 29760148]
[120]
Percival, S.L.; Woods, E.; Nutekpor, M.; Bowler, P.; Radford, A.; Cochrane, C. Prevalence of silver resistance in bacteria isolated from diabetic foot ulcers and efficacy of silver-containing wound dressings. Ostomy Wound Manage., 2008, 54(3), 30-40.
[PMID: 18382046]
[121]
Chopra, I. The increasing use of silver-based products as antimicrobial agents: A useful development or a cause for concern? J. Antimicrob. Chemother., 2007, 59(4), 587-590.
[http://dx.doi.org/10.1093/jac/dkm006] [PMID: 17307768]
[122]
Kedi, P.B.E.; Meva, F.E.A.; Kotsedi, L.; Nguemfo, E.L.; Zangueu, C.B.; Ntoumba, A.A.; Mohamed, H.E.A.; Dongmo, A.B.; Maaza, M. Eco-friendly synthesis, characterization, in vitro and in vivo anti-inflammatory activity of silver nanoparticle-mediated Selaginella myosurus aqueous extract. Int. J. Nanomedicine, 2018, 13, 8537-8548.
[http://dx.doi.org/10.2147/IJN.S174530] [PMID: 30587976]
[123]
Singh, R.; Nawale, L.U.; Arkile, M.; Shedbalkar, U.U.; Wadhwani, S.A.; Sarkar, D.; Chopade, B.A. Chemical and biological metal nanoparticles as antimycobacterial agents: A comparative study. Int. J. Antimicrob. Agents, 2015, 46(2), 183-188.
[http://dx.doi.org/10.1016/j.ijantimicag.2015.03.014] [PMID: 26009020]
[124]
Jaiswal, S.; Duffy, B.; Jaiswal, A.K.; Stobie, N.; McHale, P. Enhancement of the antibacterial properties of silver nanoparticles using β-cyclodextrin as a capping agent. Int. J. Antimicrob. Agents, 2010, 36(3), 280-283.
[http://dx.doi.org/10.1016/j.ijantimicag.2010.05.006] [PMID: 20580208]
[125]
Niraimathi, K.L.; Sudha, V.; Lavanya, R.; Brindha, P. Biosynthesis of silver nanoparticles using Alternanthera sessilis (Linn.) extract and their antimicrobial, antioxidant activities. Colloids Surf. B Biointerfaces, 2013, 102, 288-291.
[http://dx.doi.org/10.1016/j.colsurfb.2012.08.041] [PMID: 23006568]
[126]
Phu, D.V.; Lang, V.T.K.; Kim Lan, N.T.; Duy, N.N.; Chau, N.D.; Du, B.D.; Hien, N.Q. Synthesis and antimicrobial effects of colloidal silver nanoparticles in chitosan by γ-irradiation. J. Exp. Nanosci., 2010, 5(2), 169-179.
[http://dx.doi.org/10.1080/17458080903383324]
[127]
Brown, A.N.; Smith, K.; Samuels, T.A.; Lu, J.; Obare, S.O.; Scott, M.E. Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. Appl. Environ. Microbiol., 2012, 78(8), 2768-2774.
[http://dx.doi.org/10.1128/AEM.06513-11] [PMID: 22286985]
[128]
Durán, N.; Marcato, P.D.; Conti, R.D.; Alves, O.L.; Costa, F.; Brocchi, M. Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J. Braz. Chem. Soc., 2010, 21(6), 949-959.
[http://dx.doi.org/10.1590/S0103-50532010000600002]
[129]
Franci, G.; Falanga, A.; Galdiero, S.; Palomba, L.; Rai, M.; Morelli, G.; Galdiero, M. Silver nanoparticles as potential antibacterial agents. Molecules, 2015, 20(5), 8856-8874.
[http://dx.doi.org/10.3390/molecules20058856] [PMID: 25993417]
[130]
Logeswari, P.; Silambarasan, S.; Abraham, J. Ecofriendly synthesis of silver nanoparticles from commercially available plant powders and their antibacterial properties. Sci. Iran., 2013, 20(3), 1049-1054.
[http://dx.doi.org/10.1016/j.scient.2013.05.016]
[131]
Keat, C.L.; Aziz, A.; Eid, A.M.; Elmarzugi, N.A. Biosynthesis of nanoparticles and silver nanoparticles. Bioresour. Bioprocess., 2015, 2(1), 1-11.
[http://dx.doi.org/10.1186/s40643-015-0076-2] [PMID: 25771428]
[132]
Samuel, U.; Guggenbichler, J.P. Prevention of catheter-related infections: The potential of a new nano-silver impregnated catheter. Int. J. Antimicrob. Agents, 2004, 23(Suppl. 1), S75-S78.
[http://dx.doi.org/10.1016/j.ijantimicag.2003.12.004] [PMID: 15037331]
[133]
Chaudhry, Q.; Watkins, R.; Castle, L. Nanotechnologies in the food arena: new opportunities, new questions, new concerns; Nanotechnologies Food, 2010, 1-17.
[134]
French, G.L. The continuing crisis in antibiotic resistance. Int. J. Antimicrob. Agents, 2010, 36(Suppl. 3), S3-S7.
[http://dx.doi.org/10.1016/S0924-8579(10)70003-0] [PMID: 21129629]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy