Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Fluorescent Carbon Dots and their Applications in Sensing of Small Organic Molecules

Author(s): Sakib Hussain Laghari, Najma Memon*, Muhammad Yar Khuhawer and Taj Muhammad Jahangir

Volume 18, Issue 2, 2022

Published on: 20 January, 2021

Page: [145 - 162] Pages: 18

DOI: 10.2174/1573411017999210120180236

Price: $65

Abstract

Background: Fluorescence-based sensing is considered highly sensitive and fluorescent probes with improved properties are always preferred. Fluorescent carbon dots (CDs) are newly emerging quasi-spherical nanoparticles of less than 10 nm in size and belong to the carbon nanomaterial’s family. CDs have great potential as fluorescent probes and currently are under open discussion by the researchers due to their striking properties such as low environmental hazard, high selectivity, greater sensitivity, good biocompatibility, tunable fluorescent properties and excitation dependent multicolor emission behavior.

Introduction: This review demonstrates various available methods for fabrication of fluorescent CDs, capping of CDs and characterization with various techniques, including UV-visible, FT-IR, and TEM. Analytical applications using CDs for the sensing of small organic molecules, specifically nitroaromatic compounds in the environmental samples, are complied.

Methods: The review covers literature related to synthesis and characterization of carbon dots. It includes around 171 research articles in this field.

Results: Carbon dots can be synthesized using numerous routes. In all cases, CDs possess spectral properties with little variation in wavelength maxima. The optical properties of CDs can be tuned by compositing these with metallic quantum dots or by modifying their surface with desired functionalities. HR-TEM is needed to see the morphology and size of particles, whereas UV-Visible and FTIR are indispensable tools for this kind of research. These particles are successfully applied to sense small molecules in some matrices.

Conclusion: Carbon dots are bright stars in fluorescent sensing of small molecules. However, more research is needed to determine small organic molecules in diversified areas of analysis.

Keywords: Small organic molecules, fluorescent quantum dots, CDs fluorophores, spectrofluorometric determination, green methods, quenchofluorimetry.

Graphical Abstract

[1]
Kharisov, B.I.; Kharissova, O.V. General data on carbon allotropes. Carbon Allotropes: Metal-Complex Chemistry, Properties and Applications; Springer, 2019, pp. 1-8.
[http://dx.doi.org/10.1007/978-3-030-03505-1_1]
[2]
Curl, R.F.; Smalley, R.E. Fullerenes. Sci. Am., 1991, 265(4), 54-63.
[http://dx.doi.org/10.1038/scientificamerican1091-54] [PMID: 1876825]
[3]
Ebbesen, T.W. Carbon nanotubes: preparation and properties; CRC press, 1996.
[4]
Li, D.; Kaner, R.B. Materials science. Graphene-based materials. Science, 2008, 320(5880), 1170-1171.
[http://dx.doi.org/10.1126/science.1158180] [PMID: 18511678]
[5]
Maleki Dizaj, S.; Mennati, A.; Jafari, S.; Khezri, K.; Adibkia, K. Antimicrobial activity of carbon-based nanoparticles. Adv. Pharm. Bull., 2015, 5(1), 19-23.
[PMID: 25789215]
[6]
Silvestrov, P.G.; Efetov, K.B. Quantum dots in graphene. Phys. Rev. Lett., 2007, 98(1)
[http://dx.doi.org/10.1103/PhysRevLett.98.016802] [PMID: 17358497]
[7]
Zhu, S.; Song, Y.; Zhao, X.; Shao, J.; Zhang, J.; Yang, B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res., 2015, 8(2), 355-381.
[http://dx.doi.org/10.1007/s12274-014-0644-3]
[8]
Yang, S-T.; Cao, L.; Luo, P.G.; Lu, F.; Wang, X.; Wang, H.; Meziani, M.J.; Liu, Y.; Qi, G.; Sun, Y-P. Carbon dots for optical imaging in vivo. J. Am. Chem. Soc., 2009, 131(32), 11308-11309.
[http://dx.doi.org/10.1021/ja904843x] [PMID: 19722643]
[9]
Tang, L.; Ji, R.; Cao, X.; Lin, J.; Jiang, H.; Li, X.; Teng, K.S.; Luk, C.M.; Zeng, S.; Hao, J.; Lau, S.P. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano, 2012, 6(6), 5102-5110.
[http://dx.doi.org/10.1021/nn300760g] [PMID: 22559247]
[10]
Wu, C.; Chiu, D.T. Highly fluorescent semiconducting polymer dots for biology and medicine. Angew. Chem. Int. Ed. Engl., 2013, 52(11), 3086-3109.
[http://dx.doi.org/10.1002/anie.201205133] [PMID: 23307291]
[11]
Tejwan, N.; Saha, S.K.; Das, J. Multifaceted applications of green carbon dots synthesized from renewable sources. Adv. Colloid Interface Sci., 2020, 275102046
[http://dx.doi.org/10.1016/j.cis.2019.102046] [PMID: 31757388]
[12]
Samira, B.; Amin, T.; Javad, M. Carbon dot-based fluorometric optical sensors: an overview. Rev. Inorg. Chem., 2019, 39(4), 179-197.
[http://dx.doi.org/10.1515/revic-2019-0002]
[13]
Tajik, S.; Dourandish, Z.; Zhang, K.; Beitollahi, H.; Le, Q.V.; Jang, H.W.; Shokouhimehr, M. Carbon and graphene quantum dots: a review on syntheses, characterization, biological and sensing applications for neurotransmitter determination. RSC Advances, 2020, 10(26), 15406-15429.
[http://dx.doi.org/10.1039/D0RA00799D]
[14]
Kavitha, T.; Kumar, S.J.S. Turning date palm fronds into biocompatible mesoporous fluorescent carbon dots. J. Sci. Rep., 2018, 8(1), 1-10.
[http://dx.doi.org/10.1038/s41598-018-34349-z] [PMID: 29311619]
[15]
Du, F.; Zhang, M.; Li, X.; Li, J.; Jiang, X.; Li, Z.; Hua, Y.; Shao, G.; Jin, J.; Shao, Q.; Zhou, M.; Gong, A. Economical and green synthesis of bagasse-derived fluorescent carbon dots for biomedical applications. Nanotechnology, 2014, 25(31)315702
[http://dx.doi.org/10.1088/0957-4484/25/31/315702] [PMID: 25036467]
[16]
Wang, J. Vegetable-extracted carbon dots and their nanocomposites for enhanced photocatalytic H 2 production. RSC-Royal society of chemistry, 2014, 4(83), 44117-44123.
[17]
Zhu, L. Plant leaf-derived fluorescent carbon dots for sensing, patterning and coding. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2013, 1(32), 4925-4932.
[http://dx.doi.org/10.1039/c3tc30701h]
[18]
Karthik, S.; Saha, B.; Ghosh, S.K.; Pradeep Singh, N.D. Photoresponsive quinoline tethered fluorescent carbon dots for regulated anticancer drug delivery. Chem. Commun. (Camb.), 2013, 49(89), 10471-10473.
[http://dx.doi.org/10.1039/c3cc46078a] [PMID: 24080791]
[19]
Liu, R. Ultra-sensitive and selective Hg2+ detection based on fluorescent carbon dots. Mater. Res. Bull., 2013, 48(7), 2529-2534.
[http://dx.doi.org/10.1016/j.materresbull.2013.03.015]
[20]
Xue, M. Nitrogen and sulfur co-doped carbon dots: a facile and green fluorescence probe for free chlorine. Sens. Actuators B Chem., 2015, 219, 50-56.
[http://dx.doi.org/10.1016/j.snb.2015.05.021]
[21]
Fan, Y.Z. A facile synthesis of water-soluble carbon dots as a label-free fluorescent probe for rapid, selective and sensitive detection of picric acid. Sens. Actuators B Chem., 2017, 240, 949-955.
[http://dx.doi.org/10.1016/j.snb.2016.09.063]
[22]
Qu, S.; Wang, X.; Lu, Q.; Liu, X.; Wang, L. A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots. Angew. Chem. Int. Ed. Engl., 2012, 51(49), 12215-12218.
[http://dx.doi.org/10.1002/anie.201206791] [PMID: 23109224]
[23]
Wang, L.; Zhou, H.S. Green synthesis of luminescent nitrogen-doped carbon dots from milk and its imaging application. Anal. Chem., 2014, 86(18), 8902-8905.
[http://dx.doi.org/10.1021/ac502646x] [PMID: 25181643]
[24]
Guo, Y. Hydrothermal synthesis of highly fluorescent carbon nanoparticles from sodium citrate and their use for the detection of mercury ions. Carbon, 2013, 2013(52), 583-589.
[http://dx.doi.org/10.1016/j.carbon.2012.10.028]
[25]
Zhang, R.; Chen, W. Nitrogen-doped carbon quantum dots: facile synthesis and application as a “turn-off” fluorescent probe for detection of Hg2+ ions. Biosens. Bioelectron., 2014, 55, 83-90.
[http://dx.doi.org/10.1016/j.bios.2013.11.074] [PMID: 24365697]
[26]
Xu, Y.; Wu, M.; Liu, Y.; Feng, X.Z.; Yin, X.B.; He, X.W.; Zhang, Y.K. Nitrogen-doped carbon dots: a facile and general preparation method, photoluminescence investigation, and imaging applications. Chemistry, 2013, 19(7), 2276-2283.
[http://dx.doi.org/10.1002/chem.201203641] [PMID: 23322649]
[27]
Huang, J.J. An easy approach of preparing strongly luminescent carbon dots and their polymer based composites for enhancing solar cell efficiency. Carbon, 2014, 2014(70), 190-198.
[http://dx.doi.org/10.1016/j.carbon.2013.12.092]
[28]
Huang, J.J. An easy approach of preparing strongly luminescent carbon dots and their polymer based composites for enhancing solar cell efficiency. J. Mater. Chem. B Mater. Biol. Med., 2014, 70, 190-198.
[29]
Zuo, J. Preparation and application of fluorescent carbon dots. J. Nanomater., 2015.
[http://dx.doi.org/10.1155/2015/787862]
[30]
Gonçalves, H. Hg (II) sensing based on functionalized carbon dots obtained by direct laser ablation. Actuators B. Chemical, 2010, 145(2), 702-707.
[31]
Xu, Y.; Wu, M.; Feng, X.Z.; Yin, X.B.; He, X.W.; Zhang, Y.K. Reduced carbon dots versus oxidized carbon dots: photo- and electrochemiluminescence investigations for selected applications. Chemistry, 2013, 19(20), 6282-6288.
[http://dx.doi.org/10.1002/chem.201204372] [PMID: 23526652]
[32]
Qiao, Z-A.; Wang, Y.; Gao, Y.; Li, H.; Dai, T.; Liu, Y.; Huo, Q. Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation. Chem. Commun. (Camb.), 2010, 46(46), 8812-8814.
[http://dx.doi.org/10.1039/c0cc02724c] [PMID: 20953494]
[33]
Ma, Z. One-step ultrasonic synthesis of fluorescent N-doped carbon dots from glucose and their visible-light sensitive photocatalytic ability. J New Journal of Chemistry, 2012, 36(4), 861-864.
[http://dx.doi.org/10.1039/c2nj20942j]
[34]
Wang, X. Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents. J. Mater. Chem., 2011, 21(8), 2445-2450.
[http://dx.doi.org/10.1039/c0jm02963g]
[35]
Chang, M.M.F. Single-shot ‘turn-off’optical probe for rapid detection of paraoxon-ethyl pesticide on vegetable utilising fluorescence carbon dots. Actuators B. Chemical, 2017, 242, 1050-1056.
[36]
Yang, Y.; Wu, D.; Han, S.; Hu, P.; Liu, R. Bottom-up fabrication of photoluminescent carbon dots with uniform morphology via a soft-hard template approach. Chem. Commun. (Camb.), 2013, 49(43), 4920-4922.
[http://dx.doi.org/10.1039/c3cc38815h] [PMID: 23598552]
[37]
Wu, Z.L.; Zhang, P.; Gao, M.X.; Liu, C.F.; Wang, W.; Leng, F.; Huang, C.Z. One-pot hydrothermal synthesis of highly luminescent nitrogen-doped amphoteric carbon dots for bioimaging from Bombyx mori silk - natural proteins. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(22), 2868-2873.
[http://dx.doi.org/10.1039/c3tb20418a] [PMID: 32260873]
[38]
Hu, Y. Ethanol in aqueous hydrogen peroxide solution: Hydrothermal synthesis of highly photoluminescent carbon dots as multifunctional nanosensors. Carbon, 2015, 93, 999-1007.
[http://dx.doi.org/10.1016/j.carbon.2015.06.018]
[39]
Zhang, Z. Protein as the source for synthesizing fluorescent carbon dots by a one-pot hydrothermal route. RSC Advances, 2012, 2(23), 8599-8601.
[http://dx.doi.org/10.1039/c2ra21217j]
[40]
Prasannan, A.; Imae, T.J.I.; Research, E.C. One-pot synthesis of fluorescent carbon dots from orange waste peels. Engineering Chemistry Research, 2013, 52(44), 15673-15678.
[http://dx.doi.org/10.1021/ie402421s]
[41]
Zhang, X.; Jiang, M.; Niu, N.; Chen, Z.; Li, S.; Liu, S.; Li, J. Natural-Product-Derived Carbon Dots: From Natural Products to Functional Materials. ChemSusChem, 2018, 11(1), 11-24.
[http://dx.doi.org/10.1002/cssc.201701847] [PMID: 29072348]
[42]
Xu, X.; Ray, R.; Gu, Y.; Ploehn, H.J.; Gearheart, L.; Raker, K.; Scrivens, W.A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc., 2004, 126(40), 12736-12737.
[http://dx.doi.org/10.1021/ja040082h] [PMID: 15469243]
[43]
Castro, H.P.; Souza, V.S.; Scholten, J.D.; Dias, J.H.; Fernandes, J.A.; Rodembusch, F.S.; Dos Reis, R.; Dupont, J.; Teixeira, S.R.; Correia, R.R. Synthesis and Characterisation of Fluorescent Carbon Nanodots Produced in Ionic Liquids by Laser Ablation. Chemistry, 2016, 22(1), 138-143.
[http://dx.doi.org/10.1002/chem.201503286] [PMID: 26558445]
[44]
Xu, H. One-step synthesis of nitrogen-doped carbon nanodots for ratiometric pH sensing by femtosecond laser ablation method. J Applied Surface Science, 2017, 414, 238-243.
[http://dx.doi.org/10.1016/j.apsusc.2017.04.092]
[45]
Yu, H.; Li, X.; Zeng, X.; Lu, Y. Preparation of carbon dots by non-focusing pulsed laser irradiation in toluene. Chem. Commun. (Camb.), 2016, 52(4), 819-822.
[http://dx.doi.org/10.1039/C5CC08384B] [PMID: 26574881]
[46]
Zhu, Z. Direct photodissociation of toluene molecules to photoluminescent carbon dots under pulsed laser irradiation. Carbon, 2016, 105, 416-423.
[http://dx.doi.org/10.1016/j.carbon.2016.04.047]
[47]
Zhang, W.F. Observation of white-light amplified spontaneous emission from carbon nanodots under laser excitation. Opt. Mater. Express, 2012, 2(4), 490-495.
[http://dx.doi.org/10.1364/OME.2.000490]
[48]
Hou, Y.; Lu, Q.; Deng, J.; Li, H.; Zhang, Y. One-pot electrochemical synthesis of functionalized fluorescent carbon dots and their selective sensing for mercury ion. Anal. Chim. Acta, 2015, 866, 69-74.
[http://dx.doi.org/10.1016/j.aca.2015.01.039] [PMID: 25732694]
[49]
Wang, C-I. Electrochemical synthesis of photoluminescent carbon nanodots from glycine for highly sensitive detection of hemoglobin. Green Chem., 2014, 16(5), 2509-2514.
[http://dx.doi.org/10.1039/c3gc42325e]
[50]
Shao, X.; Gu, H.; Wang, Z.; Chai, X.; Tian, Y.; Shi, G. Highly selective electrochemical strategy for monitoring of cerebral Cu2+ based on a carbon Dot-TPEA hybridized surface. Anal. Chem., 2013, 85(1), 418-425.
[http://dx.doi.org/10.1021/ac303113n] [PMID: 23214718]
[51]
Guo, W.; Pi, F.; Zhang, H.; Sun, J.; Zhang, Y.; Sun, X. A novel molecularly imprinted electrochemical sensor modified with carbon dots, chitosan, gold nanoparticles for the determination of patulin. Biosens. Bioelectron., 2017, 98, 299-304.
[http://dx.doi.org/10.1016/j.bios.2017.06.036] [PMID: 28697441]
[52]
Zhuang, Z. A glassy carbon electrode modified with carbon dots and gold nanoparticles for enhanced electrocatalytic oxidation and detection of nitrite. Mikrochim. Acta, 2016, 183(10), 2807-2814.
[http://dx.doi.org/10.1007/s00604-016-1931-3]
[53]
Fu, X-C. A novel turn-on fluorescent sensor for highly selective detection of Al (III) in an aqueous solution based on simple electrochemically synthesized carbon dots. J Analytical Methods, 2017, 9(26), 3941-3948.
[http://dx.doi.org/10.1039/C7AY01137G]
[54]
Zhang, Y.; Park, M.; Kim, H.Y.; Ding, B.; Park, S.J. A facile ultrasonic-assisted fabrication of nitrogen-doped carbon dots/BiOBr up-conversion nanocomposites for visible light photocatalytic enhancements. Sci. Rep., 2017, 7(1), 45086.
[http://dx.doi.org/10.1038/srep45086] [PMID: 28327652]
[55]
Costas-Mora, I.; Romero, V.; Lavilla, I.; Bendicho, C. In situ building of a nanoprobe based on fluorescent carbon dots for methylmercury detection. Anal. Chem., 2014, 86(9), 4536-4543.
[http://dx.doi.org/10.1021/ac500517h] [PMID: 24678836]
[56]
Wang, F. Study on ultrasonic single-step synthesis and optical properties of nitrogen-doped carbon fluorescent quantum dots. Carbon Nanostructures, 2015, 23(9), 769-776.
[http://dx.doi.org/10.1080/1536383X.2014.996287]
[57]
ReddyPrasad. P. and E.B.J.J.o.M.S. Naidoo, Ultrasonic synthesis of high fluorescent C-dots and modified with CuWO4 nanocomposite for effective photocatalytic activity. J. Mol. Struct., 2015, 1098, 146-152.
[http://dx.doi.org/10.1016/j.molstruc.2015.05.043]
[58]
Huang, H.; Cui, Y.; Liu, M.; Chen, J.; Wan, Q.; Wen, Y.; Deng, F.; Zhou, N.; Zhang, X.; Wei, Y. A one-step ultrasonic irradiation assisted strategy for the preparation of polymer-functionalized carbon quantum dots and their biological imaging. J. Colloid Interface Sci., 2018, 532, 767-773.
[http://dx.doi.org/10.1016/j.jcis.2018.07.099] [PMID: 30130727]
[59]
Kumari, A. Synthesis of green fluorescent carbon quantum dots using waste polyolefins residue for Cu2+ ion sensing and live cell imaging. Sens. Actuators B Chem., 2018, 254, 197-205.
[http://dx.doi.org/10.1016/j.snb.2017.07.075]
[60]
Li, J.; Wang, N.; Tran, T.T.; Huang, C.; Chen, L.; Yuan, L.; Zhou, L.; Shen, R.; Cai, Q. Electrogenerated chemiluminescence detection of trace level pentachlorophenol using carbon quantum dots. Analyst (Lond.), 2013, 138(7), 2038-2043.
[http://dx.doi.org/10.1039/c3an36653g] [PMID: 23391969]
[61]
Liu, Y. One-step microwave-assisted polyol synthesis of green luminescent carbon dots as optical nanoprobes. J Carbon, 2014, 68, 258-264.
[http://dx.doi.org/10.1016/j.carbon.2013.10.086]
[62]
Edison, T.N.; Atchudan, R.; Sethuraman, M.G.; Shim, J.J.; Lee, Y.R. Microwave assisted green synthesis of fluorescent N-doped carbon dots: Cytotoxicity and bio-imaging applications. J. Photochem. Photobiol. B, 2016, 161, 154-161.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.05.017] [PMID: 27236237]
[63]
Bhaisare, M.L. Synthesis of fluorescent carbon dots via microwave carbonization of citric acid in presence of tetraoctylammonium ion, and their application to cellular bioimaging. J Microchimica Acta, 2015, 182(13-14), 2173-2181.
[http://dx.doi.org/10.1007/s00604-015-1541-5]
[64]
Guan, W.; Gu, W.; Ye, L.; Guo, C.; Su, S.; Xu, P.; Xue, M. Microwave-assisted polyol synthesis of carbon nitride dots from folic acid for cell imaging. Int. J. Nanomedicine, 2014, 9, 5071-5078.
[PMID: 25382977]
[65]
López, C.; Zougagh, M.; Algarra, M.; Rodríguez-Castellón, E.; Campos, B.B.; Esteves da Silva, J.C.; Jiménez-Jiménez, J.; Ríos, A. Microwave-assisted synthesis of carbon dots and its potential as analysis of four heterocyclic aromatic amines. Talanta, 2015, 132, 845-850.
[http://dx.doi.org/10.1016/j.talanta.2014.10.008] [PMID: 25476386]
[66]
Song, L. Microwave-assisted facile synthesis of yellow fluorescent carbon dots from o-phenylenediamine for cell imaging and sensitive detection of Fe 3+ and H 2 O 2. J. RSC Advances, 2016, 6(21), 17704-17712.
[http://dx.doi.org/10.1039/C6RA02554D]
[67]
Liu, C. One-step synthesis of surface passivated carbon nanodots by microwave assisted pyrolysis for enhanced multicolor photoluminescence and bioimaging. J. Mater. Chem., 2011, 21(35), 13163-13167.
[http://dx.doi.org/10.1039/c1jm12744f]
[68]
Yang, X.; Yang, X.; Li, Z.; Li, S.; Han, Y.; Chen, Y.; Bu, X.; Su, C.; Xu, H.; Jiang, Y.; Lin, Q. Photoluminescent carbon dots synthesized by microwave treatment for selective image of cancer cells. J. Colloid Interface Sci., 2015, 456, 1-6.
[http://dx.doi.org/10.1016/j.jcis.2015.06.002] [PMID: 26074383]
[69]
Wang, J. A facile large-scale microwave synthesis of highly fluorescent carbon dots from benzenediol isomers. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2014, 2(25), 5028-5035.
[http://dx.doi.org/10.1039/C3TC32131B]
[70]
He, G.; Xu, M.; Shu, M.; Li, X.; Yang, Z.; Zhang, L.; Su, Y.; Hu, N.; Zhang, Y. Rapid solid-phase microwave synthesis of highly photoluminescent nitrogen-doped carbon dots for Fe(3+) detection and cellular bioimaging. Nanotechnology, 2016, 27(39)395706
[http://dx.doi.org/10.1088/0957-4484/27/39/395706] [PMID: 27573680]
[71]
Niu, J. Facile synthesis and optical properties of nitrogen-doped carbon dots. J New Journal of Chemistry, 2014, 38(4), 1522-1527.
[http://dx.doi.org/10.1039/c3nj01068f]
[72]
De, B.; Karak, N.J.R.A. A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice. RSC Advances, 2013, 3(22), 8286-8290.
[http://dx.doi.org/10.1039/c3ra00088e]
[73]
Goh, E.J.; Kim, K.S.; Kim, Y.R.; Jung, H.S.; Beack, S.; Kong, W.H.; Scarcelli, G.; Yun, S.H.; Hahn, S.K. Bioimaging of hyaluronic acid derivatives using nanosized carbon dots. Biomacromolecules, 2012, 13(8), 2554-2561.
[http://dx.doi.org/10.1021/bm300796q] [PMID: 22804331]
[74]
Wang, F. Facile synthesis of N-doped carbon dots/g-C3N4 photocatalyst with enhanced visible-light photocatalytic activity for the degradation of indomethacin. Appl. Catal. B, 2017, 207, 103-113.
[http://dx.doi.org/10.1016/j.apcatb.2017.02.024]
[75]
Wang, J.; Wang, C.F.; Chen, S. Amphiphilic egg-derived carbon dots: rapid plasma fabrication, pyrolysis process, and multicolor printing patterns. Angew. Chem. Int. Ed. Engl., 2012, 51(37), 9297-9301.
[http://dx.doi.org/10.1002/anie.201204381] [PMID: 22907831]
[76]
Ke, C-B.; Lu, T-L.; Chen, J-L.J.N. Capacitively coupled plasma discharge of ionic liquid solutions to synthesize carbon dots as fluorescent sensors. Nanomaterials (Basel), 2018, 8(6), 372.
[http://dx.doi.org/10.3390/nano8060372] [PMID: 29861431]
[77]
Kavitha, T.; Kim, J.O.; Jang, S.; Kim, D.P.; Kang, I.K.; Park, S.Y. Multifaceted thermoresponsive poly(N-vinylcaprolactam) coupled with carbon dots for biomedical applications. Mater. Sci. Eng. C, 2016, 61, 492-498.
[http://dx.doi.org/10.1016/j.msec.2015.12.070] [PMID: 26838876]
[78]
Zhang, Z. Highly photoluminescent carbon dots derived from egg white: facile and green synthesis, photoluminescence properties, and multiple applications. ACS Sustainable Chemistry, 2015, 3(7), 1412-1418.
[http://dx.doi.org/10.1021/acssuschemeng.5b00156]
[79]
Hao, T. An eco-friendly molecularly imprinted fluorescence composite material based on carbon dots for fluorescent detection of 4-nitrophenol. Mikrochim. Acta, 2016, 183(7), 2197-2203.
[http://dx.doi.org/10.1007/s00604-016-1851-2]
[80]
Jalili, R.; Amjadi, M.J.R.a. Surface molecular imprinting on silane-functionalized carbon dots for selective recognition of nifedipine. RSC Advances, 2015, 5(90), 74084-74090.
[http://dx.doi.org/10.1039/C5RA12189B]
[81]
Feng, L.; Tan, L.; Li, H.; Xu, Z.; Shen, G.; Tang, Y. Selective fluorescent sensing of α-amanitin in serum using carbon quantum dots-embedded specificity determinant imprinted polymers. Biosens. Bioelectron., 2015, 69, 265-271.
[http://dx.doi.org/10.1016/j.bios.2015.03.005] [PMID: 25770458]
[82]
Feng, S.; Xu, R. New materials in hydrothermal synthesis. Acc. Chem. Res., 2001, 34(3), 239-247.
[http://dx.doi.org/10.1021/ar0000105] [PMID: 11263882]
[83]
Funke, A.F.J.B. Ziegler, Bioproducts, and Biorefining, Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels. Bioproducts, 2010, 4(2), 160-177.
[http://dx.doi.org/10.1002/bbb.198]
[84]
Zhao, F.; Zhang, T.; Yang, Y.; Lü, C. A facile synthesis of multifunctional carbon dots as fluorescence ‘turn on’and ‘turn off’probes for selective detection of Al3+ and 2, 4, 6‐trinitrophenol. Journal of Lumniscence, 2020.
[85]
Libra, J.A. Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels, 2011, 2(1), 71-106.
[http://dx.doi.org/10.4155/bfs.10.81]
[86]
Yang, Z.C.; Wang, M.; Yong, A.M.; Wong, S.Y.; Zhang, X.H.; Tan, H.; Chang, A.Y.; Li, X.; Wang, J. Intrinsically fluorescent carbon dots with tunable emission derived from hydrothermal treatment of glucose in the presence of monopotassium phosphate. Chem. Commun. (Camb.), 2011, 47(42), 11615-11617.
[http://dx.doi.org/10.1039/c1cc14860e] [PMID: 21931886]
[87]
Liu, W. Green synthesis of carbon dots from rose-heart radish and application for Fe3+ detection and cell imaging. Sens. Actuators B Chem., 2017, 241, 190-198.
[http://dx.doi.org/10.1016/j.snb.2016.10.068]
[88]
Mehta, V.N. One-step hydrothermal approach to fabricate carbon dots from apple juice for imaging of mycobacterium and fungal cells. Sens. Actuators B Chem., 2015, 213, 434-443.
[http://dx.doi.org/10.1016/j.snb.2015.02.104]
[89]
Kumar, A. Green synthesis of carbon dots from Ocimum sanctum for effective fluorescent sensing of Pb2+ ions and live cell imaging. Sens. Actuators B Chem., 2017, 242, 679-686.
[http://dx.doi.org/10.1016/j.snb.2016.11.109]
[90]
Kumar, V.B.; Porat, Z.; Gedanken, A. Facile one-step sonochemical synthesis of ultrafine and stable fluorescent C-dots. Ultrason. Sonochem., 2016, 28, 367-375.
[http://dx.doi.org/10.1016/j.ultsonch.2015.08.005] [PMID: 26384920]
[91]
Tao, H.; Yang, K.; Ma, Z.; Wan, J.; Zhang, Y.; Kang, Z.; Liu, Z. In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite. Small, 2012, 8(2), 281-290.
[http://dx.doi.org/10.1002/smll.201101706] [PMID: 22095931]
[92]
Fang, L. Ammonium citrate derived carbon quantum dot as on-off-on fluorescent sensor for detection of chromium (VI) and sulfites. Mater. Lett., 2017, 191, 1-4.
[http://dx.doi.org/10.1016/j.matlet.2016.12.098]
[93]
Liu, Q.; Lu, X.; Li, J.; Yao, X.; Li, J. Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes. Biosens. Bioelectron., 2007, 22(12), 3203-3209.
[http://dx.doi.org/10.1016/j.bios.2007.02.013] [PMID: 17416515]
[94]
Kasibabu, B.S.B.; D’souza, S.L.; Jha, S.; Kailasa, S.K. Imaging of bacterial and fungal cells using fluorescent carbon dots prepared from carica papaya juice. J. Fluoresc., 2015, 25(4), 803-810.
[http://dx.doi.org/10.1007/s10895-015-1595-0] [PMID: 26123674]
[95]
Yao, Y.Y.; Gedda, G.; Girma, W.M.; Yen, C.L.; Ling, Y.C.; Chang, J.Y. Magnetofluorescent Carbon Dots Derived from Crab Shell for Targeted Dual-Modality Bioimaging and Drug Delivery. ACS Appl. Mater. Interfaces, 2017, 9(16), 13887-13899.
[http://dx.doi.org/10.1021/acsami.7b01599] [PMID: 28388048]
[96]
Sun, C.; Zhang, Y.; Wang, P.; Yang, Y.; Wang, Y.; Xu, J.; Wang, Y.; Yu, W.W. Synthesis of Nitrogen and Sulfur Co-doped Carbon Dots from Garlic for Selective Detection of Fe(3.). Nanoscale Res. Lett., 2016, 11(1), 110.
[http://dx.doi.org/10.1186/s11671-016-1326-8] [PMID: 26924814]
[97]
Shen, J.; Shang, S.; Chen, X.; Wang, D.; Cai, Y. Facile synthesis of fluorescence carbon dots from sweet potato for Fe3+ sensing and cell imaging. Mater. Sci. Eng. C, 2017, 76, 856-864.
[http://dx.doi.org/10.1016/j.msec.2017.03.178] [PMID: 28482600]
[98]
Feng, J.; Wang, W.J.; Hai, X.; Yu, Y.L.; Wang, J.H. Green preparation of nitrogen-doped carbon dots derived from silkworm chrysalis for cell imaging. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(3), 387-393.
[http://dx.doi.org/10.1039/C5TB01999K] [PMID: 32263205]
[99]
Pacquiao, M.R. Highly fluorescent carbon dots from enokitake mushroom as multi-faceted optical nanomaterials for Cr6+ and VOC detection and imaging applications. Appl. Surf. Sci., 2018, 453, 192-203.
[http://dx.doi.org/10.1016/j.apsusc.2018.04.199]
[100]
Jia, J.; Lin, B.; Gao, Y.; Jiao, Y.; Li, L.; Dong, C.; Shuang, S. Highly luminescent N-doped carbon dots from black soya beans for free radical scavenging, Fe3+ sensing and cellular imaging. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 211, 363-372.
[http://dx.doi.org/10.1016/j.saa.2018.12.034] [PMID: 30593946]
[101]
Kaur, P. Facile synthesis of mesoporous carbon material from treated kitchen waste for energy applications. Mater. Renew. Sustain. Energy, 2018, 7(2), 9.
[http://dx.doi.org/10.1007/s40243-018-0116-x]
[102]
Lu, M. Green preparation of versatile nitrogen-doped carbon quantum dots from watermelon juice for cell imaging, detection of Fe3+ ions and cysteine, and optical thermometry. J. Mol. Liq., 2018, 269, 766-774.
[http://dx.doi.org/10.1016/j.molliq.2018.08.101]
[103]
Moonrinta, S. Highly biocompatible yogurt-derived carbon dots as multipurpose sensors for detection of formic acid vapor and metal ions. Opt. Mater., 2018, 81, 93-101.
[http://dx.doi.org/10.1016/j.optmat.2018.05.021]
[104]
Kukreja, D. Synthesis of fluorescent carbon dots from mango peels. National conference on Nanomaterials for Environmental [NCNER-2015, 2015.
[105]
Hoan, B.T.; Tam, P.D.; Pham, V-H.J.J.N. Green synthesis of highly luminescent carbon quantum dots from lemon juice. J. Nanotechnol., 2019.
[http://dx.doi.org/10.1155/2019/2852816]
[106]
Xue, M. Green synthesis of stable and biocompatible fluorescent carbon dots from peanut shells for multicolor living cell imaging. New J. Chem., 2016, 40(2), 1698-1703.
[http://dx.doi.org/10.1039/C5NJ02181B]
[107]
Thota, S.P. Facile one-pot hydrothermal synthesis of stable and biocompatible fluorescent carbon dots from lemon grass herb. IET Nanobiotechnol., 2017, 12(2), 127-132.
[http://dx.doi.org/10.1049/iet-nbt.2017.0038] [PMID: 28476994]
[108]
Maddu, A. Synthesis of MnO2/Carbon Dots Nanocomposite Derived From Rice Husk for Supercapacitor Electrodes. International Journal of Renewable Energy Research, 2018, 8(3), 1476-1482.
[109]
Yuan, M. One-step, green, and economic synthesis of water-soluble photoluminescent carbon dots by hydrothermal treatment of wheat straw, and their bio-applications in labeling, imaging, and sensing. Appl. Surf. Sci., 2015, 355, 1136-1144.
[http://dx.doi.org/10.1016/j.apsusc.2015.07.095]
[110]
Niu, W-J. Ethylenediamine-assisted hydrothermal synthesis of nitrogen-doped carbon quantum dots as fluorescent probes for sensitive biosensing and bioimaging. Sens. Actuators B Chem., 2015, 218, 229-236.
[http://dx.doi.org/10.1016/j.snb.2015.05.006]
[111]
Niu, Q.; Gao, K.; Lin, Z.; Wu, W. Amine-capped carbon dots as a nanosensor for sensitive and selective detection of picric acid in aqueous solution via electrostatic interaction. Journal of Analytical Methods, 2013, 5(21), 6228-6233.
[http://dx.doi.org/10.1039/c3ay41275j]
[112]
Wang, Y.; Anilkumar, P.; Cao, L.; Liu, J.H.; Luo, P.G.; Tackett, K.N., II; Sahu, S.; Wang, P.; Wang, X.; Sun, Y.P. Carbon dots of different composition and surface functionalization: cytotoxicity issues relevant to fluorescence cell imaging. Exp. Biol. Med. (Maywood), 2011, 236(11), 1231-1238.
[http://dx.doi.org/10.1258/ebm.2011.011132] [PMID: 22036734]
[113]
Sachdev, A. A novel one-step synthesis of PEG passivated multicolour fluorescent carbon dots for potential biolabeling application. RSC Advances, 2013, 3(38), 16958-16961.
[http://dx.doi.org/10.1039/c3ra42415d]
[114]
Li, L.; Dong, T.J.J.M.C.C. Photoluminescence tuning in carbon dots: Surface passivation or/and functionalization, heteroatom doping. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2018, 6(30), 7944-7970.
[http://dx.doi.org/10.1039/C7TC05878K]
[115]
Li, F. Mg/N double doping strategy to fabricate extremely high luminescent carbon dots for bioimaging. RSC Advances, 2014, 4(7), 3201-3205.
[http://dx.doi.org/10.1039/C3RA43826K]
[116]
Fan, R-J. Photoluminescent carbon dots directly derived from polyethylene glycol and their application for cellular imaging. J Carbon, 2014, 71, 87-93.
[http://dx.doi.org/10.1016/j.carbon.2014.01.016]
[117]
Lai, C-W. Facile synthesis of highly emissive carbon dots from pyrolysis of glycerol; gram scale production of carbon dots/mSiO 2 for cell imaging and drug release. J. Mater. Chem., 2012, 22(29), 14403-14409.
[http://dx.doi.org/10.1039/c2jm32206d]
[118]
Babar, D.G.; Sonkar, S.K.; Tripathi, K.M.; Sarkar, S. P2O5 assisted green synthesis of multicolor fluorescent water soluble carbon dots. J. Nanosci. Nanotechnol., 2014, 14(3), 2334-2342.
[http://dx.doi.org/10.1166/jnn.2014.8487] [PMID: 24745229]
[119]
Mitra, S. Rapid microwave synthesis of fluorescent hydrophobic carbon dots. RSC Advances, 2012, 2(32), 12129-12131.
[http://dx.doi.org/10.1039/c2ra21048g]
[120]
Yang, X.; Zhuo, Y.; Zhu, S.; Luo, Y.; Feng, Y.; Dou, Y. Novel and green synthesis of high-fluorescent carbon dots originated from honey for sensing and imaging. Biosens. Bioelectron., 2014, 60, 292-298.
[http://dx.doi.org/10.1016/j.bios.2014.04.046] [PMID: 24832204]
[121]
Guo, L.; Ge, J.; Liu, W.; Niu, G.; Jia, Q.; Wang, H.; Wang, P. Tunable multicolor carbon dots prepared from well-defined polythiophene derivatives and their emission mechanism. Nanoscale, 2016, 8(2), 729-734.
[http://dx.doi.org/10.1039/C5NR07153D] [PMID: 26660629]
[122]
Dong, X. Fast one-step synthesis of N-doped carbon dots by pyrolyzing ethanolamine. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2014, 2(36), 7477-7481.
[http://dx.doi.org/10.1039/C4TC01139B]
[123]
Zheng, M.; Ruan, S.; Liu, S.; Sun, T.; Qu, D.; Zhao, H.; Xie, Z.; Gao, H.; Jing, X.; Sun, Z. Self-Targeting Fluorescent Carbon Dots for Diagnosis of Brain Cancer Cells. ACS Nano, 2015, 9(11), 11455-11461.
[http://dx.doi.org/10.1021/acsnano.5b05575] [PMID: 26458137]
[124]
Kasibabu, B.S.B. One-step synthesis of fluorescent carbon dots for imaging bacterial and fungal cells. Anal. Methods, 2015, 7(6), 2373-2378.
[http://dx.doi.org/10.1039/C4AY02737J]
[125]
Hu, S. A facile and green method towards coal-based fluorescent carbon dots with photocatalytic activity. Appl. Surf. Sci., 2016, 378, 402-407.
[http://dx.doi.org/10.1016/j.apsusc.2016.04.038]
[126]
LináChee. P. and X.J.R.A. JunáLoh, Multi-functional fluorescent carbon dots with antibacterial and gene delivery properties. RSC Advances, 2015, 5(58), 46817-46822.
[http://dx.doi.org/10.1039/C5RA07968C]
[127]
Li, C-X. Facile plasma-induced fabrication of fluorescent carbon dots toward high-performance white LEDs. J. Mater. Sci., 2013, 48(18), 6307-6311.
[http://dx.doi.org/10.1007/s10853-013-7430-6]
[128]
Atchudan, R.; Edison, T.N.J.I.; Lee, Y.R. Nitrogen-doped carbon dots originating from unripe peach for fluorescent bioimaging and electrocatalytic oxygen reduction reaction. J. Colloid Interface Sci., 2016, 482, 8-18.
[http://dx.doi.org/10.1016/j.jcis.2016.07.058] [PMID: 27479911]
[129]
Gaddam, R.R. Controllable synthesis of biosourced blue-green fluorescent carbon dots from camphor for the detection of heavy metal ions in water. RSC Advances, 2014, 4(100), 57137-57143.
[http://dx.doi.org/10.1039/C4RA10471D]
[130]
Jia, X.; Li, J.; Wang, E. One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence. Nanoscale, 2012, 4(18), 5572-5575.
[http://dx.doi.org/10.1039/c2nr31319g] [PMID: 22786671]
[131]
Wang, C.; Xu, Z.; Zhang, C.J.C. Polyethyleneimine‐functionalized fluorescent carbon dots: water stability, pH sensing, and cellular imaging. ChemNanoMat, 2015, 1(2), 122-127.
[http://dx.doi.org/10.1002/cnma.201500009]
[132]
Hu, Y. Waste frying oil as a precursor for one-step synthesis of sulfur-doped carbon dots with pH-sensitive photoluminescence. Carbon, 2014, 77, 775-782.
[http://dx.doi.org/10.1016/j.carbon.2014.05.081]
[133]
Zhao, S.; Lan, M.; Zhu, X.; Xue, H.; Ng, T.W.; Meng, X.; Lee, C.S.; Wang, P.; Zhang, W. Green synthesis of bifunctional fluorescent carbon dots from garlic for cellular imaging and free radical scavenging. ACS Appl. Mater. Interfaces, 2015, 7(31), 17054-17060.
[http://dx.doi.org/10.1021/acsami.5b03228] [PMID: 26193082]
[134]
Sahu, S.; Behera, B.; Maiti, T.K.; Mohapatra, S. Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chem. Commun. (Camb.), 2012, 48(70), 8835-8837.
[http://dx.doi.org/10.1039/c2cc33796g] [PMID: 22836910]
[135]
Yang, C. Turn-on fluorescence sensor for glutathione in aqueous solutions using carbon dots–MnO2 nanocomposites. Sens. Actuators B Chem., 2015, 216, 286-292.
[http://dx.doi.org/10.1016/j.snb.2015.04.055]
[136]
Zhang, Y.; Cui, P.; Zhang, F.; Feng, X.; Wang, Y.; Yang, Y.; Liu, X. Fluorescent probes for “off-on” highly sensitive detection of Hg2+ and L-cysteine based on nitrogen-doped carbon dots. Talanta, 2016, 152, 288-300.
[http://dx.doi.org/10.1016/j.talanta.2016.02.018] [PMID: 26992523]
[137]
Mandani, S.; Sharma, B.; Dey, D.; Sarma, T.K. Carbon nanodots as ligand exchange probes in Au@C-dot nanobeacons for fluorescent turn-on detection of biothiols. Nanoscale, 2015, 7(5), 1802-1808.
[http://dx.doi.org/10.1039/C4NR05424E] [PMID: 25520240]
[138]
Wu, D. Fluorometric determination and imaging of glutathione based on a thiol-triggered inner filter effect on the fluorescence of carbon dots. Mikrochim. Acta, 2017, 184(7), 1923-1931.
[http://dx.doi.org/10.1007/s00604-017-2187-2]
[139]
Wang, Y.; Jiang, K.; Zhu, J.; Zhang, L.; Lin, H. A FRET-based carbon dot-MnO2 nanosheet architecture for glutathione sensing in human whole blood samples. Chem. Commun. (Camb.), 2015, 51(64), 12748-12751.
[http://dx.doi.org/10.1039/C5CC04905A] [PMID: 26165804]
[140]
Amjadi, M. Carbon dots-silver nanoparticles fluorescence resonance energy transfer system as a novel turn-on fluorescent probe for selective determination of cysteine. J. Photochem. Photobiol. Chem., 2015, 309, 8-14.
[http://dx.doi.org/10.1016/j.jphotochem.2015.04.016]
[141]
Sharma, V. Multifunctional fluorescent “Off-On-Off” nanosensor for Au3+ and S2− employing NS co-doped carbon–dots. Carbon, 2018, 139, 393-403.
[http://dx.doi.org/10.1016/j.carbon.2018.07.004]
[142]
Sun, D.; Liu, T.; Wang, C.; Yang, L.; Yang, S.; Zhuo, K. Hydrothermal synthesis of fluorescent carbon dots from gardenia fruit for sensitive on-off-on detection of Hg2+ and cysteine. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 240118598
[http://dx.doi.org/10.1016/j.saa.2020.118598] [PMID: 32563034]
[143]
Ren, G.; Hou, X.; Kang, Y.; Zhang, R.; Zhang, M.; Liu, W.; Li, L.; Wei, S.; Wang, H.; Wang, B.; Diao, H. Efficient preparation of nitrogen-doped fluorescent carbon dots for highly sensitive detection of metronidazole and live cell imaging. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 234118251
[http://dx.doi.org/10.1016/j.saa.2020.118251] [PMID: 32193157]
[144]
Gogoi, J.; Chowdhury, D. Calcium-modified carbon dots derived from polyethylene glycol: fluorescence-based detection of Trifluralin herbicide. J. Mater. Sci., 2020, 55, 11597-11608.
[http://dx.doi.org/10.1007/s10853-020-04839-5]
[145]
Wang, X.; Cheng, Z.; Zhou, Y.; Tammina, S.K.; Yang, Y. A double carbon dot system composed of N, Cl-doped carbon dots and N, Cu-doped carbon dots as peroxidase mimics and as fluorescent probes for the determination of hydroquinone by fluorescence. Mikrochim. Acta, 2020, 187(6), 350.
[http://dx.doi.org/10.1007/s00604-020-04322-7] [PMID: 32462301]
[146]
Tantawy, M.A.; Farag, M.A.; Yehia, A.M.J.N.J.C. A gold–carbon dots nanoprobe for dual mode detection of ketamine HCl in soda drinks. New J. Chem., 2020, 44(17), 7058-7064.
[http://dx.doi.org/10.1039/D0NJ00614A]
[147]
Hu, Y.; Gao, Z.; Spectroscopy, B. Sensitive detection of Sudan dyes using tire-derived carbon dots as a fluorescent sensor. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 239118514
[http://dx.doi.org/10.1016/j.saa.2020.118514] [PMID: 32470803]
[148]
Wang, T.; Wang, A.; Wang, R.; Liu, Z.; Sun, Y.; Shan, G.; Chen, Y.; Liu, Y. Carbon dots with molecular fluorescence and their application as a “turn-off” fluorescent probe for ferricyanide detection. Sci. Rep., 2019, 9(1), 10723.
[http://dx.doi.org/10.1038/s41598-019-47168-7] [PMID: 31341213]
[149]
Thulasi, S.; Kathiravan, A.; Asha Jhonsi, M. Fluorescent Carbon Dots Derived from Vehicle Exhaust Soot and Sensing of Tartrazine in Soft Drinks. ACS Omega, 2020, 5(12), 7025-7031.
[http://dx.doi.org/10.1021/acsomega.0c00707] [PMID: 32258938]
[150]
Gunjal, D.B. Nitrogen doped waste tea residue derived carbon dots for selective quantification of tetracycline in urine and pharmaceutical samples and yeast cell imaging application. Opt. Mater., 2019, 98109484
[http://dx.doi.org/10.1016/j.optmat.2019.109484]
[151]
Guo, F.; Zhu, Z.; Zheng, Z.; Jin, Y.; Di, X.; Xu, Z.; Guan, H. Facile synthesis of highly efficient fluorescent carbon dots for tetracycline detection. Environ. Sci. Pollut. Res. Int., 2020, 27(4), 4520-4527.
[http://dx.doi.org/10.1007/s11356-019-06779-3] [PMID: 31768961]
[152]
Sahu, V. Synthesis of blue fluorescent carbon dotsfor sensitive and selective detection of glucose in biological samples. In: IOP Conference Series: Materials Science and Engineering; IOP Publishing, 2020.
[http://dx.doi.org/10.1088/1757-899X/798/1/012014]
[153]
Hiremath, S.D. Carbon dots-MnO2 based turn-on fluorescent probe for rapid and sensitive detection of hydrazine in water. J. Photochem. Photobiol. Chem., 2020, 389112258
[http://dx.doi.org/10.1016/j.jphotochem.2019.112258]
[154]
Fu, Y. Carbon dots and a CdTe quantum dot hybrid-based fluorometric probe for spermine detection. Ind. Eng. Chem. Res., 2020, 59(4), 1723-1729.
[http://dx.doi.org/10.1021/acs.iecr.9b06289]
[155]
Lee, H.J. Fabrication of dual emission carbon dots and its use in highly sensitive thioamide detection. Dyes Pigments, 2020, 175108126
[http://dx.doi.org/10.1016/j.dyepig.2019.108126]
[156]
Pang, S.J.F. Nanotubes and C. Nanostructures, A pH sensitive fluorescent carbon dots for urea and urease detection. Nanotubes Carbon Nanostructures, 2020, 1-9.
[157]
Zhang, C. One-pot hydrothermal synthesis of dual-emission fluorescent carbon dots for hypochlorous acid detection. Dyes Pigments, 2020, 180108507
[http://dx.doi.org/10.1016/j.dyepig.2020.108507]
[158]
Wang, C.; Shi, H.; Yang, M.; Yan, Y.; Liu, E.; Ji, Z.; Fan, J. A novel nitrogen-doped carbon quantum dots as effective fluorescent probes for detecting dopamine. J. Photochem. Photobiol. Chem., 2020, 391112374
[http://dx.doi.org/10.1016/j.jphotochem.2020.112374]
[159]
Yang, X.; Guo, Y.; Liang, S.; Hou, S.; Chu, T.; Ma, J.; Chen, X.; Zhou, J.; Sun, R. Preparation of sulfur-doped carbon quantum dots from lignin as a sensor to detect Sudan I in an acidic environment. J. Mater. Chem. B Mater. Biol. Med., 2020.
[http://dx.doi.org/10.1039/D0TB00125B] [PMID: 33156321]
[160]
Zhang, W.; Wu, B.; Li, Z.; Wang, Y.; Zhou, J.; Li, Y. Carbon quantum dots as fluorescence sensors for label-free detection of folic acid in biological samples. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 229117931
[http://dx.doi.org/10.1016/j.saa.2019.117931] [PMID: 31865103]
[161]
Fan, H.; Zhang, M.; Bhandari, B.; Yang, C-h. Food waste as a carbon source in carbon quantum dots technology and their applications in food safety detection. Trends Food Sci. Technol., 2020, 95, 86-96.
[http://dx.doi.org/10.1016/j.tifs.2019.11.008]
[162]
Shi, R.; Feng, S.; Park, C.Y.; Park, K.Y.; Song, J.; Park, J.P.; Chun, H.S.; Park, T.J. Fluorescence detection of histamine based on specific binding bioreceptors and carbon quantum dots. Biosens. Bioelectron., 2020, 167112519
[http://dx.doi.org/10.1016/j.bios.2020.112519] [PMID: 32853903]
[163]
Shi, X. From a 1-D chain, 2-D layered network to a 3-D supramolecular framework constructed from a Metal− Organic coordination compound. Cryst. Growth Des., 2005, 5(1), 207-213.
[http://dx.doi.org/10.1021/cg049932v]
[164]
Singh, D.; Nagaraja, C.M. A luminescent 3D interpenetrating metal-organic framework for highly selective sensing of nitrobenzene. Dalton Trans., 2014, 43(48), 17912-17915.
[http://dx.doi.org/10.1039/C4DT02841D] [PMID: 25360887]
[165]
Xia, Y-P. A new Cd (II)-based metal–organic framework for highly sensitive fluorescence sensing of nitrobenzene. CrystEngComm, 2015, 17(12), 2459-2463.
[http://dx.doi.org/10.1039/C5CE00162E]
[166]
He, Y-C. Luminescent anionic metal–organic framework with potential nitrobenzene sensing. Cryst. Growth Des., 2014, 14(7), 3174-3178.
[http://dx.doi.org/10.1021/cg5004353]
[167]
Qin, J.S.; Bao, S.J.; Li, P.; Xie, W.; Du, D.Y.; Zhao, L.; Lan, Y.Q.; Su, Z.M. A stable porous anionic metal-organic framework for luminescence sensing of ln(3+) ions and detection of nitrobenzene. Chem. Asian J., 2014, 9(3), 749-753.
[http://dx.doi.org/10.1002/asia.201301531] [PMID: 24402738]
[168]
Ahmad, K. Construction of graphene oxide sheets based modified glassy carbon electrode (GO/GCE) for the highly sensitive detection of nitrobenzene. Mater. Res. Express, 2018, 5(7)075601
[http://dx.doi.org/10.1088/2053-1591/aacd98]
[169]
Liu, M. Nitrogen-doped hollow carbon nanospheres for highly sensitive electrochemical sensing of nitrobenzene. Mater. Res. Bull., 2018, 104, 15-19.
[http://dx.doi.org/10.1016/j.materresbull.2018.04.005]
[170]
Wang, B. Blue photoluminescent carbon nanodots prepared from zeolite as efficient sensors for picric acid detection. Sens. Actuators B Chem., 2017, 253, 911-917.
[http://dx.doi.org/10.1016/j.snb.2017.07.046]
[171]
Wang, Y. Hydrothermal synthesis of carbon quantum dots as fluorescent probes for the sensitive and rapid detection of picric acid. Anal. Methods, 2018, 10(23), 2775-2784.
[http://dx.doi.org/10.1039/C8AY00441B]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy