Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Nano Metal Based Herbal Theranostics for Cancer Management: Coalescing Nature’s Boon with Nanotechnological Advancement

Author(s): Yogesh Pandey and Sonu Ambwani*

Volume 23, Issue 1, 2022

Published on: 22 January, 2021

Page: [30 - 46] Pages: 17

DOI: 10.2174/1389201022666210122141724

Price: $65

Abstract

Cancer is amongst the leading public health problems globally with continuously increasing prevalence rate that demands for extensive and expensive treatment. Despite availability of number of potential cancer therapies, inadequate success has been achieved due to complexity and heterogeneity of tumors. Moreover, late/ terminal stage cancer leads to multidrug resistance, excruciating side effects, recurrence, etc. This is because of low penetrability and deleterious effects of drug on non-target cells/ tissues. This requires for cost effective, efficacious, alternative/ adjunct, complementary medicines with targeted drug delivery approach. A potential strategy to resolve this difficulty is to use theranostics i.e., formulations having both a therapeutic element and an imaging agent. Phytotherapeutics have been extensively used since times immemorial, having wide acceptability, easy availability, minimal side effects and comparatively inexpensive. These herbal formulations are mostly orally administered and thus subjected to adverse pH, enzymatic degradation, poor gut absorption, low bioavailability and non-targeted delivery that ultimately lead to their poor effectiveness. Constraints associated with conventional phyto-pharmaceuticals can be improved by designing and using “Nano Delivery Systems” (NDS). The foremost aim of metal based NDS is to provide sustained drug release, site-specific action, improved patient’s compliance and enhanced efficacy. Metal Nanocarriers carrying herbal drugs will avoid these obstructions, so the drug can circulate into the blood for a longer period of time and provide optimal amount of the drug to the site of action. Besides, herbal drugs with NDS thus would be efficacious as alternative/ complementary cancer theranostics. Present review describes novel theranostic systems employing metal nanocarriers with diagnostic and therapeutic properties as an effective strategy for cancer treatment. These systems when conjugated with herbal drugs provide an efficient management strategy for cancer.

Keywords: Metal nanoparticles, herbal plants, cancer, gold nanoparticles, silver nanoparticles, theranostics.

Graphical Abstract

[1]
El-Readi, M.Z.; Althubiti, M.A. Cancer nanomedicine: A new era of successful targeted therapy. J. Nanomater.2019, 2019.Article ID 4927312..
[http://dx.doi.org/10.1155/2019/4927312]
[2]
Chabner, B.A.; Roberts, T.G. Jr Timeline: Chemotherapy and the war on cancer. Nat. Rev. Cancer, 2005, 5(1), 65-72.
[http://dx.doi.org/10.1038/nrc1529 ] [PMID: 15630416]
[3]
Pene, F.; Courtine, E.; Cariou, A.; Mira, J.P. Toward theragnostics. Crit. Care Med., 2009, 37(1)(Suppl.), S50-S58.
[http://dx.doi.org/10.1097/CCM.0b013e3181921349 ] [PMID: 19104225]
[4]
Yin, S.Y.; Wei, W.C.; Jian, F.Y.; Yang, N.S. Therapeutic applications of herbal medicines for cancer patients. Evid. Based Complement. Alternat. Med., 2013, 2013(Oct)
[http://dx.doi.org/10.1155/2013/302426 ] [PMID: 23956768]
[5]
Jantarat, C. Bioavailability enhancement techniques of herbal medicine: A case example of curcumin. Int. J. Pharm. Pharm. Sci., 2013, 5, 493-500.
[6]
Ambwani, S.; Tandon, R.; Ambwani, T.K.; Malik, Y.S. Current knowledge on nanodelivery systems and their beneficial applications in enhancing the efficacy of herbal drugs. J. Exp. Biol. Agric. Sci., 2018, 6(1), 87-107.
[http://dx.doi.org/10.18006/2018.6(1).87.107]
[7]
Pachon, L.D.; Rothenberg, G. Transition‐metal nanoparticles: synthesis, stability and the leaching issue. Appl. Organomet. Chem., 2008, 22(6), 288-299.
[http://dx.doi.org/10.1002/aoc.1382]
[8]
Mukherjee, S.; Patra, C.R. Biologically synthesized metal nanoparticles: Recent advancement and future perspectives in cancer theranostics. Fut. Sci. 2017, 3(3).,
[http://dx.doi.org/10.4155/fsoa-2017-0035]
[9]
Mody, V.V.; Siwale, R.; Singh, A.; Mody, H.R. Introduction to metallic nanoparticles. J. Pharm. Bioallied Sci., 2010, 2(4), 282-289.
[http://dx.doi.org/10.4103/0975-7406.72127 ] [PMID: 21180459]
[10]
Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem., 2019, 12(7), 908-931.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[11]
Kumar, H.; Venkatesh, N.; Bhowmik, H.; Kuila, A. Metallic nanoparticle: A review. Biomed. J. Scientif. Technic. Res., 2018, 4(2), 3765-3775.
[12]
Panigrahi, S.; Kundu, S.; Ghosh, S.; Nath, S.; Pal, T. General method of synthesis for metal nanoparticles. J. Nanopart. Res., 2004, 6(4), 411-414.
[http://dx.doi.org/10.1007/s11051-004-6575-2]
[13]
Bhattacharya, R.; Mukherjee, P. Biological properties of “naked” metal nanoparticles. Adv. Drug Deliv. Rev., 2008, 60(11), 1289-1306.
[http://dx.doi.org/10.1016/j.addr.2008.03.013 ] [PMID: 18501989]
[14]
Sun, Y.; Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002, 298(5601), 2176-9.
[15]
Sharma, H.; Mishra, P.K.; Talegaonkar, S.; Vaidya, B. Metal nanoparticles: A theranostic nanotool against cancer. Drug Discov. Today, 2015, 20(9), 1143-1151.
[http://dx.doi.org/10.1016/j.drudis.2015.05.009 ] [PMID: 26007605]
[16]
Azharuddin, M.; Zhu, G.H.; Das, D.; Ozgur, E.; Uzun, L.; Turner, A.P.F.; Patra, H.K. A repertoire of biomedical applications of noble metal nanoparticles. Chem. Commun. (Camb.), 2019, 55(49), 6964-6996.
[http://dx.doi.org/10.1039/C9CC01741K ] [PMID: 31140997]
[17]
Arvizo, R.R.; Bhattacharyya, S.; Kudgus, R.A.; Giri, K.; Bhattacharya, R.; Mukherjee, P. Intrinsic therapeutic applications of noble metal nanoparticles: Past, present and future. Chem. Soc. Rev., 2012, 41(7), 2943-2970.
[http://dx.doi.org/10.1039/c2cs15355f ] [PMID: 22388295]
[18]
Jamkhande, P.G.; Ghule, N.W.; Bamer, A.H.; Kalaskar, M.G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol., 2019, 53.
[http://dx.doi.org/10.1016/j.jddst.2019.101174]
[19]
Sharma, D.; Kanchi, S.; Bisetty, K. Biogenic synthesis of nanoparticles: A review. Arab. J. Chem., 2019, 12(8), 3576-3600.
[http://dx.doi.org/10.1016/j.arabjc.2015.11.002]
[20]
Virkutyte, J.; Varma, R.S. Green synthesis of metal nanoparticles: biodegradable polymers and enzymes in stabilization and surface functionalization. Chem. Sci. (Camb.), 2011, 2(5), 837-846.
[http://dx.doi.org/10.1039/C0SC00338G]
[21]
Hafez, D.A.; Elkhodairy, K.A; Teleb, M.; Elzoghby, A.O. Nanomedicine-based approaches for improved delivery of phyto-therapeutics for cancer therapy. Exp. Opin. Drug Deliv., 2020, 17(3).,
[http://dx.doi.org/10.1080/17425247.2020.1723542]
[22]
Yallapu, M.M.; Othman, S.F.; Curtis, E.T.; Bauer, N.A.; Chauhan, N.; Kumar, D.; Jaggi, M.; Chauhan, S.C. Curcumin-loaded magnetic nanoparticles for breast cancer therapeutics and imaging applications. Int. J. Nanomed, 2012, 7, 1761-1779.
[PMID: 22619526]
[23]
Ambwani, S.; Tandon, R.; Ambwani, T.K. Metal nanodelivery systems for improved efficacy of herbal drugs. Biosci. Biotechnol. Res. Asia, 2019, 16(2), 251.
[http://dx.doi.org/10.13005/bbra/2741]
[24]
Demetzos, C.; Pippa, N. Advanced drug delivery nanosystems (aDDnSs): A mini-review. Drug Deliv., 2014, 21(4), 250-257.
[http://dx.doi.org/10.3109/10717544.2013.844745 ] [PMID: 24134707]
[25]
Chang, J. Medicinal herbs: drugs or dietary supplements? Biochem. Pharmacol., 2000, 59(3), 211-219.
[http://dx.doi.org/10.1016/S0006-2952(99)00243-9 ] [PMID: 10609549]
[26]
Ceylan-Isik, A.F.; Fliethman, R.M.; Wold, L.E.; Ren, J. Herbal and traditional Chinese medicine for the treatment of cardiovascular complications in diabetes mellitus. Curr. Diabetes Rev., 2008, 4(4), 320-328.
[http://dx.doi.org/10.2174/157339908786241142 ] [PMID: 18991600]
[27]
Han, S.Y.; Li, P.P. Progress of research in antitumor mechanisms with Chinese medicine. Chin. J. Integr. Med., 2009, 15(4), 316-320.
[http://dx.doi.org/10.1007/s11655-009-0316-4 ] [PMID: 19688324]
[28]
Park, J.P.; Kim, J.H.; Park, M.K.; Yun, J.W. Potential agents for cancer and obesity treatment with herbal medicines from the green garden. Biotechnol. Bioprocess Eng.; BBE, 2011, 16(6), 1065-1076.
[http://dx.doi.org/10.1007/s12257-011-0215-3]
[29]
Xiang, Y.; Guo, Z.; Zhu, P.; Chen, J.; Huang, Y. Traditional Chinese medicine as a cancer treatment: Modern perspectives of ancient but advanced science. Cancer Med., 2019, 8(5), 1958-1975.
[http://dx.doi.org/10.1002/cam4.2108 ] [PMID: 30945475]
[30]
Jacobs, E.C Potential therapeutic effects of phytochemicals and medicinal herbs for cancer prevention and treatment. Arch. Gen. Intern. Med., 2018, 2(3), 44-48.
[http://dx.doi.org/10.4066/2591-7951.1000058]
[31]
Barry, M.A.; Behnke, C.A.; Eastman, A. Activation of programmed cell death (apoptosis) by cisplatin, other anticancer drugs, toxins and hyperthermia. Biochem. Pharmacol., 1990, 40(10), 2353-2362.
[http://dx.doi.org/10.1016/0006-2952(90)90733-2 ] [PMID: 2244936]
[32]
Tacar, O.; Sriamornsak, P.; Dass, C.R. Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J. Pharm. Pharmacol., 2013, 65(2), 157-170.
[http://dx.doi.org/10.1111/j.2042-7158.2012.01567.x ] [PMID: 23278683]
[33]
Hanauske, A.R Von Hoff, DD Preclinical and Early Clinical Development of Chemotherapeutic Drugs, Mechanism‐Based Agents and Biologics. Holland‐Frei Cancer Medicine, 2016, 17, 1-34.
[34]
Lin, S.R.; Fu, Y.S.; Tsai, M.J.; Cheng, H.; Weng, C.F. Natural compounds from herbs that can potentially execute as autophagy inducers for cancer therapy. Int. J. Mol. Sci., 2017, 18(7), 1412.
[http://dx.doi.org/10.3390/ijms18071412 ] [PMID: 28671583]
[35]
Massing, U.; Fuxius, S. Liposomal formulations of anticancer drugs: selectivity and effectiveness. Drug Resist. Updat., 2000, 3(3), 171-177.
[http://dx.doi.org/10.1054/drup.2000.0138 ] [PMID: 11498382]
[36]
Luqmani, Y.A. Mechanisms of drug resistance in cancer chemotherapy. Med. Princ. Pract., 2005, 14(Suppl. 1), 35-48.
[http://dx.doi.org/10.1159/000086183 ] [PMID: 16103712]
[37]
Kaasgaard, T.; Andresen, T.L. Liposomal cancer therapy: exploiting tumor characteristics. Expert Opin. Drug Deliv., 2010, 7(2), 225-243.
[http://dx.doi.org/10.1517/17425240903427940 ] [PMID: 20095944]
[38]
Díaz, M.R.; Vivas-Mejia, P.E. Nanoparticles as drug delivery systems in cancer medicine: Emphasis on RNAi-containing nanoliposomes. Pharmaceuticals (Basel), 2013, 6(11), 1361-1380.
[http://dx.doi.org/10.3390/ph6111361 ] [PMID: 24287462]
[39]
Persidis, A. Cancer multidrug resistance. Nat. Biotechnol., 1999, 17(1), 94-95.
[http://dx.doi.org/10.1038/5289 ] [PMID: 9920278]
[40]
Malam, Y.; Loizidou, M.; Seifalian, A.M. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol. Sci., 2009, 30(11), 592-599.
[http://dx.doi.org/10.1016/j.tips.2009.08.004 ] [PMID: 19837467]
[41]
Ashworth, A.; Lord, C.J.; Reis-Filho, J.S. Genetic interactions in cancer progression and treatment. Cell, 2011, 145(1), 30-38.
[http://dx.doi.org/10.1016/j.cell.2011.03.020 ] [PMID: 21458666]
[42]
Lim, E.K.; Kim, T.; Paik, S.; Haam, S.; Huh, Y.M.; Lee, K. Nanomaterials for theranostics: recent advances and future challenges. Chem. Rev., 2015, 115(1), 327-394.
[http://dx.doi.org/10.1021/cr300213b ] [PMID: 25423180]
[43]
Vinhas, R.; Cordeiro, M.; Carlos, F.F.; Mendo, S.; Fernandes, A.R.; Figueiredo, S.; Baptista, P.V. Gold nanoparticle-based theranostics: disease diagnostics and treatment using a single nanomaterial. Nanobiosen. Dis. Diagnosis, 2015, 4, 11.
[44]
Tapsell, L.C.; Hemphill, I.; Cobiac, L.; Sullivan, D.R.; Fenech, M.; Patch, C.S.; Roodenrys, S.; Keogh, J.B.; Clifton, P.M.; Williams, P.G.; Fazio, V.A. Health benefits of herbs and spices: the past, the present, the future. MJA, 2006, 185(S4), S1-S24.
[http://dx.doi.org/10.5694/j.1326-5377.2006.tb00548.x]
[45]
Wang, J.F.; Wei, D.Q.; Chou, K.C. Drug candidates from traditional Chinese medicines. Curr. Top. Med. Chem., 2008, 8(18), 1656-1665.
[http://dx.doi.org/10.2174/156802608786786633 ] [PMID: 19075772]
[46]
Kennedy, D.A.; Seely, D. Clinically based evidence of drug-herb interactions: a systematic review. Expert Opin. Drug Saf., 2010, 9(1), 79-124.
[http://dx.doi.org/10.1517/14740330903405593 ] [PMID: 20021292]
[47]
Fei, B.; Dai, W.; Zhao, S. Efficacy, safety, and cost of therapy of the traditional Chinese medicine, catalpol, in patients following surgical resection for locally advanced colon cancer. Med. Sci. Monit., 2018, 24, 3184-3192.
[http://dx.doi.org/10.12659/MSM.907569 ] [PMID: 29763415]
[48]
Zhou, J.; Fang, L.; Liao, J.; Li, L.; Yao, W.; Xiong, Z.; Zhou, X. Investigation of the anti-cancer effect of quercetin on HepG2 cells in vivo. PLoS One, 2017, 12(3)
[http://dx.doi.org/10.1371/journal.pone.0172838 ] [PMID: 28264020]
[49]
Chan, S.T.; Yang, N.C.; Huang, C.S.; Liao, J.W.; Yeh, S.L. Quercetin enhances the antitumor activity of trichostatin A through upregulation of p53 protein expression in vitro and in vivo. PLoS One, 2013, 8(1)
[http://dx.doi.org/10.1371/journal.pone.0054255 ] [PMID: 23342112]
[50]
Refolo, M.G.; D’Alessandro, R.; Malerba, N.; Laezza, C.; Bifulco, M.; Messa, C.; Caruso, M.G.; Notarnicola, M.; Tutino, V. Anti proliferative and pro apoptotic effects of flavonoid quercetin are mediated by CB1 receptor in human colon cancer cell lines. J. Cell. Physiol., 2015, 230(12), 2973-2980.
[http://dx.doi.org/10.1002/jcp.25026 ] [PMID: 25893829]
[51]
Tao, S.F.; He, H.F.; Chen, Q. Quercetin inhibits proliferation and invasion acts by up-regulating miR-146a in human breast cancer cells. Mol. Cell. Biochem., 2015, 402(1-2), 93-100.
[http://dx.doi.org/10.1007/s11010-014-2317-7 ] [PMID: 25596948]
[52]
Jang, M.; Cai, L.; Udeani, G.O.; Slowing, K.V.; Thomas, C.F.; Beecher, C.W.; Fong, H.H.; Farnsworth, N.R.; Kinghorn, A.D.; Mehta, R.G.; Moon, R.C.; Pezzuto, J.M. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science, 1997, 275(5297), 218-220.
[http://dx.doi.org/10.1126/science.275.5297.218 ] [PMID: 8985016]
[53]
Sharma, S.; Stutzman, J.D.; Kelloff, G.J.; Steele, V.E. Screening of potential chemopreventive agents using biochemical markers of carcinogenesis. Cancer Res., 1994, 54(22), 5848-5855.
[PMID: 7954413]
[54]
Uppala, P.T.; Dissmore, T.; Lau, B.H.; Andacht, T.; Rajaram, S. Selective inhibition of cell proliferation by lycopene in MCF-7 breast cancer cells in vitro: a proteomic analysis. Phytother. Res., 2013, 27(4), 595-601.
[http://dx.doi.org/10.1002/ptr.4764 ] [PMID: 22718574]
[55]
Gharib, A.; Faezizadeh, Z. In vitro anti-telomerase activity of novel lycopene-loaded nanospheres in the human leukemia cell line K562. Pharmacogn. Mag., 2014, 10(Suppl. 1), S157-S163.
[http://dx.doi.org/10.4103/0973-1296.127368 ] [PMID: 24914298]
[56]
Haddad, N.F.; Teodoro, A.J.; Leite de Oliveira, F.; Soares, N.; de Mattos, R.M.; Hecht, F.; Dezonne, R.S.; Vairo, L.; Goldenberg, R.C.; Gomes, F.C.; de Carvalho, D.P.; Gadelha, M.R.; Nasciutti, L.E.; Miranda-Alves, L. Lycopene and beta-carotene induce growth inhibition and proapoptotic effects on ACTH-secreting pituitary adenoma cells. PLoS One, 2013, 8(5)
[http://dx.doi.org/10.1371/journal.pone.0062773 ] [PMID: 23667519]
[57]
Elgass, S.; Cooper, A.; Chopra, M. Lycopene treatment of prostate cancer cell lines inhibits adhesion and migration properties of the cells. Int. J. Med. Sci., 2014, 11(9), 948-954.
[http://dx.doi.org/10.7150/ijms.9137 ] [PMID: 25076850]
[58]
Fu, L.; Chen, W.; Guo, W.; Wang, J.; Tian, Y.; Shi, D.; Zhang, X.; Qiu, H.; Xiao, X.; Kang, T.; Huang, W.; Wang, S.; Deng, W. Berberine targets AP-2/hTERT, NF-κB/COX-2, HIF-1α/VEGF and cytochrome-c/caspase signaling to suppress human cancer cell growth. PLoS One, 2013, 8(7)
[http://dx.doi.org/10.1371/journal.pone.0069240 ] [PMID: 23869238]
[59]
Wan, L.; Tan, H.L.; Thomas-Ahner, J.M.; Pearl, D.K.; Erdman, J.W., Jr; Moran, N.E.; Clinton, S.K. Dietary tomato and lycopene impact androgen signaling- and carcinogenesis-related gene expression during early TRAMP prostate carcinogenesis. Cancer Prev. Res. (Phila.), 2014, 7(12), 1228-1239.
[http://dx.doi.org/10.1158/1940-6207.CAPR-14-0182 ] [PMID: 25315431]
[60]
Xie, J.; Yang, Z.; Zhou, C.; Zhu, J.; Lee, R.J.; Teng, L. Nanotechnology for the delivery of phytochemicals in cancer therapy. Biotechnol. Adv., 2016, 34(4), 343-353.
[http://dx.doi.org/10.1016/j.biotechadv.2016.04.002 ] [PMID: 27071534]
[61]
Surh, Y.J.; Chun, K.S. Cancer chemopreventive effects of curcumin; The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease, 2007, pp. 149-172.
[62]
Aggarwal, B.B.; Surh, Y.J.; Shishodia, S., Eds.; The molecular targets and therapeutic uses of curcumin in health and disease; , 2007.
[http://dx.doi.org/10.1007/978-0-387-46401-5]
[63]
Busquets, S.; Carbó, N.; Almendro, V.; Quiles, M.T.; López-Soriano, F.J.; Argilés, J.M. Curcumin, a natural product present in turmeric, decreases tumor growth but does not behave as an anticachectic compound in a rat model. Cancer Lett., 2001, 167(1), 33-38.
[http://dx.doi.org/10.1016/S0304-3835(01)00456-6 ] [PMID: 11323096]
[64]
Bao, B.; Ali, S.; Banerjee, S.; Wang, Z.; Logna, F.; Azmi, A.S.; Kong, D.; Ahmad, A.; Li, Y.; Padhye, S.; Sarkar, F.H. Curcumin analogue CDF inhibits pancreatic tumor growth by switching on suppressor microRNAs and attenuating EZH2 expression. Cancer Res., 2012, 72(1), 335-345.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-2182 ] [PMID: 22108826]
[65]
Ali, S.; Ahmad, A.; Aboukameel, A.; Bao, B.; Padhye, S.; Philip, P.A.; Sarkar, F.H. RETRACTED: Increased Ras GTPase activity is regulated by miRNAs that can be attenuated by CDF treatment in pancreatic cancer cells. Cancer Lett., 2012, 319(2), 173-181.
[66]
Dorai, T.; Cao, Y.C.; Dorai, B.; Buttyan, R.; Katz, A.E. Therapeutic potential of curcumin in human prostate cancer. III. Curcumin inhibits proliferation, induces apoptosis, and inhibits angiogenesis of LNCaP prostate cancer cells in vivo. Prostate, 2001, 47(4), 293-303.
[http://dx.doi.org/10.1002/pros.1074 ] [PMID: 11398177]
[67]
Li, M.; Zhang, Z.; Hill, D.L.; Wang, H.; Zhang, R. Curcumin, a dietary component, has anticancer, chemosensitization, and radiosensitization effects by down-regulating the MDM2 oncogene through the PI3K/mTOR/ETS2 pathway. Cancer Res., 2007, 67(5), 1988-1996.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3066 ] [PMID: 17332326]
[68]
Menon, L.G.; Kuttan, R.; Kuttan, G. Inhibition of lung metastasis in mice induced by B16F10 melanoma cells by polyphenolic compounds. Cancer Lett., 1995, 95(1-2), 221-225.
[http://dx.doi.org/10.1016/0304-3835(95)03887-3 ] [PMID: 7656234]
[69]
Cai, Y.Y.; Lin, W.P.; Li, A.P.; Xu, J.Y. Combined effects of curcumin and triptolide on an ovarian cancer cell line. Asian Pac. J. Cancer Prev., 2013, 14(7), 4267-4271.
[http://dx.doi.org/10.7314/APJCP.2013.14.7.4267 ] [PMID: 23991988]
[70]
Yang, C.L.; Liu, Y.Y.; Ma, Y.G.; Xue, Y.X.; Liu, D.G.; Ren, Y.; Liu, X.B.; Li, Y.; Li, Z. Curcumin blocks small cell lung cancer cells migration, invasion, angiogenesis, cell cycle and neoplasia through Janus kinase-STAT3 signalling pathway. PLoS One, 2012, 7(5)
[http://dx.doi.org/10.1371/journal.pone.0037960 ] [PMID: 22662257]
[71]
Tanaka, T.; Makita, H.; Ohnishi, M.; Hirose, Y.; Wang, A.; Mori, H.; Satoh, K.; Hara, A.; Ogawa, H. Chemoprevention of 4-nitroquinoline 1-oxide-induced oral carcinogenesis by dietary curcumin and hesperidin: Comparison with the protective effect of β-carotene. Cancer Res., 1994, 54(17), 4653-4659.
[PMID: 8062259]
[72]
Ortiz, L.M.; Lombardi, P.; Tillhon, M.; Scovassi, A.I. Berberine, an epiphany against cancer. Molecules, 2014, 19(8), 12349-12367.
[http://dx.doi.org/10.3390/molecules190812349 ] [PMID: 25153862]
[73]
Kim, J.B.; Yu, J.H.; Ko, E.; Lee, K.W.; Song, A.K.; Park, S.Y.; Shin, I.; Han, W.; Noh, D.Y. The alkaloid Berberine inhibits the growth of Anoikis-resistant MCF-7 and MDA-MB-231 breast cancer cell lines by inducing cell cycle arrest. Phytomedicine, 2010, 17(6), 436-440.
[http://dx.doi.org/10.1016/j.phymed.2009.08.012 ] [PMID: 19800775]
[74]
Park, K.S.; Kim, J.B.; Bae, J.; Park, S.Y.; Jee, H.G.; Lee, K.E.; Youn, Y.K. Berberine inhibited the growth of thyroid cancer cell lines 8505C and TPC1. Yonsei Med. J., 2012, 53(2), 346-351.
[http://dx.doi.org/10.3349/ymj.2012.53.2.346 ] [PMID: 22318822]
[75]
James, M.A.; Fu, H.; Liu, Y.; Chen, D.R.; You, M. Dietary administration of berberine or Phellodendron amurense extract inhibits cell cycle progression and lung tumorigenesis. Mol. Carcinog., 2011, 50(1), 1-7.
[http://dx.doi.org/10.1002/mc.20690 ] [PMID: 21061266]
[76]
Pierpaoli, E.; Arcamone, A.G.; Buzzetti, F.; Lombardi, P.; Salvatore, C.; Provinciali, M. Antitumor effect of novel berberine derivatives in breast cancer cells. Biofactors, 2013, 39(6), 672-679.
[http://dx.doi.org/10.1002/biof.1131 ] [PMID: 24000115]
[77]
Refaat, A.; Abdelhamed, S.; Yagita, H.; Inoue, H.; Yokoyama, S.; Hayakawa, Y.; Saiki, I. Berberine enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in breast cancer. Oncol. Lett., 2013, 6(3), 840-844.
[http://dx.doi.org/10.3892/ol.2013.1434 ] [PMID: 24137422]
[78]
Marverti, G.; Ligabue, A.; Lombardi, P.; Ferrari, S.; Monti, M.G.; Frassineti, C.; Costi, M.P. Modulation of the expression of folate cycle enzymes and polyamine metabolism by berberine in cisplatin-sensitive and -resistant human ovarian cancer cells. Int. J. Oncol., 2013, 43(4), 1269-1280.
[http://dx.doi.org/10.3892/ijo.2013.2045 ] [PMID: 23903781]
[79]
Katiyar, S.K; Meeran, S.M; Katiyar, N.; Akhtar, S. p53 cooperates berberine-induced growth inhibition and apoptosis of non-small cell human lung cancer cells in vitro and tumor xenograft growth in vivo. Mol. Carcinog., 2009, 48(1), 24-37.
[80]
Patil, J.B.; Kim, J.; Jayaprakasha, G.K. Berberine induces apoptosis in breast cancer cells (MCF-7) through mitochondrial-dependent pathway. Eur. J. Pharmacol., 2010, 645(1-3), 70-78.
[http://dx.doi.org/10.1016/j.ejphar.2010.07.037 ] [PMID: 20691179]
[81]
Piyanuch, R.; Sukhthankar, M.; Wandee, G.; Baek, S.J. Berberine, a natural isoquinoline alkaloid, induces NAG-1 and ATF3 expression in human colorectal cancer cells. Cancer Lett., 2007, 258(2), 230-240.
[http://dx.doi.org/10.1016/j.canlet.2007.09.007 ] [PMID: 17964072]
[82]
Mahata, S.; Bharti, A.C.; Shukla, S.; Tyagi, A.; Husain, S.A.; Das, B.C. Berberine modulates AP-1 activity to suppress HPV transcription and downstream signaling to induce growth arrest and apoptosis in cervical cancer cells. Mol. Cancer, 2011, 10(1), 39.
[http://dx.doi.org/10.1186/1476-4598-10-39 ] [PMID: 21496227]
[83]
Hwang, K.A.; Park, M.A.; Kang, N.H.; Yi, B.R.; Hyun, S.H.; Jeung, E.B.; Choi, K.C. Anticancer effect of genistein on BG-1 ovarian cancer growth induced by 17 β-estradiol or bisphenol A via the suppression of the crosstalk between estrogen receptor α and insulin-like growth factor-1 receptor signaling pathways. Toxicol. Appl. Pharmacol., 2013, 272(3), 637-646.
[http://dx.doi.org/10.1016/j.taap.2013.07.027 ] [PMID: 23933164]
[84]
Zhang, Z.; Wang, C.Z.; Du, G.J.; Qi, L.W.; Calway, T.; He, T.C.; Du, W.; Yuan, C.S. Genistein induces G2/M cell cycle arrest and apoptosis via ATM/p53-dependent pathway in human colon cancer cells. Int. J. Oncol., 2013, 43(1), 289-296.
[http://dx.doi.org/10.3892/ijo.2013.1946 ] [PMID: 23686257]
[85]
Luo, Y.; Wang, S.X.; Zhou, Z.Q.; Wang, Z.; Zhang, Y.G.; Zhang, Y.; Zhao, P. Apoptotic effect of genistein on human colon cancer cells via inhibiting the nuclear factor-kappa B (NF-κB) pathway. Tumour Biol., 2014, 35(11), 11483-11488.
[http://dx.doi.org/10.1007/s13277-014-2487-7 ] [PMID: 25128065]
[86]
Choi, E.J.; Jung, J.Y.; Kim, G.H. Genistein inhibits the proliferation and differentiation of MCF-7 and 3T3-L1 cells via the regulation of ERα expression and induction of apoptosis. Exp. Ther. Med., 2014, 8(2), 454-458.
[http://dx.doi.org/10.3892/etm.2014.1771 ] [PMID: 25009600]
[87]
Yamasaki, M.; Mine, Y.; Nishimura, M.; Fujita, S.; Sakakibara, Y.; Suiko, M.; Morishita, K.; Nishiyama, K. Genistein induces apoptotic cell death associated with inhibition of the NF-κB pathway in adult T-cell leukemia cells. Cell Biol. Int., 2013, 37(7), 742-747.
[http://dx.doi.org/10.1002/cbin.10101 ] [PMID: 23526666]
[88]
Hirata, H.; Hinoda, Y.; Shahryari, V.; Deng, G.; Tanaka, Y.; Tabatabai, Z.L.; Dahiya, R. Genistein downregulates onco-miR-1260b and upregulates sFRP1 and Smad4 via demethylation and histone modification in prostate cancer cells. Br. J. Cancer, 2014, 110(6), 1645-1654.
[http://dx.doi.org/10.1038/bjc.2014.48 ] [PMID: 24504368]
[89]
Hirata, H.; Ueno, K.; Nakajima, K.; Tabatabai, Z.L.; Hinoda, Y.; Ishii, N.; Dahiya, R. Genistein downregulates onco-miR-1260b and inhibits Wnt-signalling in renal cancer cells. Br. J. Cancer, 2013, 108(10), 2070-2078.
[http://dx.doi.org/10.1038/bjc.2013.173 ] [PMID: 23591200]
[90]
Auyeung, K.K.; Han, Q.B.; Ko, J.K. Astragalus membranaceus: A review of its protection against inflammation and gastrointestinal cancers. Am. J. Chin. Med., 2016, 44(1), 1-22.
[http://dx.doi.org/10.1142/S0192415X16500014 ] [PMID: 26916911]
[91]
Baliga, M.S. Triphala, Ayurvedic formulation for treating and preventing cancer: a review. J. Altern. Complement. Med., 2010, 16(12), 1301-1308.
[http://dx.doi.org/10.1089/acm.2009.0633 ] [PMID: 21138390]
[92]
Bayor, M.T.; Ayim, J.S.; Marston, G.; Phillips, R.M.; Shnyder, S.D.; Wheelhouse, R.T.; Wright, C.W. A cytotoxic diterpenoid from Croton membranaceus, the major constituent of anticancer herbal formulations used in Ghana. Nat. Prod. Commun., 2008, 3(11)
[http://dx.doi.org/10.1177/1934578X0800301116]
[93]
Ngamkitidechakul, C.; Jaijoy, K.; Hansakul, P.; Soonthornchareonnon, N.; Sireeratawong, S. Antitumour effects of Phyllanthus emblica L.: Induction of cancer cell apoptosis and inhibition of in vivo tumour promotion and in vitro invasion of human cancer cells. Phytother. Res., 2010, 24(9), 1405-1413.
[http://dx.doi.org/10.1002/ptr.3127 ] [PMID: 20812284]
[94]
Ho, J.W.; Hon, P.L.; Chim, W.O. Effects of oxymatrine from Ku Shen on cancer cells. Anticancer. Agents Med. Chem., 2009, 9(8), 823-826.
[http://dx.doi.org/10.2174/187152009789124673]
[95]
Hsieh, T.C.; Lu, X.; Chea, J.; Wu, J.M. Prevention and management of prostate cancer using PC-SPES: A scientific perspective. J. Nutr., 2002, 132(11)(Suppl.), 3513S-3517S.
[http://dx.doi.org/10.1093/jn/132.11.3513S ] [PMID: 12421879]
[96]
Liu, S.H.; Cheng, Y.C. Old formula, new Rx: The journey of PHY906 as cancer adjuvant therapy. J. Ethnopharmacol., 2012, 140(3), 614-623.
[http://dx.doi.org/10.1016/j.jep.2012.01.047 ] [PMID: 22326673]
[97]
Malik, F.; Kumar, A.; Bhushan, S.; Mondhe, D.M.; Pal, H.C.; Sharma, R.; Khajuria, A.; Singh, S.; Singh, G.; Saxena, A.K.; Suri, K.A.; Qazi, G.N.; Singh, J. Immune modulation and apoptosis induction: Two sides of antitumoural activity of a standardised herbal formulation of Withania somnifera. Eur. J. Cancer, 2009, 45(8), 1494-1509.
[http://dx.doi.org/10.1016/j.ejca.2009.01.034 ] [PMID: 19269163]
[98]
Dhar, M.L.; Dhar, M.M.; Dhawan, B.N.; Mehrotra, B.N.; Ray, C. Screening of Indian plants for biological activity: I. Indian J. Exp. Biol., 1968, 6(4), 232-247.
[PMID: 5720682]
[99]
Gupta, S.; Zhang, D.; Yi, J.; Shao, J. Anticancer activities of Oldenlandia diffusa. J. Herb. Pharmacother., 2004, 4(1), 21-33.
[http://dx.doi.org/10.1080/J157v04n01_03 ] [PMID: 15273074]
[100]
Koo, H.N.; Hong, S.H.; Song, B.K.; Kim, C.H.; Yoo, Y.H.; Kim, H.M. Taraxacum officinale induces cytotoxicity through TNF-α and IL-1α secretion in Hep G2 cells. Life Sci., 2004, 74(9), 1149-1157.
[http://dx.doi.org/10.1016/j.lfs.2003.07.030 ] [PMID: 14687655]
[101]
Hsiao, W.L.; Liu, L. The role of traditional Chinese herbal medicines in cancer therapy-from TCM theory to mechanistic insights. Planta Med., 2010, 76(11), 1118-1131.
[http://dx.doi.org/10.1055/s-0030-1250186 ] [PMID: 20635308]
[102]
O’Leary, J.; Muggia, F.M. Camptothecins: A review of their development and schedules of administration. Eur. J. Cancer, 1998, 34(10), 1500-1508.
[http://dx.doi.org/10.1016/S0959-8049(98)00229-9 ] [PMID: 9893620]
[103]
Encalada, M.A.; Hoyos, K.M.; Rehecho, S.; Berasategi, I.; de Ciriano, M.G.; Ansorena, D.; Astiasarán, I.; Navarro-Blasco, I.; Cavero, R.Y.; Calvo, M.I. Anti-proliferative effect of Melissa officinalis on human colon cancer cell line. Plant Foods Hum. Nutr., 2011, 66(4), 328-334.
[http://dx.doi.org/10.1007/s11130-011-0256-y ] [PMID: 21964875]
[104]
Tavakoli, J.; Miar, S.; Majid Zadehzare, M.; Akbari, H. Evaluation of effectiveness of herbal medication in cancer care: A review study. Iran. J. Cancer Prev., 2012, 5(3), 144-156.
[PMID: 25628834]
[105]
Yoon, T.J.; Yoo, Y.C.; Lee, S.W.; Shin, K.S.; Choi, W.H.; Hwang, S.H.; Ha, E.S.; Jo, S.K.; Kim, S.H.; Park, W.M. Anti-metastatic activity of Acanthopanax senticosus extract and its possible immunological mechanism of action. J. Ethnopharmacol., 2004, 93(2-3), 247-253.
[http://dx.doi.org/10.1016/j.jep.2004.03.052 ] [PMID: 15234760]
[106]
Cho, WC Supportive cancer care with Chinese medicine., 2010.
[http://dx.doi.org/10.1007/978-90-481-3555-4]
[107]
Feng, L.; Jia, X.B.; Shi, F.; Chen, Y. Identification of two polysaccharides from Prunella vulgaris L. and evaluation on their anti-lung adenocarcinoma activity. Molecules, 2010, 15(8), 5093-5103.
[http://dx.doi.org/10.3390/molecules15085093 ] [PMID: 20714287]
[108]
An, N.; Zou, Z.M.; Tian, Z.; Luo, X.Z.; Yang, S.L.; Xu, L.Z. Diarylheptanoids from the rhizomes of Alpinia officinarum and their anticancer activity. Fitoterapia, 2008, 79(1), 27-31.
[http://dx.doi.org/10.1016/j.fitote.2007.07.001 ] [PMID: 17916414]
[109]
Ravipati, A.S.; Zhang, L.; Koyyalamudi, S.R.; Jeong, S.C.; Reddy, N.; Bartlett, J.; Smith, P.T.; de Pedro, N.; Melguizo, Á.; Cantizani, J.; Asensio, F. Anti-proliferative activities of selected Chinese medicinal herbs against human cancer cell lines. Phytopharmacology., 2013, 4, 206-219.
[110]
Hsu, C.Y. Antioxidant activity of extract from Polygonum aviculare L. Biol. Res., 2006, 39(2), 281-288.
[http://dx.doi.org/10.4067/S0716-97602006000200010 ] [PMID: 16874403]
[111]
Tan, Y.; Wei, X.; Zhang, W.; Wang, X.; Wang, K.; Du, B.; Xiao, J. Resveratrol enhances the radiosensitivity of nasopharyngeal carcinoma cells by downregulating E2F1. Oncol. Rep., 2017, 37(3), 1833-1841.
[http://dx.doi.org/10.3892/or.2017.5413 ] [PMID: 28184930]
[112]
Wang, J.; Kang, M.; Wen, Q.; Qin, Y.T.; Wei, Z.X.; Xiao, J.J.; Wang, R.S. Berberine sensitizes nasopharyngeal carcinoma cells to radiation through inhibition of Sp1 and EMT. Oncol. Rep., 2017, 37(4), 2425-2432.
[http://dx.doi.org/10.3892/or.2017.5499 ] [PMID: 28350122]
[113]
Momtazi-Borojeni, A.A.; Ghasemi, F.; Hesari, A.; Majeed, M.; Caraglia, M.; Sahebkar, A. Anti-cancer and radio-sensitizing effects of curcumin in nasopharyngeal carcinoma. Curr. Pharm. Des., 2018, 24(19), 2121-2128.
[http://dx.doi.org/10.2174/1381612824666180522105202 ] [PMID: 29788875]
[114]
Liu, G.; Wang, Y.; Li, M. Curcumin sensitized the antitumour effects of irradiation in promoting apoptosis of oesophageal squamous-cell carcinoma through NF-κB signalling pathway. J. Pharm. Pharmacol., 2018, 70(10), 1340-1348.
[http://dx.doi.org/10.1111/jphp.12981 ] [PMID: 30022485]
[115]
Chen, L.; Yang, S.; Liao, W.; Xiong, Y. Modification of antitumor immunity and tumor microenvironment by resveratrol in mouse renal tumor model. Cell Biochem. Biophys., 2015, 72(2), 617-625.
[http://dx.doi.org/10.1007/s12013-015-0513-z ] [PMID: 25605266]
[116]
Vogelstein, B.; Kinzler, K.W. Cancer genes and the pathways they control. Nat. Med., 2004, 10(8), 789-799.
[http://dx.doi.org/10.1038/nm1087 ] [PMID: 15286780]
[117]
Bashyam, M.D.; Animireddy, S.; Bala, P.; Naz, A.; George, S.A. The Yin and Yang of cancer genes. Gene, 2019, 704, 121-133.
[http://dx.doi.org/10.1016/j.gene.2019.04.025 ] [PMID: 30980945]
[118]
Fu, H.; Wang, C.; Yang, D.; Wei, Z.; Xu, J.; Hu, Z.; Zhang, Y.; Wang, W.; Yan, R.; Cai, Q. Curcumin regulates proliferation, autophagy, and apoptosis in gastric cancer cells by affecting PI3K and P53 signaling. J. Cell. Physiol., 2018, 233(6), 4634-4642.
[http://dx.doi.org/10.1002/jcp.26190 ] [PMID: 28926094]
[119]
Hernandez-Valencia, J.; Garcia-Villa, E.; Arenas-Hernandez, A.; Garcia-Mena, J.; Diaz-Chavez, J.; Gariglio, P. Induction of p53 phosphorylation at serine 20 by resveratrol is required to activate p53 target genes, restoring apoptosis in MCF-7 cells resistant to cisplatin. Nutrients, 2018, 10(9), 1148.
[http://dx.doi.org/10.3390/nu10091148 ] [PMID: 30142917]
[120]
Yoshida, K.; Toden, S.; Ravindranathan, P.; Han, H.; Goel, A. Curcumin sensitizes pancreatic cancer cells to gemcitabine by attenuating PRC2 subunit EZH2, and the lncRNA PVT1 expression. Carcinogenesis, 2017, 38(10), 1036-1046.
[http://dx.doi.org/10.1093/carcin/bgx065 ] [PMID: 29048549]
[121]
Wang, L.; Cao, H.; Lu, N.; Liu, L.; Wang, B.; Hu, T.; Israel, D.A.; Peek, R.M., Jr; Polk, D.B.; Yan, F. Berberine inhibits proliferation and down-regulates epidermal growth factor receptor through activation of Cbl in colon tumor cells. PLoS One, 2013, 8(2)
[http://dx.doi.org/10.1371/journal.pone.0056666 ] [PMID: 23457600]
[122]
Nautiyal, J.; Kanwar, S.S.; Yu, Y.; Majumdar, A.P. Combination of dasatinib and curcumin eliminates chemo-resistant colon cancer cells. J. Mol. Signal., 2011, 6(1), 7.
[http://dx.doi.org/10.1186/1750-2187-6-7 ] [PMID: 21774804]
[123]
Cilibrasi, C.; Riva, G.; Romano, G.; Cadamuro, M.; Bazzoni, R.; Butta, V.; Paoletta, L.; Dalprà, L.; Strazzabosco, M.; Lavitrano, M.; Giovannoni, R.; Bentivegna, A. Resveratrol impairs glioma stem cells proliferation and motility by modulating the wnt signaling pathway. PLoS One, 2017, 12(1)
[http://dx.doi.org/10.1371/journal.pone.0169854 ] [PMID: 28081224]
[124]
Wang, Q.; Qu, C.; Xie, F.; Chen, L.; Liu, L.; Liang, X.; Wu, X.; Wang, P.; Meng, Z. Curcumin suppresses epithelial-to-mesenchymal transition and metastasis of pancreatic cancer cells by inhibiting cancer-associated fibroblasts. Am. J. Cancer Res., 2017, 7(1), 125-133.
[PMID: 28123853]
[125]
Ekor, M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol., 2014, 4, 177.
[http://dx.doi.org/10.3389/fphar.2013.00177 ] [PMID: 24454289]
[126]
Thillaivanan, S.; Samraj, K. Challenges, constraints and opportunities in herbal medicines-a review. Int. J. Herb. Med., 2014, 2(1), 21-24.
[127]
Yadav, D.; Suri, S.; Choudhary, A.A.; Sikender, M.; Hemant, B.N.; Beg, N.M. Novel approach: Herbal remedies and natural products in pharmaceutical science as nano drug delivery systems. Int J Pharm Tech., 2011, 3(3), 3092-3116.
[128]
Ansari, S.H.; Islam, F.; Sameem, M. Influence of nanotechnology on herbal drugs: A Review. J. Adv. Pharm. Technol. Res., 2012, 3(3), 142-146.
[http://dx.doi.org/10.4103/2231-4040.101006 ] [PMID: 23057000]
[129]
Liu, Y.; Miyoshi, H.; Nakamura, M. Nanomedicine for drug delivery and imaging: A promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. Int. J. Cancer, 2007, 120(12), 2527-2537.
[http://dx.doi.org/10.1002/ijc.22709 ] [PMID: 17390371]
[130]
Cai, W.; Chen, X. Multimodality molecular imaging of tumor angiogenesis. J. Nucl. Med., 2008, 49(Suppl. 2), 113S-128S.
[http://dx.doi.org/10.2967/jnumed.107.045922 ] [PMID: 18523069]
[131]
Ferrari, M. Cancer nanotechnology: Opportunities and challenges. Nat. Rev. Cancer, 2005, 5(3), 161-171.
[http://dx.doi.org/10.1038/nrc1566 ] [PMID: 15738981]
[132]
Iyer, A.K.; Khaled, G.; Fang, J.; Maeda, H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today, 2006, 11(17-18), 812-818.
[http://dx.doi.org/10.1016/j.drudis.2006.07.005 ] [PMID: 16935749]
[133]
Yezhelyev, M.V.; Gao, X.; Xing, Y.; Al-Hajj, A.; Nie, S.; O’Regan, R.M. Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol., 2006, 7(8), 657-667.
[http://dx.doi.org/10.1016/S1470-2045(06)70793-8 ] [PMID: 16887483]
[134]
Bardhan, R.; Lal, S.; Joshi, A.; Halas, N.J. Theranostic nanoshells: from probe design to imaging and treatment of cancer. Acc. Chem. Res., 2011, 44(10), 936-946.
[http://dx.doi.org/10.1021/ar200023x ] [PMID: 21612199]
[135]
Manke, A.; Wang, L.; Rojanasakul, Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity.BioMed Res. Int., 2013, 2013, Article ID. 942916.,
[http://dx.doi.org/10.1155/2013/942916] [PMID: 24027766]
[136]
Wen, H.; Dan, M.; Yang, Y.; Lyu, J.; Shao, A.; Cheng, X.; Chen, L.; Xu, L. Acute toxicity and genotoxicity of silver nanoparticle in rats. PLoS One, 2017, 12(9)
[http://dx.doi.org/10.1371/journal.pone.0185554 ] [PMID: 28953974]
[137]
Salata, O. Applications of nanoparticles in biology and medicine. J. Nanobiotechnology, 2004, 2(1), 3.
[http://dx.doi.org/10.1186/1477-3155-2-3 ] [PMID: 15119954]
[138]
Wu, B.; Kuang, Y.; Zhang, X.; Chen, J. Noble metal nanoparticles/carbon nanotubes nanohybrids: Synthesis and applications. Nano Today. 2011 Feb 1;6(1):75-90. Radiat. Phys. Chem., 2018, 146, 55-67.
[139]
Ratan, Z.A.; Haidere, M.F.; Nurunnabi, M.; Shahriar, S.M.; Ahammad, A.J.S.; Shim, Y.Y.; Reaney, M.J.T.; Cho, J.Y. Green Chemistry Synthesis of Silver Nanoparticles and Their Potential Anticancer Effects. Cancers (Basel), 2020, 12(4), 855.
[http://dx.doi.org/10.3390/cancers12040855 ] [PMID: 32244822]
[140]
Soica, C.; Pinzaru, I.; Trandafirescu, C.; Andrica, F.; Danciu, C.; Mioc, M.; Coricovac, D.; Sitaru, C.; Dehelean, C. Silver-, gold-, and iron-based metallic nanoparticles: Biomedical applications as theranostic agents for cancer.Design of nanostructures for theranostics applications; Elsevier Inc., 2018, pp. 161-242.
[141]
Heo, D.N.; Yang, D.H.; Moon, H.J.; Lee, J.B.; Bae, M.S.; Lee, S.C.; Lee, W.J.; Sun, I.C.; Kwon, I.K. Gold nanoparticles surface-functionalized with paclitaxel drug and biotin receptor as theranostic agents for cancer therapy. Biomaterials, 2012, 33(3), 856-866.
[http://dx.doi.org/10.1016/j.biomaterials.2011.09.064 ] [PMID: 22036101]
[142]
Melancon, M.P.; Lu, W.; Yang, Z.; Zhang, R.; Cheng, Z.; Elliot, A.M.; Stafford, J.; Olson, T.; Zhang, J.Z.; Li, C. In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photothermal ablation therapy. Mol. Cancer Ther., 2008, 7(6), 1730-1739.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0016 ] [PMID: 18566244]
[143]
Melancon, M.P.; Zhou, M.; Li, C. Cancer theranostics with near-infrared light-activatable multimodal nanoparticles. Acc. Chem. Res., 2011, 44(10), 947-956.
[http://dx.doi.org/10.1021/ar200022e ] [PMID: 21848277]
[144]
Mehtala, J.G.; Torregrosa-Allen, S.; Elzey, B.D.; Jeon, M.; Kim, C.; Wei, A. Synergistic effects of cisplatin chemotherapy and gold nanorod-mediated hyperthermia on ovarian cancer cells and tumors. Nanomedicine (Lond.), 2014, 9(13), 1939-1955.
[http://dx.doi.org/10.2217/nnm.13.209 ] [PMID: 24498890]
[145]
Hauck, T.S.; Jennings, T.L.; Yatsenko, T.; Kumaradas, J.C.; Chan, W.C. Enhancing the toxicity of cancer chemotherapeutics with gold nanorod hyperthermia. Adv. Mater., 2008, 20(20), 3832-3838.
[http://dx.doi.org/10.1002/adma.200800921]
[146]
Ke, H.; Wang, J.; Dai, Z.; Jin, Y.; Qu, E.; Xing, Z.; Guo, C.; Yue, X.; Liu, J. Gold-nanoshelled microcapsules: a theranostic agent for ultrasound contrast imaging and photothermal therapy. Angew. Chem. Int. Ed. Engl., 2011, 50(13), 3017-3021.
[http://dx.doi.org/10.1002/anie.201008286 ] [PMID: 21404389]
[147]
Shao, J.; Griffin, R.J.; Galanzha, E.I.; Kim, J.W.; Koonce, N.; Webber, J.; Mustafa, T.; Biris, A.S.; Nedosekin, D.A.; Zharov, V.P. Photothermal nanodrugs: Potential of TNF-gold nanospheres for cancer theranostics. Sci. Rep., 2013, 3, 1293.
[http://dx.doi.org/10.1038/srep01293 ] [PMID: 23443065]
[148]
Lu, W.; Arumugam, S.R.; Senapati, D.; Singh, A.K.; Arbneshi, T.; Khan, S.A.; Yu, H.; Ray, P.C. Multifunctional oval-shaped gold-nanoparticle-based selective detection of breast cancer cells using simple colorimetric and highly sensitive two-photon scattering assay. ACS Nano, 2010, 4(3), 1739-1749.
[http://dx.doi.org/10.1021/nn901742q ] [PMID: 20155973]
[149]
Meyers, J.D.; Cheng, Y.; Broome, A.M.; Agnes, R.S.; Schluchter, M.D.; Margevicius, S.; Wang, X.; Kenney, M.E.; Burda, C.; Basilion, J.P. Peptide‐targeted gold nanoparticles for photodynamic therapy of brain cancer. Part. Part. Syst. Charact., 2015, 32(4), 448-457.
[http://dx.doi.org/10.1002/ppsc.201400119 ] [PMID: 25999665]
[150]
Bao, C.; Conde, J.; Curtin, J.; Artzi, N.; Tian, F.; Cui, D. Bioresponsive antisense DNA gold nanobeacons as a hybrid in vivo theranostics platform for the inhibition of cancer cells and metastasis. Sci. Rep., 2015, 5, 12297.
[http://dx.doi.org/10.1038/srep12297 ] [PMID: 26189409]
[151]
Guo, Y.; Zhang, Z.; Kim, D.H.; Li, W.; Nicolai, J.; Procissi, D.; Huan, Y.; Han, G.; Omary, R.A.; Larson, A.C. Photothermal ablation of pancreatic cancer cells with hybrid iron-oxide core gold-shell nanoparticles. Int. J. Nanomedicine, 2013, 8, 3437-3446.
[http://dx.doi.org/10.2147/IJN.S47585 ] [PMID: 24039426]
[152]
Firdhouse, M.J.; Lalitha, P. Biosynthesis of silver nanoparticles using the extract of Alternanthera sessilis-antiproliferative effect against prostate cancer cells. Cancer Nanotechnol., 2013, 4(6), 137-143.
[http://dx.doi.org/10.1007/s12645-013-0045-4 ] [PMID: 26069509]
[153]
Elbaz, N.M.; Ziko, L.; Siam, R.; Mamdouh, W. Core-shell silver/polymeric nanoparticles-based combinatorial therapy against breast cancer in-vitro. Sci. Rep., 2016, 6, 30729.
[http://dx.doi.org/10.1038/srep30729 ] [PMID: 27491622]
[154]
Soumya, R.S.; Hela, P.G. Nano silver based targeted drug delivery for treatment of cancer. Pharm. Lett., 2013, 5(4), 189-197.
[155]
Lin, C.A.; Yang, T.Y.; Lee, C.H.; Huang, S.H.; Sperling, R.A.; Zanella, M.; Li, J.K.; Shen, J.L.; Wang, H.H.; Yeh, H.I.; Parak, W.J.; Chang, W.H. Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. ACS Nano, 2009, 3(2), 395-401.
[http://dx.doi.org/10.1021/nn800632j ] [PMID: 19236077]
[156]
Tian, F.; Conde, J.; Bao, C.; Chen, Y.; Curtin, J.; Cui, D. Gold nanostars for efficient in vitro and in vivo real-time SERS detection and drug delivery via plasmonic-tunable Raman/FTIR imaging. Biomaterials, 2016, 106, 87-97.
[http://dx.doi.org/10.1016/j.biomaterials.2016.08.014 ] [PMID: 27552319]
[157]
Peng, J.; Qi, T.; Liao, J.; Chu, B.; Yang, Q.; Qu, Y.; Li, W.; Li, H.; Luo, F.; Qian, Z. Mesoporous magnetic gold “nanoclusters” as theranostic carrier for chemo-photothermal co-therapy of breast cancer. Theranostics, 2014, 4(7), 678-692.
[http://dx.doi.org/10.7150/thno.7869 ] [PMID: 24883118]
[158]
Ma, L.L.; Feldman, M.D.; Tam, J.M.; Paranjape, A.S.; Cheruku, K.K.; Larson, T.A.; Tam, J.O.; Ingram, D.R.; Paramita, V.; Villard, J.W.; Jenkins, J.T.; Wang, T.; Clarke, G.D.; Asmis, R.; Sokolov, K.; Chandrasekar, B.; Milner, T.E.; Johnston, K.P. Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy. ACS Nano, 2009, 3(9), 2686-2696.
[http://dx.doi.org/10.1021/nn900440e ] [PMID: 19711944]
[159]
Zhao, M.; Kircher, M.F.; Josephson, L.; Weissleder, R. Differential conjugation of tat peptide to superparamagnetic nanoparticles and its effect on cellular uptake. Bioconjug. Chem., 2002, 13(4), 840-844.
[http://dx.doi.org/10.1021/bc0255236 ] [PMID: 12121140]
[160]
Corot, C.; Violas, X.; Robert, P.; Gagneur, G.; Port, M. Comparison of different types of blood pool agents (P792, MS325, USPIO) in a rabbit MR angiography-like protocol. Invest. Radiol., 2003, 38(6), 311-319.
[http://dx.doi.org/10.1097/01.rli.0000066814.82006.be ] [PMID: 12908698]
[161]
Grancharov, S.G.; Zeng, H.; Sun, S.; Wang, S.X.; O’Brien, S.; Murray, C.B.; Kirtley, J.R.; Held, G.A. Bio-functionalization of monodisperse magnetic nanoparticles and their use as biomolecular labels in a magnetic tunnel junction based sensor. J. Phys. Chem. B, 2005, 109(26), 13030-13035.
[http://dx.doi.org/10.1021/jp051098c ] [PMID: 16852617]
[162]
Xie, J.; Lee, S.; Chen, X. Nanoparticle-based theranostic agents. Adv. Drug Deliv. Rev., 2010, 62(11), 1064-1079.
[http://dx.doi.org/10.1016/j.addr.2010.07.009 ] [PMID: 20691229]
[163]
Qian, X.; Peng, X.H.; Ansari, D.O.; Yin-Goen, Q.; Chen, G.Z.; Shin, D.M.; Yang, L.; Young, A.N.; Wang, M.D.; Nie, S. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol., 2008, 26(1), 83-90.
[http://dx.doi.org/10.1038/nbt1377 ] [PMID: 18157119]
[164]
Lee, K.; Lee, H.; Bae, K.H.; Park, T.G. Heparin immobilized gold nanoparticles for targeted detection and apoptotic death of metastatic cancer cells. Biomaterials, 2010, 31(25), 6530-6536.
[http://dx.doi.org/10.1016/j.biomaterials.2010.04.046 ] [PMID: 20537379]
[165]
Day, E.S.; Bickford, L.R.; Slater, J.H.; Riggall, N.S.; Drezek, R.A.; West, J.L. Antibody-conjugated gold-gold sulfide nanoparticles as multifunctional agents for imaging and therapy of breast cancer. Int. J. Nanomedicine, 2010, 5, 445-454.
[http://dx.doi.org/10.2147/IJN.S10881 ] [PMID: 20957166]
[166]
Ambwani, S.; Kandpal, D.; Arora, S.; Ambwani, T.K. Cytotoxic effects of gold nanoparticles exposure employing in vitro animal cell culture system as part of nanobiosafety. AIP Conference Proceedings,, 1724, 1724(1)020091
[167]
Patra, C.R.; Bhattacharya, R.; Mukhopadhyay, D.; Mukherjee, P. Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer. Adv. Drug Deliv. Rev., 2010, 62(3), 346-361.
[http://dx.doi.org/10.1016/j.addr.2009.11.007 ] [PMID: 19914317]
[168]
Austin, L.A.; Mackey, M.A.; Dreaden, E.C.; El-Sayed, M.A. The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery. Arch. Toxicol., 2014, 88(7), 1391-1417.
[http://dx.doi.org/10.1007/s00204-014-1245-3 ] [PMID: 24894431]
[169]
Gurunathan, S.; Han, J.W.; Eppakayala, V.; Jeyaraj, M.; Kim, J.H. Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. BioMed Res. Int., 2013, 2013(Oct)
[http://dx.doi.org/10.1155/2013/535796 ] [PMID: 23936814]
[170]
Han, J.W.; Gurunathan, S.; Jeong, J.K.; Choi, Y.J.; Kwon, D.N.; Park, J.K.; Kim, J.H. Oxidative stress mediated cytotoxicity of biologically synthesized silver nanoparticles in human lung epithelial adenocarcinoma cell line. Nanoscale Res. Lett., 2014, 9(1), 459.
[http://dx.doi.org/10.1186/1556-276X-9-459 ] [PMID: 25242904]
[171]
Datta, K.P.; Sandeep, A.; Sonu, A. Anti-proliferative effect of silver nanoparticles in HeLa cells due to enhanced oxidative stress. Res. J. Biotechnol., 2018, 13(2), 68-74.
[172]
Muhammad, Z.; Raza, A.; Ghafoor, S.; Naeem, A.; Naz, S.S.; Riaz, S.; Ahmed, W.; Rana, N.F. PEG capped methotrexate silver nanoparticles for efficient anticancer activity and biocompatibility. Eur. J. Pharm. Sci., 2016, 91, 251-255.
[http://dx.doi.org/10.1016/j.ejps.2016.04.029 ] [PMID: 27132812]
[173]
Ivanova, N.; Gugleva, V.; Dobreva, M.; Pehlivanov, I.; Stefanov, S.; Andonova, V. Silver nanoparticles as multi-functional drug delivery systems In: Nanomedicines, Muhammad Akhyar Farrukh, Ed.;, 2018.
[174]
Vogelstein, B.; Papadopoulos, N.; Velculescu, V.E.; Zhou, S.; Diaz, L.A.K.W., Jr; Kinzler, K.W. Cancer genome landscapes. Science, 2013, 339(6127), 1546-1558.
[http://dx.doi.org/10.1126/science.1235122 ] [PMID: 23539594]
[175]
Bansal, S.S.; Goel, M.; Aqil, F.; Vadhanam, M.V.; Gupta, R.C. Advanced drug delivery systems of curcumin for cancer chemoprevention. Cancer Prev. Res. (Phila.), 2011, 4(8), 1158-1171.
[http://dx.doi.org/10.1158/1940-6207.CAPR-10-0006 ] [PMID: 21546540]
[176]
Lee, D.E.; Koo, H.; Sun, I.C.; Ryu, J.H.; Kim, K.; Kwon, I.C. Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem. Soc. Rev., 2012, 41(7), 2656-2672.
[http://dx.doi.org/10.1039/C2CS15261D ] [PMID: 22189429]
[177]
Rahman, M.; Ahmad, M.Z.; Kazmi, I.; Akhter, S.; Kumar, Y.; Ahmad, F.J.; Anwar, F. Novel approach for the treatment of cancer: Theranostic nanomedicine. Pharmacologia., 2012, 3(9), 371-376.
[http://dx.doi.org/10.5567/pharmacologia.2012.371.376]
[178]
Ahmed, E.; Arshad, M.; Khan, M.Z.; Amjad, H.S.; Sadaf, H.M.; Riaz, I.; Sabir, S.; Ahmad, N. Secondary metabolites and their multidimensional prospective in plant life. J. Pharmacogn. Phytochem., 2017, 6, 205-214.
[179]
Kashyap, D.; Tuli, H.S.; Yerer, M.B.; Sharma, A.; Sak, K.; Srivastava, S.; Pandey, A.; Garg, V.K.; Sethi, G.; Bishayee, A. Natural product-based nanoformulations for cancer therapy: Opportunities and challenges. Semin. Cancer Biol., 2021, 69, 5-23.
[180]
Pandey, P.; Rahman, M.; Bhatt, P.C.; Beg, S.; Paul, B.; Hafeez, A.; Al-Abbasi, F.A.; Nadeem, M.S.; Baothman, O.; Anwar, F.; Kumar, V. Implication of nano-antioxidant therapy for treatment of hepatocellular carcinoma using PLGA nanoparticles of rutin. Nanomedicine (Lond.), 2018, 13(8), 849-870.
[http://dx.doi.org/10.2217/nnm-2017-0306 ] [PMID: 29565220]
[181]
Kamalapuram, S.K.; Kanwar, R.K.; Roy, K.; Chaudhary, R.; Sehgal, R.; Kanwar, J.R. Theranostic multimodular potential of zinc-doped ferrite-saturated metal-binding protein-loaded novel nanocapsules in cancers. Int. J. Nanomedicine, 2016, 11, 1349-1366.
[PMID: 27099495]
[182]
Gilani, S.J.; Beg, S.; Kala, C.; Nomani, M.S.; Mahapatra, D.K.; Imam, S.S.; Taleuzzaman, M. Chemically nano-engineered Theranostics For Phytoconstituents As Healthcare Application. Curr. Biochem. Eng., 2020, 6(1), 53-61.
[http://dx.doi.org/10.2174/2212711906666190723144111]
[183]
AbdElhamid, AS.; Zayed, DG.; Helmy, MW.; Ebrahim, SM.; Bahey-El-Din, M.; Zein-El-Dein, EA.; El-Gizawy, SA.; Elzoghby, AO. Lactoferrin-tagged quantum dots-based theranosticnanocapsules for combined COX-2 inhibitor/herbal therapy of breast cancer. Nanomedicine (Lond.), 2018, 13(20), 2637-2656.
[http://dx.doi.org/10.2217/nnm-2018-0196 ] [PMID: 30338705]
[184]
Stigliano, C.; Key, J.; Ramirez, M.; Aryal, S.; Decuzzi, P. Radiolabeled polymeric nanoconstructs loaded with docetaxel and curcumin for cancer combinatorial therapy and nuclear imaging. Adv. Funct. Mater., 2015, 25(22), 3371-3379.
[http://dx.doi.org/10.1002/adfm.201500627]
[185]
M, J.F.; P, L. Apoptotic efficacy of biogenic silver nanoparticles on human breast cancer MCF-7 cell lines. Prog. Biomater., 2015, 4(2-4), 113-121.
[http://dx.doi.org/10.1007/s40204-015-0042-2 ] [PMID: 26566469]
[186]
Sukumar, U.K.; Bhushan, B.; Dubey, P.; Matai, I.; Sachdev, A.; Packirisamy, G. Emerging applications of nanoparticles for lung cancer diagnosis and therapy. Int. Nano Lett., 2013, 3(1), 45.
[http://dx.doi.org/10.1186/2228-5326-3-45]
[187]
Rao, P.V.; Nallappan, D.; Madhavi, K.; Rahman, S.; Wei, Jun L.; Gan, S.H. Phytochemicals and biogenic metallic nanoparticles as anticancer agents. Oxid. Med. Cell. Longev.,, 2016, 2016.,
[http://dx.doi.org/10.1155/2016/3685671] [PMID: 27057273]
[188]
Sathishkumar, G.; Gobinath, C.; Wilson, A.; Sivaramakrishnan, S. Dendrophthoe falcata (L.f) Ettingsh (Neem mistletoe): a potent bioresource to fabricate silver nanoparticles for anticancer effect against human breast cancer cells (MCF-7). Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 128, 285-290.
[http://dx.doi.org/10.1016/j.saa.2014.02.096 ] [PMID: 24681313]
[189]
Gajendran, B.; Chinnasamy, A.; Durai, P.; Raman, J.; Ramar, M. Biosynthesis and characterization of silver nanoparticles from Datura inoxia and its apoptotic effect on human breast cancer cell line MCF7. Mater. Lett., 2014, 122, 98-102.
[http://dx.doi.org/10.1016/j.matlet.2014.02.003]
[190]
Suman, T.Y.; Radhika Rajasree, S.R.; Kanchana, A.; Elizabeth, S.B. Biosynthesis, characterization and cytotoxic effect of plant mediated silver nanoparticles using Morinda citrifolia root extract. Colloids Surf. B Biointerfaces, 2013, 106, 74-78.
[http://dx.doi.org/10.1016/j.colsurfb.2013.01.037 ] [PMID: 23434694]
[191]
Elangovan, K.; Elumalai, D.; Anupriya, S.; Shenbhagaraman, R.; Kaleena, P.K.; Murugesan, K. Phyto mediated biogenic synthesis of silver nanoparticles using leaf extract of Andrographis echioides and its bio-efficacy on anticancer and antibacterial activities. J. Photochem. Photobiol. B, 2015, 151, 118-124.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.05.015 ] [PMID: 26233711]
[192]
Rathi Sre, P.R.; Reka, M.; Poovazhagi, R.; Arul Kumar, M.; Murugesan, K. Antibacterial and cytotoxic effect of biologically synthesized silver nanoparticles using aqueous root extract of Erythrina indica lam. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 135, 1137-1144.
[http://dx.doi.org/10.1016/j.saa.2014.08.019 ] [PMID: 25189525]
[193]
Ovais, M.; Khalil, A.T.; Raza, A.; Islam, N.U.; Ayaz, M.; Saravanan, M.; Ali, M.; Ahmad, I.; Shahid, M.; Shinwari, Z.K. Multifunctional theranostic applications of biocompatible green-synthesized colloidal nanoparticles. Appl. Microbiol. Biotechnol., 2018, 102(10), 4393-4408.
[http://dx.doi.org/10.1007/s00253-018-8928-2 ] [PMID: 29594356]
[194]
Patra, S.; Mukherjee, S.; Barui, A.K.; Ganguly, A.; Sreedhar, B.; Patra, C.R. Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Mater. Sci. Eng. C, 2015, 53, 298-309.
[http://dx.doi.org/10.1016/j.msec.2015.04.048 ] [PMID: 26042718]
[195]
Krishnaraj, C.; Muthukumaran, P.; Ramachandran, R.; Balakumaran, M.D.; Kalaichelvan, P.T. Acalypha indica Linn: Biogenic synthesis of silver and gold nanoparticles and their cytotoxic effects against MDA-MB-231, human breast cancer cells. Biotechnol. Rep. (Amst.), 2014, 4, 42-49.
[http://dx.doi.org/10.1016/j.btre.2014.08.002 ] [PMID: 28626661]
[196]
Balasubramani, G.; Ramkumar, R.; Krishnaveni, N.; Pazhanimuthu, A.; Natarajan, T.; Sowmiya, R.; Perumal, P. Structural characterization, antioxidant and anticancer properties of gold nanoparticles synthesized from leaf extract(decoction)of Antigonon leptopus Hook. &. Arn. J. Trace Elem. Med. Biol., 2015, 30, 83-89.
[http://dx.doi.org/10.1016/j.jtemb.2014.11.001 ] [PMID: 25432487]
[197]
Anand, K.; Gengan, R.M.; Phulukdaree, A.; Chuturgoon, A. Agroforestry waste Moringa oleifera petals mediated green synthesis of gold nanoparticles and their anti-cancer and catalytic activity. J. Ind. Eng. Chem., 2015, 21, 1105-1111.
[http://dx.doi.org/10.1016/j.jiec.2014.05.021]
[198]
Emmanuel, R.; Saravanan, M.; Ovais, M.; Padmavathy, S.; Shinwari, Z.K.; Prakash, P. Antimicrobial efficacy of drug blended biosynthesized colloidal gold nanoparticles from Justicia glauca against oral pathogens: A nanoantibiotic approach. Microb. Pathog., 2017, 113, 295-302.
[http://dx.doi.org/10.1016/j.micpath.2017.10.055 ] [PMID: 29101061]
[199]
Kasithevar, M.; Periakaruppan, P.; Muthupandian, S.; Mohan, M. Antibacterial efficacy of silver nanoparticles against multi-drug resistant clinical isolates from post-surgical wound infections. Microb. Pathog., 2017, 107, 327-334.
[http://dx.doi.org/10.1016/j.micpath.2017.04.013 ] [PMID: 28411059]
[200]
Gomes, A.; Ghosh, S.; Sengupta, J.; Datta, P.; Gomes, A. Herbonanoceuticals: A new step towards herbal therapeutics. Med. Aromat. Plants, 2014, 3(3), 162.
[201]
Majumdar, D.; Jung, K.H.; Zhang, H.; Nannapaneni, S.; Wang, X.; Amin, A.R.; Chen, Z.; Chen, Z.G.; Shin, D.M. Luteolin nanoparticle in chemoprevention: in vitro and in vivo anticancer activity. Cancer Prev. Res. (Phila.), 2014, 7(1), 65-73.
[http://dx.doi.org/10.1158/1940-6207.CAPR-13-0230 ] [PMID: 24403290]
[202]
Karthivashan, G.; Ganesan, P.; Park, S.Y.; Kim, J.S.; Choi, D.K. Therapeutic strategies and nano-drug delivery applications in management of ageing Alzheimer’s disease. Drug Deliv., 2018, 25(1), 307-320.
[http://dx.doi.org/10.1080/10717544.2018.1428243 ] [PMID: 29350055]
[203]
Singh, P.; Kim, Y.J.; Zhang, D.; Yang, D.C. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol., 2016, 34(7), 588-599.
[http://dx.doi.org/10.1016/j.tibtech.2016.02.006 ] [PMID: 26944794]
[204]
Prabhu, D.; Arulvasu, C.; Babu, G.; Manikandan, R.; Srinivasan, P. Biologically synthesized green silver nanoparticles from leaf extract of Vitex negundo L. induce growth-inhibitory effect on human colon cancer cell line HCT15. Process Biochem., 2013, 48(2), 317-324.
[http://dx.doi.org/10.1016/j.procbio.2012.12.013]
[205]
Arulvasu, C.; Prabhu, D.; Manikandan, R.; Srinivasan, P.; Dinesh, D.; Babu, G.; Sellamuthu, S. Induction of apoptosis by the aqueous and ethanolic leaf extract of Vitex negundo L. in MCF-7 human breast cancer cells. Int J Drug Discov., 2010, 2(1), 1-7.
[http://dx.doi.org/10.9735/0975-4423.2.1.1-7]
[206]
Jeyaraj, M.; Sathishkumar, G.; Sivanandhan, G. MubarakAli, D.; Rajesh, M.; Arun, R.; Kapildev, G.; Manickavasagam, M.; Thajuddin, N.; Premkumar, K.; Ganapathi, A. Biogenic silver nanoparticles for cancer treatment: An experimental report. Colloids Surf. B Biointerfaces, 2013, 106, 86-92.
[http://dx.doi.org/10.1016/j.colsurfb.2013.01.027 ] [PMID: 23434696]
[207]
Paul, J.A.; Selvi, B.K.; Karmegam, N. Biosynthesis of silver nanoparticles from Premna serratifolia L. leaf and its anticancer activity in CCl 4-induced hepato-cancerous Swiss albino mice. Appl. Nanosci., 2015, 5(8), 937-944.
[http://dx.doi.org/10.1007/s13204-014-0397-z]
[208]
Arunachalam, K.D.; Arun, L.B.; Annamalai, S.K.; Arunachalam, A.M. Potential anticancer properties of bioactive compounds of Gymnema sylvestre and its biofunctionalized silver nanoparticles. Int. J. Nanomedicine, 2014, 10, 31-41.
[http://dx.doi.org/10.2147/IJN.S71182 ] [PMID: 25565802]
[209]
Abel, E.E.; Poonga, P.R.; Panicker, S.G. Characterization and in vitro studies on anticancer, antioxidant activity against colon cancer cell line of gold nanoparticles capped with Cassia tora SM leaf extract. Appl. Nanosci., 2016, 6(1), 121-129.
[http://dx.doi.org/10.1007/s13204-015-0422-x]
[210]
McCarthy, M.P.; Carroll, D.L.; Ringwood, A.H. Tissue specific responses of oysters, Crassostrea virginica, to silver nanoparticles. Aquat. Toxicol., 2013, 138-139, 123-128.
[http://dx.doi.org/10.1016/j.aquatox.2013.04.015 ] [PMID: 23728357]
[211]
Gokcay, B.; Berna, A.R. Nanotechnology, nanomedicine; ethical aspects. Rev. Rom. Bioet., 2015, 13(3)
[212]
Ambwani, S.; Tandon, R.; Gupta, A.; Ambwani, T.K.; Chauhan, R.S. Nanoparticles: Utility, immuno-toxicology and ethical issues. J. Immunol. Immunopathol., 2015, 17(2), 68-78.
[http://dx.doi.org/10.5958/0973-9149.2015.00010.6]
[213]
Li, X.; Wang, L.; Fan, Y.; Feng, Q.; Cui, F.Z. Biocompatibility and toxicity of nanoparticles and nanotubes. J. Nanomater., 2012, 2012Article ID 548389.
[http://dx.doi.org/10.1155/2012/548389]
[214]
Su, H.; Wang, Y.; Gu, Y.; Bowman, L.; Zhao, J.; Ding, M. Potential applications and human biosafety of nanomaterials used in nanomedicine. J. Appl. Toxicol., 2018, 38(1), 3-24.
[http://dx.doi.org/10.1002/jat.3476 ] [PMID: 28589558]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy