Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Research Article

Expression Analysis of 4-Hydroxynonenal Modified Proteins in Schizophrenia Brain; Relevance to Involvement in Redox Dysregulation

Author(s): Sobia Manzoor, Ayesha Khan*, Beena Hasan, Shamim Mushtaq and Nikhat Ahmed

Volume 19, Issue 1, 2022

Published on: 21 January, 2021

Page: [102 - 113] Pages: 12

DOI: 10.2174/1570164618666210121151004

Price: $65

Abstract

Background: Oxidative damage contributes to the pathophysiology of schizophrenia (SZ). Redox imbalance may lead to increased lipid peroxidation, which produces toxic aldehydes like 4-hydroxynonenal (4-HNE) ultimately leading to oxidative stress. Conversely, implications of oxidative stress point towards an alteration in HNE-protein adducts and activities of enzymatic and antioxidant systems in schizophrenia.

Objectives: The present study focuses on the identification of HNE-protein adducts and their related molecular consequences in schizophrenia pathology due to oxidative stress, particularly lipid peroxidation.

Materials and Methods: Oxyblotting was performed on seven autopsied brain samples each from the cortex and hippocampus region of schizophrenia patients and their respective normal healthy controls. Additionally, Thiobarbituric Acid Substances (TBARS), reduced Glutathione (GSH) levels and catalase (CAT) activities associated with oxidative stress, were also estimated.

Results: Obtained results indicate substantially higher levels of oxidative stress in schizophrenia patients than healthy control group represented by elevated expression of HNE-protein adducts. Interestingly, the hippocampus region of schizophrenia brain shows increased HNE protein adducts compared to cortex. An increase in catalase activity (4.8876±1.7123) whereas a decrease in antioxidant GSH levels (0.213±0.015μmol/ml) have been observed in SZ brain. Elevated TBARS levels (0.3801±0.0532ug/ml) were obtained in brain regions of SZ patients compared with their controls that reflect increased lipid peroxidation (LPO).

Conclusion: We propose the role of HNE modified proteins possibly associated with the pathology of schizophrenia. Our data revealed increased lipid peroxidation as a consequence of increased TBARS production. Furthermore, altered cellular antioxidants pathways related to GSH and CAT also highlight the involvement of oxidative stress in schizophrenia pathology.

Keywords: Lipid peroxidation, polyunsaturated fatty acid, reduced glutathione, 4-hydroxynonenal, malondialdehyde, thiobarbituric acid reactive substances, catalase.

Graphical Abstract

[1]
Nascimento, J.M.; Martins-de-Souza, D. The proteome of schizophrenia. Npj schizophrenia, 2015, 1(1), 14003.
[http://dx.doi.org/10.1038/npjschz.2014.3]
[2]
Bitanihirwe, B.K.Y.; Woo, T-U.W. Oxidative stress in schizophrenia: an integrated approach. Neurosci. Biobehav. Rev., 2011, 35(3), 878-893.
[http://dx.doi.org/10.1016/j.neubiorev.2010.10.008] [PMID: 20974172]
[3]
Díaz-Hung, M.L.; González Fraguela, M.E. Oxidative stress in neurological diseases: cause or effect? Neurologia, 2014, 29(8), 451-452.
[http://dx.doi.org/10.1016/j.nrleng.2013.06.012] [PMID: 24139387]
[4]
Sultana, R.; Poon, H.F.; Cai, J.; Pierce, W.M.; Merchant, M.; Klein, J.B.; Markesbery, W.R.; Butterfield, D.A. Identification of nitrated proteins in Alzheimer’s disease brain using a redox proteomics approach. Neurobiol. Dis., 2006, 22(1), 76-87.
[http://dx.doi.org/10.1016/j.nbd.2005.10.004] [PMID: 16378731]
[5]
Chien, Y-L.; Hwu, H.G.; Hwang, T.J.; Hsieh, M.H.; Liu, C.C.; Lin-Shiau, S.Y.; Liu, C.M. Clinical implications of oxidative stress in schizophrenia: Acute relapse and chronic stable phase. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2020, 99, 109868.
[http://dx.doi.org/10.1016/j.pnpbp.2020.109868] [PMID: 31954755]
[6]
Salim, S. Oxidative Stress and the Central Nervous System. J. Pharmacol. Exp. Ther., 2017, 360(1), 201-205.
[http://dx.doi.org/10.1124/jpet.116.237503] [PMID: 27754930]
[7]
Wang, X.; Michaelis, E.K. Selective neuronal vulnerability to oxidative stress in the brain. Front. Aging Neurosci., 2010, 2, 12-12.
[http://dx.doi.org/10.3389/fnagi.2010.00012] [PMID: 20552050]
[8]
Rathore, N.; John, S.; Kale, M.; Bhatnagar, D. Lipid peroxidation and antioxidant enzymes in isoproterenol induced oxidative stress in rat tissues. Pharmacol. Res., 1998, 38(4), 297-303.
[http://dx.doi.org/10.1006/phrs.1998.0365] [PMID: 9774493]
[9]
Dietrich-Muszalska, A.; Kontek, B. Lipid peroxidation in patients with schizophrenia. Psychiatry Clin. Neurosci., 2010, 64(5), 469-475.
[http://dx.doi.org/10.1111/j.1440-1819.2010.02132.x] [PMID: 20923426]
[10]
Sayre, L.M.; Lin, D.; Yuan, Q.; Zhu, X.; Tang, X. Protein adducts generated from products of lipid oxidation: focus on HNE and one. Drug Metab. Rev., 2006, 38(4), 651-675.
[http://dx.doi.org/10.1080/03602530600959508] [PMID: 17145694]
[11]
Ciobica, A. Oxidative stress in schizophrenia-focusing on the main markers. Psychiatria Danubina, 2011, 23(3), 237-245.
[12]
Kim, C.H. Proteomic Analysis of Nitrated and 4-Hydroxy-2-Nonenal–Modified Serum Proteins During Aging. The Journals of Gerontology: Series A, 2006, 61(4), 332-338.
[13]
Reed, T.T. Lipid peroxidation and neurodegenerative disease. Free Radic. Biol. Med., 2011, 51(7), 1302-1319.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.06.027] [PMID: 21782935]
[14]
Di Domenico, F.; Pupo, G.; Tramutola, A.; Giorgi, A.; Schininà, M.E.; Coccia, R.; Head, E.; Butterfield, D.A.; Perluigi, M. Redox proteomics analysis of HNE-modified proteins in Down syndrome brain: clues for understanding the development of Alzheimer disease. Free Radic. Biol. Med., 2014, 71, 270-280.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.03.027] [PMID: 24675226]
[15]
Castro, J.P.; Jung, T.; Grune, T.; Siems, W. 4-Hydroxynonenal (HNE) modified proteins in metabolic diseases. Free Radic. Biol. Med., 2017, 111, 309-315.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.10.497] [PMID: 27815191]
[16]
Ozyurt, B.; Ozyurt, H.; Akpolat, N.; Erdogan, H.; Sarsilmaz, M. Oxidative stress in prefrontal cortex of rat exposed to MK-801 and protective effects of CAPE. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2007, 31(4), 832-838.
[http://dx.doi.org/10.1016/j.pnpbp.2007.01.029] [PMID: 17374554]
[17]
Esterbauer, H.; Schaur, R.J.; Zollner, H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic. Biol. Med., 1991, 11(1), 81-128.
[http://dx.doi.org/10.1016/0891-5849(91)90192-6] [PMID: 1937131]
[18]
Jové, M.; Pradas, I.; Dominguez-Gonzalez, M.; Ferrer, I.; Pamplona, R. Lipids and lipoxidation in human brain aging. Mitochondrial ATP-synthase as a key lipoxidation target. Redox Biol., 2019, 23, 101082.
[http://dx.doi.org/10.1016/j.redox.2018.101082] [PMID: 30635167]
[19]
Siems, W.; Grune, T. Intracellular metabolism of 4-hydroxynonenal. Mol. Aspects Med., 2003, 24(4-5), 167-175.
[http://dx.doi.org/10.1016/S0098-2997(03)00011-6] [PMID: 12892994]
[20]
Poli, G.; Chiarpotto, E.; Biasi, F.; Pavia, R.; Albano, E.; Dianzani, M.U. Enzymatic impairment induced by biological aldehydes in intact rat liver cells. Res. Commun. Chem. Pathol. Pharmacol., 1982, 38(1), 71-76.
[PMID: 6293025]
[21]
Zhang, X.Y.; Tan, Y.L.; Cao, L.Y.; Wu, G.Y.; Xu, Q.; Shen, Y.; Zhou, D.F. Antioxidant enzymes and lipid peroxidation in different forms of schizophrenia treated with typical and atypical antipsychotics. Schizophr. Res., 2006, 81(2-3), 291-300.
[http://dx.doi.org/10.1016/j.schres.2005.10.011] [PMID: 16309894]
[22]
Kunz, M.; Gama, C.S.; Andreazza, A.C.; Salvador, M.; Ceresér, K.M.; Gomes, F.A.; Belmonte-de-Abreu, P.S.; Berk, M.; Kapczinski, F. Elevated serum superoxide dismutase and thiobarbituric acid reactive substances in different phases of bipolar disorder and in schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2008, 32(7), 1677-1681.
[http://dx.doi.org/10.1016/j.pnpbp.2008.07.001] [PMID: 18657586]
[23]
Yao, J.K.; Keshavan, M.S. Antioxidants, redox signaling, and pathophysiology in schizophrenia: an integrative view. Antioxidants & redox signaling, 2011, 15(7), 2011-2035.
[http://dx.doi.org/10.1089/ars.2010.3603]
[24]
Sultana, R.; Butterfield, D.A. Identification of the oxidative stress proteome in the brain. Free Radic. Biol. Med., 2011, 50(4), 487-494.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.11.021] [PMID: 21111808]
[25]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72(1), 248-254.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[26]
Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227(5259), 680-685.
[http://dx.doi.org/10.1038/227680a0] [PMID: 5432063]
[27]
Towbin, H.; Staehelin, T.; Gordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA, 1979, 76(9), 4350-4354.
[http://dx.doi.org/10.1073/pnas.76.9.4350] [PMID: 388439]
[28]
Timirbulatov, R.A.; Seleznev, E.I. Method for increasing the intensity of free radical oxidation of lipid-containing components of the blood and its diagnostic significance. Lab. Delo, 1981, (4), 209-211.
[PMID: 6164852]
[29]
Qureshi, T.L. Centratherum anthelminticum ameliorates antiatherogenic index in hyperlipidemic rabbits. 2013.
[30]
Samarth, R.M. Evaluation of antioxidant and radical-scavenging activities of certain radioprotective plant extracts. Food Chem., 2008, 106(2), 868-873.
[http://dx.doi.org/10.1016/j.foodchem.2007.05.005]
[31]
Sinha, A.K. Colorimetric assay of catalase. Anal. Biochem., 1972, 47(2), 389-394.
[http://dx.doi.org/10.1016/0003-2697(72)90132-7] [PMID: 4556490]
[32]
Cai, Z.; Yan, L-J. Protein Oxidative Modifications: Beneficial Roles in Disease and Health. J. Biochem. Pharmacol. Res., 2013, 1(1), 15-26.
[PMID: 23662248]
[33]
Hjelm, B.E.; Rollins, B.; Mamdani, F.; Lauterborn, J.C.; Kirov, G.; Lynch, G.; Gall, C.M.; Sequeira, A.; Vawter, M.P. Evidence of Mitochondrial Dysfunction within the Complex Genetic Etiology of Schizophrenia. Mol. Neuropsychiatry, 2015, 1(4), 201-219.
[http://dx.doi.org/10.1159/000441252] [PMID: 26550561]
[34]
Chan, M.K.; Tsang, T.M.; Harris, L.W.; Guest, P.C.; Holmes, E.; Bahn, S. Evidence for disease and antipsychotic medication effects in post-mortem brain from schizophrenia patients. Mol. Psychiatry, 2011, 16(12), 1189-1202.
[http://dx.doi.org/10.1038/mp.2010.100] [PMID: 20921955]
[35]
Martins-de-Souza, D.; Maccarrone, G.; Wobrock, T.; Zerr, I.; Gormanns, P.; Reckow, S.; Falkai, P.; Schmitt, A.; Turck, C.W. Proteome analysis of the thalamus and cerebrospinal fluid reveals glycolysis dysfunction and potential biomarkers candidates for schizophrenia. J. Psychiatr. Res., 2010, 44(16), 1176-1189.
[http://dx.doi.org/10.1016/j.jpsychires.2010.04.014] [PMID: 20471030]
[36]
Martins-de-Souza, D. The role of energy metabolism dysfunction and oxidative stress in schizophrenia revealed by proteomics. Antioxidants & redox signaling, 2011, 15(7), 2067-2079.
[http://dx.doi.org/10.1089/ars.2010.3459]
[37]
Martins-de-Souza, D.; Gattaz, W.F.; Schmitt, A.; Rewerts, C.; Maccarrone, G.; Dias-Neto, E.; Turck, C.W. Prefrontal cortex shotgun proteome analysis reveals altered calcium homeostasis and immune system imbalance in schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci., 2009, 259(3), 151-163.
[http://dx.doi.org/10.1007/s00406-008-0847-2] [PMID: 19165527]
[38]
Martins-de-Souza, D.; Gattaz, W.F.; Schmitt, A.; Rewerts, C.; Marangoni, S.; Novello, J.C.; Maccarrone, G.; Turck, C.W.; Dias-Neto, E. Alterations in oligodendrocyte proteins, calcium homeostasis and new potential markers in schizophrenia anterior temporal lobe are revealed by shotgun proteome analysis. J. Neural Transm. (Vienna), 2009, 116(3), 275-289.
[http://dx.doi.org/10.1007/s00702-008-0156-y] [PMID: 19034380]
[39]
Sivagnanasundaram, S.; Crossett, B.; Dedova, I.; Cordwell, S.; Matsumoto, I. Abnormal pathways in the genu of the corpus callosum in schizophrenia pathogenesis: a proteome study. Proteomics Clin. Appl., 2007, 1(10), 1291-1305.
[http://dx.doi.org/10.1002/prca.200700230] [PMID: 21136626]
[40]
Bošković, M.; Vovk, T.; Kores Plesničar, B.; Grabnar, I. Oxidative stress in schizophrenia. Curr. Neuropharmacol., 2011, 9(2), 301-312.
[http://dx.doi.org/10.2174/157015911795596595] [PMID: 22131939]
[41]
González-Blanco, L.; García-Portilla, M.P.; García-Álvarez, L.; de la Fuente-Tomás, L.; Iglesias García, C.; Sáiz, P.A.; Rodríguez-González, S.; Coto-Montes, A.; Bobes, J. Oxidative stress biomarkers and clinical dimensions in first 10 years of schizophrenia. Rev. Psiquiatr. Salud Ment., 2018, 11(3), 130-140.
[http://dx.doi.org/10.1016/j.rpsmen.2018.03.001] [PMID: 29691142]
[42]
Hardas, S.S.; Sultana, R.; Clark, A.M.; Beckett, T.L.; Szweda, L.I.; Murphy, M.P.; Butterfield, D.A. Oxidative modification of lipoic acid by HNE in Alzheimer disease brain. Redox Biol., 2013, 1(1), 80-85.
[http://dx.doi.org/10.1016/j.redox.2013.01.002] [PMID: 24024140]
[43]
Takeda, A.; Smith, M.A.; Avilá, J.; Nunomura, A.; Siedlak, S.L.; Zhu, X.; Perry, G.; Sayre, L.M. In Alzheimer’s disease, heme oxygenase is coincident with Alz50, an epitope of tau induced by 4-hydroxy-2-nonenal modification. J. Neurochem., 2000, 75(3), 1234-1241.
[http://dx.doi.org/10.1046/j.1471-4159.2000.0751234.x] [PMID: 10936206]
[44]
Zhu, X. Hydroxynonenal-generated crosslinking fluorophore accumulation in Alzheimer disease reveals a dichotomy of protein turnover. Free radical biology & medicine, 2012, 52(3), 699-704.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.11.004]
[45]
Yoritaka, A.; Hattori, N.; Uchida, K.; Tanaka, M.; Stadtman, E.R.; Mizuno, Y. Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease. Proc. Natl. Acad. Sci. USA, 1996, 93(7), 2696-2701.
[http://dx.doi.org/10.1073/pnas.93.7.2696] [PMID: 8610103]
[46]
Chen, X.; Guo, C.; Kong, J. Oxidative stress in neurodegenerative diseases. Neural Regen. Res., 2012, 7(5), 376-385.
[PMID: 25774178]
[47]
Mattson, M.P.; Chan, S.L. Neuronal and glial calcium signaling in Alzheimer’s disease. Cell Calcium, 2003, 34(4-5), 385-397.
[http://dx.doi.org/10.1016/S0143-4160(03)00128-3] [PMID: 12909083]
[48]
Keller, J.N.; Pang, Z.; Geddes, J.W.; Begley, J.G.; Germeyer, A.; Waeg, G.; Mattson, M.P. Impairment of glucose and glutamate transport and induction of mitochondrial oxidative stress and dysfunction in synaptosomes by amyloid beta-peptide: role of the lipid peroxidation product 4-hydroxynonenal. J. Neurochem., 1997, 69(1), 273-284.
[http://dx.doi.org/10.1046/j.1471-4159.1997.69010273.x] [PMID: 9202320]
[49]
Marchitti, S.A.; Orlicky, D.J.; Vasiliou, V. Expression and initial characterization of human ALDH3B1. Biochem. Biophys. Res. Commun., 2007, 356(3), 792-798.
[http://dx.doi.org/10.1016/j.bbrc.2007.03.046] [PMID: 17382292]
[50]
Danti, F.R.; Galosi, S.; Romani, M.; Montomoli, M.; Carss, K.J.; Raymond, F.L.; Parrini, E.; Bianchini, C.; McShane, T.; Dale, R.C.; Mohammad, S.S.; Shah, U.; Mahant, N.; Ng, J.; McTague, A.; Samanta, R.; Vadlamani, G.; Valente, E.M.; Leuzzi, V.; Kurian, M.A.; Guerrini, R. GNAO1 encephalopathy: Broadening the phenotype and evaluating treatment and outcome. Neurol. Genet., 2017, 3(2), e143.
[http://dx.doi.org/10.1212/NXG.0000000000000143] [PMID: 28357411]
[51]
Adibhatla, R.M.; Hatcher, J.F. Citicoline decreases phospholipase A2 stimulation and hydroxyl radical generation in transient cerebral ischemia. J. Neurosci. Res., 2003, 73(3), 308-315.
[http://dx.doi.org/10.1002/jnr.10672] [PMID: 12868064]
[52]
Zhou, T.B.; Qin, Y.H.; Lei, F.Y.; Huang, W.F.; Drummen, G.P. Prohibitin is associated with antioxidative protection in hypoxia/reoxygenation-induced renal tubular epithelial cell injury. Sci. Rep., 2013, 3, 3123.
[http://dx.doi.org/10.1038/srep03123] [PMID: 24185039]
[53]
Zhou, P.; Qian, L.; D’Aurelio, M.; Cho, S.; Wang, G.; Manfredi, G.; Pickel, V.; Iadecola, C. Prohibitin reduces mitochondrial free radical production and protects brain cells from different injury modalities. J. Neurosci., 2012, 32(2), 583-592.
[http://dx.doi.org/10.1523/JNEUROSCI.2849-11.2012] [PMID: 22238093]
[54]
Gibson, G.E.; Starkov, A.; Blass, J.P.; Ratan, R.R.; Beal, M.F. Cause and consequence: mitochondrial dysfunction initiates and propagates neuronal dysfunction, neuronal death and behavioral abnormalities in age-associated neurodegenerative diseases. Biochim. Biophys. Acta, 2010, 1802(1), 122-134.
[http://dx.doi.org/10.1016/j.bbadis.2009.08.010] [PMID: 19715758]
[55]
Marchisella, F.; Coffey, E.T.; Hollos, P. Microtubule and microtubule associated protein anomalies in psychiatric disease. Cytoskeleton (Hoboken), 2016, 73(10), 596-611.
[http://dx.doi.org/10.1002/cm.21300] [PMID: 27112918]
[56]
Raffa, M.; Mechri, A.; Othman, L.B.; Fendri, C.; Gaha, L.; Kerkeni, A. Decreased glutathione levels and antioxidant enzyme activities in untreated and treated schizophrenic patients. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2009, 33(7), 1178-1183.
[http://dx.doi.org/10.1016/j.pnpbp.2009.06.018] [PMID: 19576938]
[57]
Yao, J.K.; Leonard, S.; Reddy, R. Altered glutathione redox state in schizophrenia. Dis. Markers, 2006, 22(1-2), 83-93.
[http://dx.doi.org/10.1155/2006/248387] [PMID: 16410648]
[58]
Rukmini, M.S.; D’Souza, B.; D’Souza, V. Superoxide dismutase and catalase activities and their correlation with malondialdehyde in schizophrenic patients. Indian J. Clin. Biochem., 2004, 19(2), 114-118.
[http://dx.doi.org/10.1007/BF02894268] [PMID: 23105467]
[59]
Talukdar, P.M.; Abdul, F.; Maes, M.; Binu, V.S.; Venkatasubramanian, G.; Kutty, B.M.; Debnath, M. Maternal Immune Activation Causes Schizophrenia-like Behaviors in the Offspring through Activation of Immune-Inflammatory, Oxidative and Apoptotic Pathways, and Lowered Antioxidant Defenses and Neuroprotection. Mol. Neurobiol., 2020, 57(10), 4345-4361.
[http://dx.doi.org/10.1007/s12035-020-02028-8] [PMID: 32720073]
[60]
Yang, S-N. Effects of isolation rearing and early antipsychotic intervention on oxidative stress-induced apoptosis and brain-derived neurotrophic factor in hippocampus in a rat model of schizophrenia. Journal of Medical Sciences, 2017, 37(4), 155-162.
[http://dx.doi.org/10.4103/jmedsci.jmedsci_113_16]
[61]
Norris, P.J.; Faull, R.L.; Emson, P.C. Neuronal nitric oxide synthase (nNOS) mRNA expression and NADPH-diaphorase staining in the frontal cortex, visual cortex and hippocampus of control and Alzheimer’s disease brains. Brain Res. Mol. Brain Res., 1996, 41(1-2), 36-49.
[http://dx.doi.org/10.1016/0169-328X(96)00064-2] [PMID: 8883932]
[62]
Thorns, V.; Hansen, L.; Masliah, E. nNOS expressing neurons in the entorhinal cortex and hippocampus are affected in patients with Alzheimer’s disease. Exp. Neurol., 1998, 150(1), 14-20.
[http://dx.doi.org/10.1006/exnr.1997.6751] [PMID: 9514829]
[63]
Heales, S.J.; Bolaños, J.P.; Stewart, V.C.; Brookes, P.S.; Land, J.M.; Clark, J.B. Nitric oxide, mitochondria and neurological disease. Biochim. Biophys. Acta, 1999, 1410(2), 215-228.
[http://dx.doi.org/10.1016/S0005-2728(98)00168-6] [PMID: 10076028]
[64]
Böckelmann, R.; Wolf, G.; Ransmayr, G.; Riederer, P. NADPH-diaphorase/nitric oxide synthase containing neurons in normal and Parkinson’s disease putamen. J. Neural Transm. Park. Dis. Dement. Sect., 1994, 7(2), 115-121.
[http://dx.doi.org/10.1007/BF02260966] [PMID: 7536004]
[65]
Hunot, S.; Boissière, F.; Faucheux, B.; Brugg, B.; Mouatt-Prigent, A.; Agid, Y.; Hirsch, E.C. Nitric oxide synthase and neuronal vulnerability in Parkinson’s disease. Neuroscience, 1996, 72(2), 355-363.
[http://dx.doi.org/10.1016/0306-4522(95)00578-1] [PMID: 8737406]
[66]
Gerlach, M.; Blum-Degen, D.; Lan, J.; Riederer, P. Nitric oxide in the pathogenesis of Parkinson’s disease. Adv. Neurol., 1999, 80, 239-245.
[PMID: 10410728]
[67]
Csala, M. On the role of 4-hydroxynonenal in health and disease. Biochimica et Biophysica Acta (BBA) -. Molecular Basis of Disease, 2015, 1852(5), 826-838.
[http://dx.doi.org/10.1016/j.bbadis.2015.01.015]
[68]
Shoeb, M.; Ansari, N.H.; Srivastava, S.K.; Ramana, K.V. 4-Hydroxynonenal in the pathogenesis and progression of human diseases. Curr. Med. Chem., 2014, 21(2), 230-237.
[http://dx.doi.org/10.2174/09298673113209990181] [PMID: 23848536]
[69]
Arif, A.; Chatterjee, P.; Moodt, R.A.; Fox, P.L. Heterotrimeric GAIT complex drives transcript-selective translation inhibition in murine macrophages. Mol. Cell. Biol., 2012, 32(24), 5046-5055.
[http://dx.doi.org/10.1128/MCB.01168-12] [PMID: 23071094]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy