Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Synthesis, Characterization and Applications of Spinel Cobaltite Nanomaterials

Author(s): Ashok R. Patel, Grigoriy Sereda* and Subhash Banerjee*

Volume 22, Issue 6, 2021

Published on: 17 November, 2020

Page: [773 - 792] Pages: 20

DOI: 10.2174/1389201021666201117122002

Price: $65

Abstract

Recently, spinel structures (AB2O4) Nanoparticles (NPs) having binary and ternary mixtures of metal oxides have been established as promising redox catalysts. Due to the presence of two mixed valence metal cations, transport of electrons takes place easily between multiple transition-metal cations with relatively low energy of activation. Among these, spinel cobaltite (MCo2O4) is very attractive due to its low cost, non-toxicity, higher stability, higher electronic conductivity and electrochemical property. To date, MCo2O4 has been used in the fabrication of supercapacitors, electrodes for oxygen evolution reaction, and electrochemical sensors for glucose. A variety of MCo2O4materials have been synthesized, characterized, and utilized in the fabrication of super capacitors, electrodes for oxygen evolution reaction, and electrochemical sensors for glucose. The progress in the field of the spinel MCo2O4 materials opens the door to novel and efficient applications in the nanoscience and nanotechnology, and elctrochemistry.

Keywords: Spinel structures, spinel cobaltites nanomaterials, synthesis, applications in nanotechnology, oxygen evolution electrochemistry.

Graphical Abstract

[1]
Jadhav, H.S.; Thorat, G.; Mun, J.; Seo, J.G. Self-assembled hierarchical 3D-NiO microspheres with ultra-thin porous nanoflakes for lithium-ion batteries. J. Power Sources, 2016, 302, 13-21.
[http://dx.doi.org/10.1016/j.jpowsour.2015.10.044]
[2]
Chen, M.; Liu, J.; Chao, D.; Wang, J.; Tin, J.; Lin, J.; Fan, H.J.; Shen, Z.X. Porous α-Fe2O3 nanorods supported on carbon nanotubes-graphene foam as superior anode for lithium ion batteries. Nano Energy, 2014, 9, 364-372.
[http://dx.doi.org/10.1016/j.nanoen.2014.08.011]
[3]
Jadhav, H.S.; Rai, A.K.; Lee, J.Y.; Kim, J.K.; Park, C.J. Enhanced electrochemical performance of flower-like Co3O4 as an anode material for high performance lithium-ion batteries. Electrochim. Acta, 2014, 146, 270-277.
[http://dx.doi.org/10.1016/j.electacta.2014.09.026]
[4]
Wang, Z.L.; Xu, D.; Xu, J.J.; Zhang, X.B. Oxygen electrocatalysts in metal-air batteries: From aqueous to nonaqueous electrolytes. Chem. Soc. Rev., 2014, 43(22), 7746-7786.
[http://dx.doi.org/10.1039/C3CS60248F] [PMID: 24056780]
[5]
Zheng, M.; Tang, H.; Li, L.; Hu, Q.; Zhang, L.; Xue, H.; Pang, H. Hierarchically nanostructured transition metal oxides for lithium‐ion batteries. Adv. Sci. (Weinh.), 2018, 5(3)1700592
[http://dx.doi.org/10.1002/advs.201700592] [PMID: 29593962]
[6]
Wang, C.; Yin, L.; Zhang, L.; Xiang, D.; Gao, R. Metal oxide gas sensors: Sensitivity and influencing factors. Sensors (Basel), 2010, 10(3), 2088-2106.
[http://dx.doi.org/10.3390/s100302088] [PMID: 22294916]
[7]
Fabbri, E.; Habereder, A.; Waltar, K.; Kӧtz, R.; Schmidt, T.J. Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catal. Sci. Technol., 2014, 4, 3800.
[http://dx.doi.org/10.1039/C4CY00669K]
[8]
Han, W.; Tang, Z.; Lin, Q. Rationally designed synthesis of metal–organic framework-derived cobalt oxide with abundant surface active sites for efficient catalytic oxidation performance. Cryst. Growth Des., 2020, 20(9), 5716-5727.
[http://dx.doi.org/10.1021/acs.cgd.0c00003]
[9]
Bhattacharya, J.; Wolverton, C. Relative stability of normal vs. inverse spinel for 3d transition metal oxides as lithium intercalation cathodes. Phys. Chem. Chem. Phys., 2013, 15(17), 6486-6498.
[http://dx.doi.org/10.1039/c3cp50910a] [PMID: 23529669]
[10]
Cui, S.; Li, L.; Ding, Y.; Zhang, J.; Yang, H.; Wang, Y. Mesoporous NiCo2O4-decorated reduced graphene oxide as a novel platform for electrochemical determination of rutin. Talanta, 2017, 164, 291-299.
[http://dx.doi.org/10.1016/j.talanta.2016.10.109] [PMID: 28107932]
[11]
Rajeshkhanna, G.; Umeshbabu, E.; Justin, P.; Rao, G.R. Spinel ZnCo2O4 nanosheets as carbon and binder free electrode material for energy storage and electroreduction of H2O2. J. Alloys Compd., 2017, 696, 947-955.
[http://dx.doi.org/10.1016/j.jallcom.2016.11.411]
[12]
Zhang, Y.; Luo, L.; Zhang, Z.; Ding, Y.; Liu, S.; Deng, D.; Zhao, H.; Chen, Y. Synthesis of MnCo2O4 nanofibers by electrospinning and calcination: Application for a highly sensitive non-enzymatic glucose sensor. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(5), 529-535.
[http://dx.doi.org/10.1039/C3TB21288B] [PMID: 32261534]
[13]
Yang, J.; Ye, H.; Zhang, Z.; Zhao, F.; Zeng, B. Metal-organic framework derived hollow polyhedron CuCo2O4 functionalized porous graphene for sensitive glucose sensing. Sens. Actuators B Chem., 2017, 242, 728-735.
[http://dx.doi.org/10.1016/j.snb.2016.11.122]
[14]
Li, Y.; Hasin, P.; Wu, Y. Ni(x)Co(3-x)O(4) nanowire arrays for electrocatalytic oxygen evolution. Adv. Mater., 2010, 22(17), 1926-1929.
[http://dx.doi.org/10.1002/adma.200903896] [PMID: 20526996]
[15]
Lu, B.; Cao, D.; Wang, P.; Wang, G.; Gao, Y. Oxygen evolution reaction on Ni-substituted Co3O4 nanowire array electrodes. Int. J. Hydrogen Energy, 2011, 36, 72-78.
[http://dx.doi.org/10.1016/j.ijhydene.2010.09.056]
[16]
Jadhav, H.S.; Pawar, S.M.; Jadhav, A.H.; Thorat, G.M.; Seo, J.G. Hierarchical mesoporous 3D Flower-like CuCo2O4/NF for high-performance electrochemical energy storage. Sci. Rep., 2016, 6, 31120.
[http://dx.doi.org/10.1038/srep31120] [PMID: 27506839]
[17]
Ensafi, A.A.; Moosavifard, S.E.; Rezaei, B.; Kaverlavani, S.K. Engineering onion-like nanoporous CuCo2O4 hollow spheres derived from bimetal-organic frameworks for high-performance asymmetric supercapacitors. J. Mater. Chem. A Mater. Energy Sustain., 2018, 6, 10497-10506.
[http://dx.doi.org/10.1039/C8TA02819B]
[18]
Li, P.; Sun, W.; Yu, Q.; Yang, P.; Qiao, J.; Wang, Z.; Rooney, D.; Sun, K. An effective three-dimensional ordered mesoporous CuCo2O4 as electrocatalyst for Li-O2 batteries. Solid State Ion., 2016, 289, 17-22.
[http://dx.doi.org/10.1016/j.ssi.2016.02.014]
[19]
Li, D.; Gong, Y.; Wang, M.; Pan, C. Preparation of sandwich-like NiCo2O4/rGO/NiO heterostructure on nickel foam for high-performance supercapacitor electrodes. Nano-Micro Lett., 2017, 9(2), 16.
[http://dx.doi.org/10.1007/s40820-016-0117-1] [PMID: 30460313]
[20]
Kanga, W.; Tanga, Y.; Li, W.; Li, Z.; Yang, X.; Xu, J.; Lee, C.S. Porous CuCo2O4 nanocubes wrapped by reduced graphene oxide as high-performance lithium-ion battery anodes. Nanoscale, 2014, 1-6.
[21]
Ning, R.; Tian, J.; Asiri, A.M.; Qusti, A.H.; Al-Youbi, A.O.; Sun, X. Spinel CuCo2O4 nanoparticles supported on N-doped reduced graphene oxide: A highly active and stable hybrid electrocatalyst for the oxygen reduction reaction. Langmuir, 2013, 29(43), 13146-13151.
[http://dx.doi.org/10.1021/la4031014] [PMID: 24117208]
[22]
You, Y.; Zheng, M.; Jiang, D.; Li, F.; Yuan, H.; Zhai, Z.; Ma, L.; Shen, W. Boosting supercapacitive performance of ultrathin mesoporous NiCo2O4 nanosheet arrays by surface sulfation. J. Mater. Chem. A Mater. Energy Sustain., 2018, 6, 8742-8749.
[http://dx.doi.org/10.1039/C8TA01442F]
[23]
Lai, H.; Shang, L.; Wu, Q.; Yang, L.; Zhao, J.; Li, H.; Lyu, Z.; Wang, X.; Hu, Z. Spinel nickel cobaltite mesostructures assembled from ultrathin nanosheets for high-performance electrochemical energy storage. ACS Appl. Energy Mater., 2018, 1(2), 684-691.
[http://dx.doi.org/10.1021/acsaem.7b00178]
[24]
Pendashteh, A.; Moosavifard, S.E.; Rahmanifar, M.S.; Wang, Y.; El-Kady, M.F.; Kaner, R.B.; Mousavi, M.F. Highly ordered mesoporous CuCo2O4 nanowires, a promising solution for high-performance supercapacitors. Chem. Mater., 2015, 27, 3919-3926.
[http://dx.doi.org/10.1021/acs.chemmater.5b00706]
[25]
Sudha, V.; Annadurai, K.; Kumar, S.M.S.; Thangamuthu, R. CuCo2O4 nanobricks as electrode for enhanced electrochemical determination of hydroxylamine. Ionics, 2019, 25, 5023-5034.
[http://dx.doi.org/10.1007/s11581-019-03026-0]
[26]
Wang, P-X.; Shao, L.; Zhang, N-Q.; Sun, K-N. Mesoporous CuCo2O4 nanoparticles as an efficient cathode catalyst for Li-O2 batteries. J. Power Sources, 2016, 325, 506-512.
[http://dx.doi.org/10.1016/j.jpowsour.2016.06.065]
[27]
Bhardwaj, M.; Suryawanshi, A.; Fernandes, R.; Tonda, S.; Banerjee, A.; Kothari, D.; Ogale, S. CuCo2O4 nanowall morphology as Li-ion battery anode: Enhancing electrochemical performance through stoichiometry control. Mater. Res. Bull., 2017, 90, 303-310.
[http://dx.doi.org/10.1016/j.materresbull.2016.12.014]
[28]
Pawar, S.M.; Pawar, B.S.; Babar, P.T.; Ahmeda, A.T.A.; Chavan, H.S.; Jo, Y.; Cho, S.; Kim, J.; Hou, B.; Inamdar, A.I.; Cha, S.; Kim, J.H.; Kim, T.G.; Kima, H. Im, H. Nanoporous CuCo2O4 nanosheets as a highly efficient bifunctional electrode for supercapacitors and water oxidation catalysis. Appl. Surf. Sci., 2019, 470, 360-367.
[http://dx.doi.org/10.1016/j.apsusc.2018.11.151]
[29]
Li, Y-Q.; Li, J-C.; Han, L-P.; Shi, H.; Wen, Z.; Liu, G.; Lang, X-Y.; Jiang, Q. 3D Hierarchical Ni/NiCo2O4 core-shell nanotube arrays with high capacitance and stable cycling performance for supercapacitor. Curr. Nanosci., 2018, 14, 1.
[30]
Rani, B.J.; Nivedha, K.; Ravi, G.; Yuvakkumar, R. Electrochemical water oxidation of NiCo2O4 and CoNi2S4 nanospheres supported on Ni foam substrate. Chem. Select, 2019, 4, 10122-10132.
[http://dx.doi.org/10.1002/slct.201902051]
[31]
Pandi, K.; Sivakumar, M.; Chen, S.M.; Cheng, Y.H.; Chen, T.W. Hydrothermal synthesis of carbon coated NiCo2O4 nano flower for the electrochemical oxidation of sulfite in real sample. Int. J. Electrochem. Sci., 2018, 13, 1227-1240.
[http://dx.doi.org/10.20964/2018.02.27]
[32]
Bazgir, S.; Farhadi, S. Microwave-assisted rapid synthesis of Co3O4 nanorods from CoC2O4.2H2O nanorods and its application in photocatalytic degradation of methylene blue under visible light irradiation. Int. J. Nanodimens., 2017, 8(4), 284-297.
[33]
Liang, X.; Wang, Q.; Ma, Y.; Zhang, D. A high performance asymmetric supercapacitor based on in situ prepared CuCo2O4 nanowires and PPy nanoparticles on a two-ply carbon nanotube yarn. Dalton Trans., 2018, 47(47), 17146-17152.
[http://dx.doi.org/10.1039/C8DT03938K] [PMID: 30467563]
[34]
Zequine, C.; Wang, F.; Li, X.; Guragain, D.; Mishra, S.R.; Siam, K.; Kahol, P.K.; Gupta, R.K. Nanosheets of CuCo2O4 As a high-performance electrocatalyst in urea oxidation. Appl. Sci. (Basel), 2019, 9, 793.
[http://dx.doi.org/10.3390/app9040793]
[35]
Bikkarolla, S.K.; Papakonstantinou, P. CuCo2O4 nanoparticles on nitrogenated graphene as highly efficient oxygen evolution catalyst. J. Power Sources, 2015, 281, 243-251.
[http://dx.doi.org/10.1016/j.jpowsour.2015.01.192]
[36]
Pendashteh, A.; Rahmanifar, M.S.; Kaner, R.B.; Mousavi, M.F. Facile synthesis of nanostructured CuCo2O4 as a novel electrode material for high-rate supercapacitors. Chem. Commun. (Camb.), 2014, 50(16), 1972-1975.
[http://dx.doi.org/10.1039/c3cc48773c] [PMID: 24407248]
[37]
Janjua, M.R.S.A. Synthesis of Co3O4 nano aggregates by co-precipitation method and its catalytic and fuel additive applications. Open Chem., 2019, 17, 865-873.
[http://dx.doi.org/10.1515/chem-2019-0100]
[38]
Shanmugavani, A.; Selvan, K.R. Improved electrochemical performances of CuCo2O4/CuO nanocomposites for asymmetric supercapacitors. Electrochim. Acta, 2016, 188, 852-862.
[http://dx.doi.org/10.1016/j.electacta.2015.12.077]
[39]
Zhang, K. Zeng, W.; Zhang, G.; Hou, Sucheng; Wang, Fei; Wang, Taihong; Duan, H. Hierarchical CuCo2O4 nanowire@NiCo2O4 nanosheet core/shell arrays for high-performance supercapacitors. RSC Advances, 2015, 5, 69636-69641.
[http://dx.doi.org/10.1039/C5RA11007F]
[40]
Luo, W.; Xue, H. The synthesis and electrochemical performance of NiCo2O4 embedded carbon nanofibers for high-performance supercapacitors. Fuller. Nanotub. Car. N., 2019, 27(3), 189-197.
[http://dx.doi.org/10.1080/1536383X.2018.1538131]
[41]
Papadas, I.T.; Ioakeimidis, A.; Armatas, G.S.; Choulis, S.A. Low-temperature combustion synthesis of a spinel NiCo2O4 hole transport layer for perovskite photovoltaics. Adv. Sci. (Weinh.), 2018, 5(5)1701029
[http://dx.doi.org/10.1002/advs.201701029] [PMID: 29876223]
[42]
Kumar, Y.A.; Kim, H.J. Preparation and electrochemical performance of NiCo2O4@NiCo2O4 composite nanoplates for high performance supercapacitor applications. New J. Chem., 2018, 42, 19971.
[http://dx.doi.org/10.1039/C8NJ05401K]
[43]
Saraf, M. Natarajan, Kaushik; Mobin, S. M. Multifunctional porous NiCo2O4 nanorods: Sensitive enzymeless glucose detection and supercapacitor properties with impedance spectroscopic investigations. New J. Chem., 2017, 41, 9299-9313.
[http://dx.doi.org/10.1039/C7NJ01519D]
[44]
Vennela, A.B.; Mangalaraj, D.; Muthukumarasamy, N.; Agilan, S.; Hemalatha, K.V. Structural and optical properties of Co3O4 nanoparticles prepared by sol-gel technique for photocatalytic application. Int. J. Electrochem. Sci., 2019, 14, 3535-3552.
[http://dx.doi.org/10.20964/2019.04.40]
[45]
Ali, G.A.M.; Fouad, O.A.; Makhlouf, S.A.; Yusoff, M.M.; Chong, K.F. Co3O4/SiO2 nanocomposites for supercapacitor application. J. Solid State Electrochem., 2014, 18, 2505-2512.
[http://dx.doi.org/10.1007/s10008-014-2510-3]
[46]
Kalubarme, R.S.; Jadhav, S.M.; Kale, B.B.; Gosavi, S.W.; Terashima, C.; Fujishima, A. Porous Mn-doped cobalt oxide@C nanocomposite: A stable anode material for Li-ion rechargeable batteries. Nanotechnology, 2018, 29(28)285705
[http://dx.doi.org/10.1088/1361-6528/aac034] [PMID: 29697053]
[47]
Jiang, Y.; Chai, K.; Wang, Y.; Zhang, H.; Xu, W.; Li, W.; Shi, Y. Mesoporous silica-supported CuCo2O4 mixed-metal oxides for the aerobic oxidation of alcohols. Appl. Nano Mater, 2019, 2(7), 4435-4442.
[http://dx.doi.org/10.1021/acsanm.9b00828]
[48]
Das, A.K.; Kim, N.H.; Lee, S.H.; Sohn, Y.; Lee, J.H. Facile synthesis of porous CuCo2O4 composite sheets and their supercapacitive performance. Compos.B. Eng., 2018, 150, 234-241.
[http://dx.doi.org/10.1016/j.compositesb.2018.05.028]
[49]
Jain, S.; Patrike, A.; Badadhe, S.S.; Bhardwaj, M.; Ogale, S. Room-temperature ammonia gas sensing using mixed-valent CuCo2O4 nanoplatelets: Performance enhancement through stoichiometry control. ACS Omega, 2018, 3(2), 1977-1982.
[http://dx.doi.org/10.1021/acsomega.7b01958] [PMID: 31458506]
[50]
Ahmed, A.T.A.; Hou, B.; Inamdar, A.I.; Cha, S.N.; Kim, H.; Im, H. Morphology engineering of self-assembled nanostructured CuCo2O4 anodes for lithium-ion batteries. Energy Technol. (Weinheim), 2019, 71900295
[http://dx.doi.org/10.1002/ente.201900295]
[51]
Feng, Y.; Liu, J. Wub, Deli; Zhou, Z.; Deng, Y.; Zhang, T.; Shih, K. Efficient degradation of sulfamethazine with CuCo2O4 spinel nanocatalysts for peroxymonosulfate activation. Chem. Eng. J., 2015, 280, 514-524.
[http://dx.doi.org/10.1016/j.cej.2015.05.121]
[52]
Wang, Y.; Yao, L.; Liu, X.; Cheng, J.; Liu, W.; Liu, T.; Sun, M.; Zhao, L.; Ding, F.; Lu, Z.; Zou, P.; Wang, X.; Zhao, Q.; Rao, H. CuCo2O4/N-Doped CNTs loaded with molecularly imprinted polymer for electrochemical sensor: Preparation, characterization and detection of metronidazole. Biosens. Bioelectron., 2019, 142111483
[http://dx.doi.org/10.1016/j.bios.2019.111483] [PMID: 31279173]
[53]
Zhang, Y. Xu, J.; Zheng, Y.; Zhang, Y.; Hu, X.; Xu, T. Construction of CuCo2O4@CuCo2O4 hierarchical nanowire arrays grown on Ni foam for high performance supercapacitors. RSC Advances, 2017, 7, 3983-3991.
[http://dx.doi.org/10.1039/C6RA25970G]
[54]
Yedluri, A.K.; Kim, H.J. Enhanced electrochemical performance of nanoplate nickel cobaltite (NiCo2O4) supercapacitor applications. RSC Advances, 2019, 9, 1115-1122.
[http://dx.doi.org/10.1039/C8RA09081E]
[55]
Li, X.; Liu, Y.; Jin, Z.; Li, P.; Chen, X.; Xiao, D. Enhanced electrochemical performance of C-NiO/NiCo2O4//AC asymmetric supercapacitor based on material design and device exploration. Electrochim. Acta, 2019, 296, 335-344.
[http://dx.doi.org/10.1016/j.electacta.2018.11.011]
[56]
Peres, A.P.S.; Lima, A.C.; Barros, B.S.; Ruiz, J.A.C.; Melo, D.M.A. Performance evaluation of NiCo2O4 spinel as a catalyst for partial oxidation of methane. Rev. Mat., 2019, 24, 1.
[57]
Bai, Y.; Wang, R.; Lu, X.; Sun, J.; Gao, L. Template method to controllable synthesis 3D porous NiCo2O4 with enhanced capacitance and stability for supercapacitors. J. Colloid Interface Sci., 2016, 468, 1-9.
[http://dx.doi.org/10.1016/j.jcis.2016.01.020] [PMID: 26821146]
[58]
Dong, J.; Song, L.; Yin, J.J.; He, W.; Wu, Y.; Gu, N.; Zhang, Y. Co3O4 nanoparticles with multi-enzyme activities and their application in immunohistochemical assay. ACS Appl. Mater. Interfaces, 2014, 6(3), 1959-1970.
[http://dx.doi.org/10.1021/am405009f] [PMID: 24387092]
[59]
Ibupoto, Z.H.; Elhag, S.; AlSalhi, M.S.; Nur, O.; Willander, M. Effect of urea on the morphology of Co3O4 nanostructures and their application for potentiometric glucose biosensor. Electroanalysis, 2014, 8(26), 1773-1781.
[http://dx.doi.org/10.1002/elan.201400116]
[60]
Bazrafshan, H.; Touba, R.S.; Tesieh, Z.A.; Dabirnia, S.; Nasernejad, B. Hydrothermal synthesis of Co3O4 nanosheets and its application in photoelectrochemical water splitting. Chem. Eng. Commun., 2017, 204(10), 1105-1112.
[http://dx.doi.org/10.1080/00986445.2017.1344651]
[61]
Duan, Q.; Chen, H. Synthesis and electrochemical properties of Co3O4 nanoparticles by hydrothermal method at different temperatures. Mater. Sci. Eng., 2017, 207012020
[62]
Guo, C.; Yin, M.; Wu, C.; Li, J.; Sun, C.; Jia, C.; Li, T.; Hou, L.; Wei, Y. Highly stable gully-network Co3O4 nanowire arrays as battery-type electrode for outstanding supercapacitor performance. Front Chem., 2018, 6(636), 636.
[http://dx.doi.org/10.3389/fchem.2018.00636] [PMID: 30622941]
[63]
Jang, G.S.; Ameen, S.; Akhtar, M.S.; Kim, E.; Shin, H-S. Electrochemical investigations of hydrothermally synthesized porous cobalt oxide (Co3O4) nanorods: Supercapacitor application. ChemistrySelect, 2017, 2, 8941-8949.
[http://dx.doi.org/10.1002/slct.201701571]
[64]
Elhag, S.; Ibupoto, Z.H.; Nour, O.; Willander, M. Synthesis of Co3O4 cotton-like nanostructures for cholesterol biosensor. Materials (Basel), 2014, 8(1), 149-161.
[http://dx.doi.org/10.3390/ma8010149] [PMID: 28787929]
[65]
Uddin, M.K.; Baig, U. Synthesis of Co3O4 nanoparticles and their performance towards methyl orange dye removal: Characterisation, adsorption and response surface methodology. J. Clean. Prod., 2019, 211, 1141-1153.
[http://dx.doi.org/10.1016/j.jclepro.2018.11.232]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy