Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Identification, Interaction and Detection of Microplastics on Fish Scales (Lutjanus gibbus)

Author(s): Preethika Murugan, Gayathri Jeevanandham and Ashok K. Sundramoorthy*

Volume 18, Issue 5, 2022

Published on: 12 January, 2021

Page: [588 - 597] Pages: 10

DOI: 10.2174/1573411017999210112180054

Price: $65

Abstract

Background: Microplastics are found to be one of the major emerging contaminants in the environment. Various environmental occurrences cause the macro plastics to degrade slowly into microplastics. Microplastics present in the water bodies may enter into the fish’s body through ingestion of food and also get adsorbed onto the surface of their gills or skin.

Objective: Microplastics of polyethylene were chosen to investigate their sorption capacity on fish scales. The dispersion of polyethylene microplastics was studied by using a Total Dissolved Solids meter. Using this dispersion, the sorption effect was studied, and it revealed that the microplastics had the sorption ability on the fish scales.

Method: Polyethylene microplastics were chosen to investigate its sorption capacity on fish scales of Lutjanus gibbus. The sorption effect of microplastics on fish scales was performed by using polyethylene microplastics obtained by bath sonication, and the concentration was studied using a Total Dissolved Solids meter. Using polyethylene microplastics dispersion, the sorption effect was carried out on the scales of Lutjanus gibbus for ten days at 8 oC. The sorption of microplastics on fish scales was characterized by FE-SEM, FT-IR, and Raman spectroscopy.

Results: Polymer sorption was confirmed by using optical microscopy and FE-SEM. FT-IR and Raman spectroscopy confirmed the existence of polyethylene microplastics on the fish scale. Moreover, polyethylene microplastics sorption studies were also studied at different pH, various concentrations of NaCl and at different time intervals.

Conclusions: We synthesized microplastics from the bulk polyethylene by NaCl solution. This study confirmed the successful sorption of polyethylene microplastics on the fish scale. Our study revealed that marine water might be a suitable medium to facilitate the polymer sorption on aquatic animals/organisms.

Keywords: Fish scale, polyethylene, FT-IR, sorption, microplastics, water pollution.

« Previous
Graphical Abstract

[1]
Baekeland, L.H. Method of Making Insoluble Products of Phenol and Formaldehyde.Google Patents, US942699TA,, 1909.https://patents.google.com/patent/US942699A/en
[2]
Perrin, M.W. The story of polyethylene. Research, 1953, 6, 111-118.
[3]
Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv., 2017, 3(7)e1700782
[http://dx.doi.org/10.1126/sciadv.1700782] [PMID: 28776036]
[4]
Grover, A.; Gupta, A.; Chandra, S.; Kumari, A.; Khurana, S.M. Polythene and environment. Int. J. Environ. Sci., 2015, 5(6), 1091-1105.
[5]
Letcher, T.M. 1. Introduction to plastic waste and recycling. Plastic Waste and Recycling; Elsevier, 2020, pp. 3-12.
[6]
Rajmohan, K.S.; Yadav, H.; Vaishnavi, S.; Gopinath, M.; Varjani, S. Perspectives on Bio-Oil Recovery from Plastic Waste.Current Developments in Biotechnology and Bioengineering; Elsevier, 2020, pp. 459-480.
[http://dx.doi.org/10.1016/B978-0-444-64321-6.00023-9]
[7]
Hu, D.; Shen, M.; Zhang, Y.; Li, H.; Zeng, G. Microplastics and nanoplastics: would they affect global biodiversity change? Environ. Sci. Pollut. Res. Int., 2019, 26(19), 19997-20002.
[http://dx.doi.org/10.1007/s11356-019-05414-5] [PMID: 31102222]
[8]
Report, D. DISCOVERY The Future of Plastic. ACS, 2020, 1-7, https://cen.acs.org/sections/discovery-reports/the-future-of-plastic.html
[9]
Andrady, A.L. Microplastics in the marine environment. Mar. Pollut. Bull., 2011, 62(8), 1596-1605.
[http://dx.doi.org/10.1016/j.marpolbul.2011.05.030] [PMID: 21742351]
[10]
Barnes, D.K.A.; Galgani, F.; Thompson, R.C.; Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2009, 364(1526), 1985-1998.
[http://dx.doi.org/10.1098/rstb.2008.0205] [PMID: 19528051]
[11]
Kumartasli, S.; Avinc, O. Recycling of Marine Litter and Ocean Plastics: A Vital Sustainable Solution for Increasing Ecology and Health Problem.Sustainability in the Textile and Apparel Industries; Springer, 2020, pp. 117-137.
[http://dx.doi.org/10.1007/978-3-030-38013-7_6]
[12]
Thompson, R. C.; Olsen, Y.; Mitchell, R. P.; Davis, A.; Rowland, S. J.; John, A. W. G.; McGonigle, D.; Russell, A. E. Lost at Sea: Where Is All the Plastic? Science (80-. ), 2004, 304(5672), 838..
[13]
Kershaw, P.; Turra, A.; Galgani, F. Guidelines for the Monitoring and Assessment of Plastic Litter in the Ocean-GESAMP Reports and Studies No. 99. Https://Wedocs.Unep.Org/Handle/20.500.11822/300092019.
[14]
Fu, Z.; Wang, J. Current practices and future perspectives of microplastic pollution in freshwater ecosystems in China. Sci. Total Environ., 2019, 691, 697-712.
[http://dx.doi.org/10.1016/j.scitotenv.2019.07.167] [PMID: 31325868]
[15]
Bolisetty, S.; Peydayesh, M.; Mezzenga, R. Sustainable technologies for water purification from heavy metals: review and analysis. Chem. Soc. Rev., 2019, 48(2), 463-487.
[http://dx.doi.org/10.1039/C8CS00493E] [PMID: 30603760]
[16]
Xu, G.; Zhang, L.; Yu, W.; Sun, Z.; Guan, J.; Zhang, J.; Lin, J.; Zhou, J.; Fan, J.; Murugadoss, V.; Guo, Z. Low optical dosage heating-reduced viscosity for fast and large-scale cleanup of spilled crude oil by reduced graphene oxide melamine nanocomposite adsorbents. Nanotechnology, 2020, 31(22)225402
[http://dx.doi.org/10.1088/1361-6528/ab76eb] [PMID: 32066134]
[17]
Ritchie, H.; Roser, M. Plastic Pollution.Our World Data,, https//ourworldindata.org/plastic-pollution?utm_source=newsletter2018
[18]
Harris, P.T. The fate of microplastic in marine sedimentary environments: A review and synthesis. Mar. Pollut. Bull., 2020, 158111398
[http://dx.doi.org/10.1016/j.marpolbul.2020.111398] [PMID: 32753183]
[19]
Lusher, A.; Hollman, P. Microplastics in Fisheries and Aquaculture : Status of Knowledge on Their Occurrence and Implications for Aquatic Organisms and Food Safety. FAO,. 2017.http://oceanrep.geomar.de/49179/1/Microplastics%20in%20fisheries%20and%20aquaculture.pdf
[20]
Wang, W.; Gao, H.; Jin, S.; Li, R.; Na, G. The ecotoxicological effects of microplastics on aquatic food web, from primary producer to human: A review. Ecotoxicol. Environ. Saf., 2019, 173, 110-117.
[http://dx.doi.org/10.1016/j.ecoenv.2019.01.113] [PMID: 30771654]
[21]
De-la-Torre, G.E. Microplastics: an emerging threat to food security and human health. J. Food Sci. Technol., 2020, 57(5), 1601-1608.
[http://dx.doi.org/10.1007/s13197-019-04138-1] [PMID: 32327770]
[22]
Bellas, J.; Martínez-Armental, J.; Martínez-Cámara, A.; Besada, V.; Martínez-Gómez, C. Ingestion of microplastics by demersal fish from the Spanish Atlantic and Mediterranean coasts. Mar. Pollut. Bull., 2016, 109(1), 55-60.
[http://dx.doi.org/10.1016/j.marpolbul.2016.06.026] [PMID: 27289284]
[23]
Desforges, J-P.W.; Galbraith, M.; Ross, P.S. Ingestion of Microplastics by Zooplankton in the Northeast Pacific Ocean. Arch. Environ. Contam. Toxicol., 2015, 69(3), 320-330.
[http://dx.doi.org/10.1007/s00244-015-0172-5] [PMID: 26066061]
[24]
Sun, X.; Li, Q.; Zhu, M.; Liang, J.; Zheng, S.; Zhao, Y. Ingestion of microplastics by natural zooplankton groups in the northern South China Sea. Mar. Pollut. Bull., 2017, 115(1-2), 217-224.
[http://dx.doi.org/10.1016/j.marpolbul.2016.12.004] [PMID: 27964856]
[25]
Windsor, F.M.; Tilley, R.M.; Tyler, C.R.; Ormerod, S.J. Microplastic ingestion by riverine macroinvertebrates. Sci. Total Environ., 2019, 646, 68-74.
[http://dx.doi.org/10.1016/j.scitotenv.2018.07.271] [PMID: 30048870]
[26]
Avio, C.G.; Gorbi, S.; Regoli, F. Plastics and microplastics in the oceans: From emerging pollutants to emerged threat. Mar. Environ. Res., 2017, 128, 2-11.
[http://dx.doi.org/10.1016/j.marenvres.2016.05.012] [PMID: 27233985]
[27]
Barboza, L.G.A.; Dick Vethaak, A.; Lavorante, B.R.B.O.; Lundebye, A-K.; Guilhermino, L. Marine microplastic debris: An emerging issue for food security, food safety and human health. Mar. Pollut. Bull., 2018, 133, 336-348.
[http://dx.doi.org/10.1016/j.marpolbul.2018.05.047] [PMID: 30041323]
[28]
Hwang, J.; Choi, D.; Han, S.; Choi, J.; Hong, J. An assessment of the toxicity of polypropylene microplastics in human derived cells. Sci. Total Environ., 2019, 684, 657-669.
[http://dx.doi.org/10.1016/j.scitotenv.2019.05.071] [PMID: 31158627]
[29]
Cox, K.D.; Covernton, G.A.; Davies, H.L.; Dower, J.F.; Juanes, F.; Dudas, S.E. Human Consumption of Microplastics. Environ. Sci. Technol., 2019, 53(12), 7068-7074.
[http://dx.doi.org/10.1021/acs.est.9b01517] [PMID: 31184127]
[30]
Gonçalves, C.; Martins, M.; Sobral, P.; Costa, P.M.; Costa, M.H. An assessment of the ability to ingest and excrete microplastics by filter-feeders: A case study with the Mediterranean mussel. Environ. Pollut., 2019, 245, 600-606.
[http://dx.doi.org/10.1016/j.envpol.2018.11.038] [PMID: 30476889]
[31]
Maurya, P.K.; Malik, D.S.; Sharma, A. 9. Impacts of Pesticide Application on Aquatic Environments and Fish Diversity. Contam. Agric. Environ. Heal. Risks Remediat., 2019, 1, 111-127.
[http://dx.doi.org/10.26832/AESA-2019-CAE-0162-09]
[32]
Xia, C.; Fu, L.; Liu, Z.; Liu, H.; Chen, L.; Liu, Y. Aquatic Toxic Analysis by Monitoring Fish Behavior Using Computer Vision: A Recent Progress. J. Toxicol., 2018, 20182591924
[http://dx.doi.org/10.1155/2018/2591924] [PMID: 29849612]
[33]
White, Z.W.; Vernerey, F.J. Armours for soft bodies: how far can bioinspiration take us? Bioinspir. Biomim., 2018, 13(4)041004
[http://dx.doi.org/10.1088/1748-3190/aababa] [PMID: 29595522]
[34]
Murcia, S.; Lavoie, E.; Linley, T.; Devaraj, A.; Ossa, E.A.; Arola, D. The natural armors of fish: A comparison of the lamination pattern and structure of scales. J. Mech. Behav. Biomed. Mater., 2017, 73, 17-27.
[http://dx.doi.org/10.1016/j.jmbbm.2016.09.025] [PMID: 27745845]
[35]
Arola, D.; Murcia, S.; Stossel, M.; Pahuja, R.; Linley, T.; Devaraj, A.; Ramulu, M.; Ossa, E.A.; Wang, J. The limiting layer of fish scales: Structure and properties. Acta Biomater., 2018, 67, 319-330.
[http://dx.doi.org/10.1016/j.actbio.2017.12.011] [PMID: 29248639]
[36]
Aerts, J.; Metz, J.R.; Ampe, B.; Decostere, A.; Flik, G.; De Saeger, S. Scales tell a story on the stress history of fish. PLoS One, 2015, 10(4)e0123411
[http://dx.doi.org/10.1371/journal.pone.0123411] [PMID: 25922947]
[37]
Villanueva-Espinosa, J.F.; Hernandez-Esparza, M.; Ruiz-Trevino, F.A. Adsorptive Properties of Fish Scales of Oreochromis Niloticus (Mojarra Tilapia) for Metallic Ion Removal from Waste Water. Ind. Eng. Chem. Res., 2001, 40(16), 3563-3569.
[http://dx.doi.org/10.1021/ie000884v]
[38]
Reza, E.H.; Somayeh, B.; Halimeh, Z.; Fatemeh, S. Scale Morphology of Tank Goby Glossogobius Giuris (Hamilton-Buchanan, 1822)(Perciformes: Gobiidae) Using Scanning Electron Microscope. J. Biol. Sci., 2009, 9, 899-903.
[http://dx.doi.org/10.3923/jbs.2009.899.903]
[39]
Sudo, S.; Tsuyuki, K.; Ito, Y.; Ikohagi, T. A Study on the Surface Shape of Fish Scales. JSME Int. J. Ser. C Mech. Syst. Mach. Elem. Manuf., 2002, 45(4), 1100-1105.
[http://dx.doi.org/10.1299/jsmec.45.1100]
[40]
Vernerey, F.J.; Barthelat, F. On the Mechanics of Fishscale Structures. Int. J. Solids Struct., 2010, 47(17), 2268-2275.
[http://dx.doi.org/10.1016/j.ijsolstr.2010.04.018]
[41]
Araujo, C.F.; Nolasco, M.M.; Ribeiro, A.M.P.; Ribeiro-Claro, P.J.A. Identification of microplastics using Raman spectroscopy: Latest developments and future prospects. Water Res., 2018, 142, 426-440.
[http://dx.doi.org/10.1016/j.watres.2018.05.060] [PMID: 29909221]
[42]
Crichton, E.M.; Noël, M.; Gies, E.A.; Ross, P.S.A. Novel, Density-Independent and FTIR-Compatible Approach for the Rapid Extraction of Microplastics from Aquatic Sediments. Anal. Methods, 2017, 9(9), 1419-1428.
[http://dx.doi.org/10.1039/C6AY02733D]
[43]
Serranti, S.; Palmieri, R.; Bonifazi, G.; Cózar, A. Characterization of microplastic litter from oceans by an innovative approach based on hyperspectral imaging. Waste Manag., 2018, 76, 117-125.
[http://dx.doi.org/10.1016/j.wasman.2018.03.003] [PMID: 29519600]
[44]
Peez, N.; Janiska, M-C.; Imhof, W. The first application of quantitative 1H NMR spectroscopy as a simple and fast method of identification and quantification of microplastic particles (PE, PET, and PS). Anal. Bioanal. Chem., 2019, 411(4), 823-833.
[http://dx.doi.org/10.1007/s00216-018-1510-z] [PMID: 30552493]
[45]
Fischer, M.; Scholz-Böttcher, B.M. Simultaneous Trace Identification and Quantification of Common Types of Microplastics in Environmental Samples by Pyrolysis-Gas Chromatography-Mass Spectrometry. Environ. Sci. Technol., 2017, 51(9), 5052-5060.
[http://dx.doi.org/10.1021/acs.est.6b06362] [PMID: 28391690]
[46]
Dümichen, E.; Barthel, A-K.; Braun, U.; Bannick, C.G.; Brand, K.; Jekel, M.; Senz, R. Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method. Water Res., 2015, 85, 451-457.
[http://dx.doi.org/10.1016/j.watres.2015.09.002] [PMID: 26376022]
[47]
Brraich, O.S.; Jangu, S. Comparative Account of Accumulation of Heavy Metals and Structural Alterations in Scales of Five Fish Species from Harike Wetland, India. Iran. J. Ichthyol., 2016, 3(4), 275-282.
[48]
Dey, S.; Rouf, A.; Myrthong, L.; Suchiang, B.; Modak, G.; Dey, S. A Scanning Electron Microscopic Study on Distortion in the Scale of Common Carp, Cyprinus Carpio Inhabiting a Polluted Lake (Umiam) in North East India. J. Adv. Microsc. Res., 2013, 8(4), 246-251.
[http://dx.doi.org/10.1166/jamr.2013.1165]
[49]
Shimizu, K.; Sokolov, S.V.; Kätelhön, E.; Holter, J.; Young, N.P.; Compton, R.G. In Situ Detection of Microplastics: Single Microparticle‐electrode Impacts. Electroanalysis, 2017, 29(10), 2200-2207.
[http://dx.doi.org/10.1002/elan.201700213]
[50]
Zhu, D.; Ortega, C.F.; Motamedi, R.; Szewciw, L.; Vernerey, F.; Barthelat, F. Structure and Mechanical Performance of a “Modern” Fish Scale. Adv. Eng. Mater., 2012, 14(4), B185-B194.
[http://dx.doi.org/10.1002/adem.201180057]
[51]
Kaur, R.; Kaur, A.; Kaur, K. Ultra-morphology of the scale as an indicator of the stress of Acid Black-1 (AB-1, CI: 20470) and zinc (Zn). Environ. Sci. Pollut. Res. Int., 2019, 26(17), 17121-17134.
[http://dx.doi.org/10.1007/s11356-019-05067-4] [PMID: 31001774]
[52]
Jayaprakash, V.; Palempalli, U.M.D. Effect of Palmitic Acid in the Acceleration of Polyethylene Biodegradation by Aspergillus Oryzae. J. Pure Appl. Microbiol., 2018, 12(4), 2259-2269.
[http://dx.doi.org/10.22207/JPAM.12.4.66]
[53]
Gajendiran, A.; Krishnamoorthy, S.; Abraham, J. Microbial Degradation of Low-Density Polyethylene (LDPE) by Aspergillus Clavatus Strain JASK1 Isolated from Landfill Soil. 3 Biotech, 2016, 6(1), 52..
[http://dx.doi.org/10.1007/s13205-016-0394-x]
[54]
Zayadi, N.; Othman, N. Characterization and Optimization of Heavy Metals Biosorption by Fish Scales. Advanced Materials Research. Trans Tech Publ, 2013, 795, 260-265.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.795.260]
[55]
Endo, K.; Kogure, T.; Nagasawa, H. Biomineralization: From Molecular and Nano-Structural Analyses to Environmental Science.Characterization of Goldfish Scales by Vibrational Spectroscopic Analyses; Springer, 2018, pp. 55-61.
[http://dx.doi.org/10.1007/978-981-13-1002-7]
[56]
Silva, A.V.S.; Torquato, L.D.M.; Cruz, G. Potential application of fish scales as feedstock in thermochemical processes for the clean energy generation. Waste Manag., 2019, 100, 91-100.
[http://dx.doi.org/10.1016/j.wasman.2019.09.007] [PMID: 31525677]
[57]
Goreke, M.D.; Alakent, B.; Soyer-Uzun, S. Comparative Study on Factors Governing Binding Mechanisms in Polylactic Acid-Hydroxyapatite and Polyethylene-Hydroxyapatite Systems via Molecular Dynamics Simulations. Langmuir, 2020, 36(5), 1125-1137.
[http://dx.doi.org/10.1021/acs.langmuir.9b03480] [PMID: 31935106]
[58]
Nowicki, D.A.; Skakle, J.M.S.; Gibson, I.R. Nano-Scale Hydroxyapatite Compositions for the Utilization of CO 2 Recovered Using Post-Combustion Carbon Capture. J. Mater. Chem. A Mater. Energy Sustain., 2018, 6(13), 5367-5377.
[http://dx.doi.org/10.1039/C7TA09334A]
[59]
Stephen, J.A.; Pace, C.; Skakle, J.M.S.; Gibson, I.R. Comparison of Carbonate Hydroxyapatite with and without Sodium Co-Substitution.Key Engineering Materials. Trans Tech Publ, 2007, 330, 19-22.
[http://dx.doi.org/10.4028/0-87849-422-7.19]
[60]
Wright, S.L.; Thompson, R.C.; Galloway, T.S. The physical impacts of microplastics on marine organisms: a review. Environ. Pollut., 2013, 178, 483-492.
[http://dx.doi.org/10.1016/j.envpol.2013.02.031] [PMID: 23545014]
[61]
Palomba, M.; Longo, A.; Carotenuto, G.; Coscia, U.; Ambrosone, G.; Rusciano, G.; Nenna, G.; Barucca, G.; Longobardo, L. Optical and Electrical Characterizations of Graphene Nanoplatelet Coatings on Low Density Polyethylene. J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas. Phenom., 2018, 36(1), 01A104.,
[62]
Fred-Ahmadu, O.H.; Bhagwat, G.; Oluyoye, I.; Benson, N.U.; Ayejuyo, O.O.; Palanisami, T. Interaction of chemical contaminants with microplastics: Principles and perspectives. Sci. Total Environ., 2020, 706135978
[http://dx.doi.org/10.1016/j.scitotenv.2019.135978] [PMID: 31864138]
[63]
Brewer, P.G.; Barry, J. The Other CO2 Problem. Sci. Am., 2008, 18(4), 22-23.
[http://dx.doi.org/10.1038/scientificamericanearth0908-22] [PMID: 18847078]
[64]
Fujiwara, S. The Basis of the Concentration of Salt in Sea Water. Geochem. J., 1979, 13(5), 225-226.
[http://dx.doi.org/10.2343/geochemj.13.225]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy