Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Novel Salt-Assisted Liquid-Liquid Microextraction Technique for Environmental, Food, and Biological Samples Analysis Applications: A Review

Author(s): Raghavendra Rao Pasupuleti, Swapnil Gurrani, Pei-Chien Tsai and Vinoth Kumar Ponnusamy*

Volume 18, Issue 5, 2022

Published on: 28 December, 2020

Page: [577 - 587] Pages: 11

DOI: 10.2174/1573411017999201228212537

Price: $65

Abstract

Background: Sample preparation has gained significant recognition in the chemical analysis workflow. Substantial efforts have been made to simplify the comprehensive process of sample preparation that is focused on green sample preparation methodology, including the miniaturization of extraction method, elimination of the sample pre-treatment as well as the posttreatment steps, elimination of toxic as well as hazardous organic solvent consumption, reduction in sample volume requirements, reduction of the extraction time, maximization of the extraction efficiency and possible automation.

Methods: Among various microextraction processes, liquid-phase microextraction (LPME) is most abundantly used in the extraction of the target analytes. The salting-out phenomenon has been introduced into the LPME procedure and has been raised as a new technique called the ‘Salt-Assisted Liquid-Liquid Microextraction (SALLME)’. The principle is based on decreasing the solubility of the less polar solvent or analyte with an increase in the concentration of the salt in an aqueous solution leading to two-phase separation.

Results: SALLME is mainly based on the salting-out phase separation phenomenon. It is important to optimize the SALLME experimental parameters, such as solvent volume, salt amount, and extraction time, to achieve the maximum extraction capacity of the target analytes from the sample matrices.

Conclusion: SALLME proved to be a simple, rapid, and cost-effective sample preparation technique for the efficient extraction and preconcentration of organic and inorganic contaminants from various sample matrices, including environmental, biological, and food samples. SALLME exhibits higher extraction efficiency and recovery and is compatible with multiple analytical instruments. This review provides an overview of developments in SALLME technique and its applications to date.

Keywords: Sample preparation, salt-assisted liquid-liquid extraction, environmental, biological samples, food samples, analysis.

Graphical Abstract

[1]
Liu, J.; Jiang, M.; Li, G.; Xu, L.; Xie, M. Miniaturized salting-out liquid-liquid extraction of sulfonamides from different matrices. Anal. Chim. Acta, 2010, 679(1-2), 74-80.
[http://dx.doi.org/10.1016/j.aca.2010.09.013] [PMID: 20951859]
[2]
Berijani, S.; Assadi, Y.; Anbia, M.; Milani Hosseini, M.R.; Aghaee, E. Dispersive liquid-liquid microextraction combined with gas chromatography-flame photometric detection. Very simple, rapid and sensitive method for the determination of organophosphorus pesticides in water. J. Chromatogr. A, 2006, 1123(1), 1-9.
[http://dx.doi.org/10.1016/j.chroma.2006.05.010] [PMID: 16716329]
[3]
Park, H.J.; Jung, M.Y. One step salting-out assisted liquid-liquid extraction followed by UHPLC-ESI-MS/MS for the analysis of isoflavones in soy milk. Food Chem., 2017, 229, 797-804.
[http://dx.doi.org/10.1016/j.foodchem.2017.02.145] [PMID: 28372246]
[4]
Ahmed, S.; Mahmoud, A.M. A novel salting-out assisted extraction coupled with HPLC- fluorescence detection for trace determination of vitamin K homologues in human plasma. Talanta, 2015, 144, 480-487.
[http://dx.doi.org/10.1016/j.talanta.2015.07.007] [PMID: 26452851]
[5]
Nanita, S.C.; Padivitage, N.L.T. Ammonium chloride salting out extraction/cleanup for trace-level quantitative analysis in food and biological matrices by flow injection tandem mass spectrometry. Anal. Chim. Acta, 2013, 768(1), 1-11.
[http://dx.doi.org/10.1016/j.aca.2013.01.011] [PMID: 23473245]
[6]
Thompson, T.S.; van den Heever, J.P.; Komarnicki, J.A.F. Tylosin A and desmycosin in honey by salting-out assisted liquid-liquid extraction and aqueous normal phase ultraperformance liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem., 2019, 411(24), 6509-6518.
[http://dx.doi.org/10.1007/s00216-019-02034-3] [PMID: 31359120]
[7]
Chen, D.; Yang, X.; Cao, W.; Guo, Y.; Sun, Y.; Xiu, Z. Three-liquid-phase salting-out extraction of effective components from waste liquor of processing sea cucumber. Food Bioprod. Process., 2015, 96, 99-105.
[http://dx.doi.org/10.1016/j.fbp.2015.07.002]
[8]
Wu, H.; Zhang, J.; Norem, K.; El-Shourbagy, T.A. Simultaneous determination of a hydrophobic drug candidate and its metabolite in human plasma with salting-out assisted liquid/liquid extraction using a mass spectrometry friendly salt. J. Pharm. Biomed. Anal., 2008, 48(4), 1243-1248.
[http://dx.doi.org/10.1016/j.jpba.2008.09.002] [PMID: 18926659]
[9]
Nuhu, A.A.; Basheer, C.; Saad, B. Liquid-phase and dispersive liquid-liquid microextraction techniques with derivatization: recent applications in bioanalysis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2011, 879(17-18), 1180-1188.
[http://dx.doi.org/10.1016/j.jchromb.2011.02.009] [PMID: 21376675]
[10]
Rezaee, M.; Assadi, Y.; Milani Hosseini, M.R.; Aghaee, E.; Ahmadi, F.; Berijani, S. Determination of organic compounds in water using dispersive liquid-liquid microextraction. J. Chromatogr. A, 2006, 1116(1-2), 1-9.
[http://dx.doi.org/10.1016/j.chroma.2006.03.007] [PMID: 16574135]
[11]
Chen, H.; Chen, R.; Li, S. Low-density extraction solvent-based solvent terminated dispersive liquid-liquid microextraction combined with gas chromatography-tandem mass spectrometry for the determination of carbamate pesticides in water samples. J. Chromatogr. A, 2010, 1217(8), 1244-1248.
[http://dx.doi.org/10.1016/j.chroma.2009.12.062] [PMID: 20060535]
[12]
Soares, C.E.S.; Neves, A.A.; De Queiroz, M.E.L.R.; Oliveira, A.F.; Costa, A.I.G.; Assis, R.C.; Andrade, C.E.O. Single drop microextraction: A sensitive multiresidue method for determination of pesticides in water using GC/Ecd. J. Braz. Chem. Soc., 2014, 25(11), 2016-2025.
[http://dx.doi.org/10.5935/0103-5053.20140186]
[13]
Mokhtar, H.I.; Abdel-Salam, R.A.; Hadad, G.M. Tolerance intervals modeling for design space of a salt assisted liquid-liquid microextraction of trimethoprim and six common sulfonamide antibiotics in environmental water samples. J. Chromatogr. A, 2019, 1586, 18-29.
[http://dx.doi.org/10.1016/j.chroma.2018.12.003] [PMID: 30528769]
[14]
Teju, E.; Tadesse, B.; Megersa, N. Salting-out-assisted liquid–liquid extraction for the preconcentration and quantitative determination of eight herbicide residues simultaneously in different water samples with high-performance liquid chromatography. Sep. Sci. Technol., 2017, 1-11.
[http://dx.doi.org/10.1080/01496395.2016.1276596]
[15]
Heydari, R.; Zarabi, S. Development of combined salt- and air-assisted liquid-liquid microextraction as a novel sample preparation technique. Anal. Methods, 2014, 6(21), 8469-8475.
[http://dx.doi.org/10.1039/C4AY01723D]
[16]
Alshishani, A.; Salhimi, S.M.; Saad, B. Salting-out assisted liquid-liquid extraction coupled with hydrophilic interaction chromatography for the determination of biguanides in biological and environmental samples. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1073, 51-59.
[http://dx.doi.org/10.1016/j.jchromb.2017.12.013] [PMID: 29241085]
[17]
Mirparizi, E.; Rajabi, M.; Bazregar, M.; Asghari, A. Centrifugeless dispersive liquid-liquid microextraction based on salting-out phenomenon as an efficient method for determination of phenolic compounds in environmental samples. Anal. Bioanal. Chem., 2017, 409(11), 3007-3016.
[http://dx.doi.org/10.1007/s00216-017-0246-5] [PMID: 28235997]
[18]
Gezahegn, T.; Tegegne, B.; Zewge, F.; Chandravanshi, B.S. Salting-out assisted liquid-liquid extraction for the determination of ciprofloxacin residues in water samples by high performance liquid chromatography-diode array detector. BMC Chem, 2019, 13(1), 28.
[http://dx.doi.org/10.1186/s13065-019-0543-5] [PMID: 31384776]
[19]
Rashidipour, M.; Heydari, R.; Maleki, A.; Mohammadi, E.; Davari, B. Salt-assisted liquid–liquid extraction coupled with reversed-phase dispersive liquid–liquid microextraction for sensitive HPLC determination of paraquat in environmental and food samples. J. Food Meas. Charact., 2019, 13(1), 269-276.
[http://dx.doi.org/10.1007/s11694-018-9941-y]
[20]
Heydari, R.; Hosseini, M.; Rezaeepour, R. Semi-automated salt-assisted liquid–liquid extraction coupled to high-performance liquid chromatography to determine three aromatic hydrocarbons in aqueous samples. J. Iran. Chem. Soc, 2017, 14(8), 1691-1698.
[http://dx.doi.org/10.1007/s13738-017-1110-4]
[21]
Ma, H.; Li, Y.; Zhang, H.; Shah, S.M.; Chen, J. Salt-assisted dispersive liquid-liquid microextraction coupled with programmed temperature vaporization gas chromatography-mass spectrometry for the determination of haloacetonitriles in drinking water. J. Chromatogr. A, 2014, 1358, 14-19.
[http://dx.doi.org/10.1016/j.chroma.2014.06.021] [PMID: 24997512]
[22]
Bressan, L.P.; do Nascimento, P.C.; Schmidt, M.E.P.; Faccin, H.; de Machado, L.C.; Bohrer, D. Salting-out assisted liquid-liquid extraction and partial least squares regression to assay low molecular weight polycyclic aromatic hydrocarbons leached from soils and sediments. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2017, 173, 749-756.
[http://dx.doi.org/10.1016/j.saa.2016.10.036] [PMID: 27794240]
[23]
Tabaraki, R.; Heidarizadi, E. Spectrophotometric determination of phenol and chlorophenols by salting out assisted liquid-liquid extraction combined with dispersive liquid-liquid microextraction. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 215, 405-409.
[http://dx.doi.org/10.1016/j.saa.2019.02.060] [PMID: 30870682]
[24]
Alemayehu, Y.; Tolcha, T.; Megersa, N. Salting-out assisted liquid-liquid extraction combined with HPLC for quantitative extraction of trace multiclass pesticide residues from environmental waters. Am. J. Anal. Chem., 2017, 08(07), 433-483.
[http://dx.doi.org/10.4236/ajac.2017.87033]
[25]
Wen, Y.; Li, J.; Yang, F.; Zhang, W.; Li, W.; Liao, C.; Chen, L. Salting-out assisted liquid-liquid extraction with the aid of experimental design for determination of benzimidazole fungicides in high salinity samples by high-performance liquid chromatography. Talanta, 2013, 106, 119-126.
[http://dx.doi.org/10.1016/j.talanta.2012.12.011] [PMID: 23598103]
[26]
Shi, Z.; Huai, Q.; Li, X.; Ma, H.; Zhou, C.; Chu, X.; Zhang, H. Combination of counter current salting-out homogenous liquid-liquid extraction with dispersive liquid-liquid microextraction for the high-performance liquid chromatographic determination of environmental estrogens in water samples. J. Chromatogr. Sci., 2020, 58(2), 171-177.
[http://dx.doi.org/10.1093/chromsci/bmz080] [PMID: 31687739]
[27]
Gupta, M.; Jain, A.; Verma, K.K. Salt-assisted liquid-liquid microextraction with water-miscible organic solvents for the determination of carbonyl compounds by high-performance liquid chromatography. Talanta, 2009, 80(2), 526-531.
[http://dx.doi.org/10.1016/j.talanta.2009.07.021] [PMID: 19836515]
[28]
Pasupuleti, R.R.; Tsai, P.C.; Ponnusamy, V.K. A fast and sensitive analytical procedure for monitoring of synthetic pyrethroid pesticides’ metabolites in environmental water samples. Microchem. J., 2019, 148, 355-363.
[http://dx.doi.org/10.1016/j.microc.2019.05.030]
[29]
Chen, T.L.; Tzing, S.H.; Ding, W.H. Rapid screening of haloacetamides in water using salt-assisted liquid-liquid extraction coupled injection-port silylation gas chromatography-mass spectrometry. J. Chromatogr. A, 2015, 1422, 340-344.
[http://dx.doi.org/10.1016/j.chroma.2015.10.047] [PMID: 26518495]
[30]
Xue, L.; Zhang, D.; Wang, T.; Wang, X.M.; Du, X. Dispersive liquid-liquid microextraction followed by high performance liquid chromatography for determination of phthalic esters in environmental water samples. Anal. Methods, 2014, 6(4), 1121-1127.
[http://dx.doi.org/10.1039/C3AY41996G]
[31]
Gure, A.; Lara, F.J.; Moreno-González, D.; Megersa, N.; del Olmo-Iruela, M.; García-Campaña, A.M. Salting-out assisted liquid-liquid extraction combined with capillary HPLC for the determination of sulfonylurea herbicides in environmental water and banana juice samples. Talanta, 2014, 127, 51-58.
[http://dx.doi.org/10.1016/j.talanta.2014.03.070] [PMID: 24913856]
[32]
Hemmati, M.; Tejada-Casado, C.; Lara, F.J.; García-Campaña, A.M.; Rajabi, M.; Del Olmo-Iruela, M. Monitoring of cyanotoxins in water from hypersaline microalgae colonies by ultra high performance liquid chromatography with diode array and tandem mass spectrometry detection following salting-out liquid-liquid extraction. J. Chromatogr. A, 2019, 1608.
[http://dx.doi.org/10.1016/j.chroma.2019.460409] [PMID: 31399210]
[33]
Niu, Z.; Yu, C.; He, X.; Zhang, J.; Wen, Y. Salting-out assisted liquid-liquid extraction combined with gas chromatography-mass spectrometry for the determination of pyrethroid insecticides in high salinity and biological samples. J. Pharm. Biomed. Anal., 2017, 143, 222-227.
[http://dx.doi.org/10.1016/j.jpba.2017.05.046] [PMID: 28609671]
[34]
Chen, W.; Wu, S.; Zhang, J.; Yu, F.; Miao, X.; Tu, X. Salting-out-assisted liquid–liquid extraction of 5-hydroxymethylfurfural from honey and the determination of 5-hydroxymethylfurfural by high-performance liquid chromatography. Anal. Methods, 2019, 11(37), 4835-4841.
[http://dx.doi.org/10.1039/C9AY01770D]
[35]
Gao, M.; Wang, H.; Ma, M.; Zhang, Y.; Yin, X.; Dahlgren, R.A.; Du, D.; Wang, X. Optimization of a phase separation based magnetic-stirring salt-induced liquid-liquid microextraction method for determination of fluoroquinolones in food. Food Chem., 2015, 175, 181-188.
[http://dx.doi.org/10.1016/j.foodchem.2014.11.132] [PMID: 25577068]
[36]
Magiera, S.; Kwietniowska, E. Fast, simple and efficient salting-out assisted liquid-liquid extraction of naringenin from fruit juice samples prior to their enantioselective determination by liquid chromatography. Food Chem., 2016, 211, 227-234.
[http://dx.doi.org/10.1016/j.foodchem.2016.05.045] [PMID: 27283626]
[37]
Moreno-González, D.; García-Campaña, A.M. Salting-out assisted liquid-liquid extraction coupled to ultra-high performance liquid chromatography-tandem mass spectrometry for the determination of tetracycline residues in infant foods. Food Chem., 2017, 221, 1763-1769.
[http://dx.doi.org/10.1016/j.foodchem.2016.10.107] [PMID: 27979158]
[38]
Alshishani, A. A.; Saad, B.; Semail, N. F.; Mohamad Salhimi, S.; Talib, M. K. M. Salting-out assisted liquid-liquid extraction method coupled to gas chromatography for the simultaneous determination of thujones and pulegone in beverages.Int. J. Food Prop.,, 2017, 20(sup3), S2776-S2785.
[http://dx.doi.org/10.1080/10942912.2017.1373665]
[39]
Fan, Y.; Hu, S.; Liu, S. Salting-out assisted liquid-liquid extraction coupled to dispersive liquid-liquid microextraction for the determination of chlorophenols in wine by high-performance liquid chromatography. J. Sep. Sci., 2014, 37(24), 3662-3668.
[http://dx.doi.org/10.1002/jssc.201400869] [PMID: 25302824]
[40]
Ismaili, A.; Heydari, R.; Rezaeepour, R. Monitoring the oleuropein content of olive leaves and fruits using ultrasound- and salt-assisted liquid-liquid extraction optimized by response surface methodology and high-performance liquid chromatography. J. Sep. Sci., 2016, 39(2), 405-411.
[http://dx.doi.org/10.1002/jssc.201500795] [PMID: 26530030]
[41]
Wang, H.; Zhou, X.; Zhang, Y.; Chen, H.; Li, G.; Xu, Y.; Zhao, Q.; Song, W.; Jin, H.; Ding, L. Dynamic microwave-assisted extraction coupled with salting-out liquid-liquid extraction for determination of steroid hormones in fish tissues. J. Agric. Food Chem., 2012, 60(41), 10343-10351.
[http://dx.doi.org/10.1021/jf303124c] [PMID: 23016883]
[42]
Tejada-Casado, C.; Del Olmo-Iruela, M.; García-Campaña, A.M.; Lara, F.J. Green and simple analytical method to determine benzimidazoles in milk samples by using salting-out assisted liquid-liquid extraction and capillary liquid chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1091, 46-52.
[http://dx.doi.org/10.1016/j.jchromb.2018.05.024] [PMID: 29852381]
[43]
Gupta, M.; Pillai, A.K.K.V.; Singh, A.; Jain, A.; Verma, K.K. Salt-Assisted Liquid-Liquid Microextraction for the Determination of Iodine in Table Salt by High-Performance Liquid Chromatography-Diode Array Detection. Food Chem., 2011, 124(4), 1741-1746.
[http://dx.doi.org/10.1016/j.foodchem.2010.07.116] [PMID: 25213953]
[44]
Razmara, R.S.; Daneshfar, A.; Sahrai, R. Determination of Methylene Blue and Sunset Yellow in Wastewater and Food Samples Using Salting-out Assisted Liquid–Liquid Extraction. J. Ind. Eng. Chem., 2011, 17(3), 533-536.
[http://dx.doi.org/10.1016/j.jiec.2010.10.028]
[45]
Giroud, B.; Bruckner, S.; Straub, L.; Neumann, P.; Williams, G.R.; Vulliet, E. Trace-level determination of two neonicotinoid insecticide residues in honey bee royal jelly using ultra-sound assisted salting-out liquid liquid extraction followed by ultra-high-performance liquid chromatography-tandem mass spectrometry. Microchem. J., 2019, 151.
[http://dx.doi.org/10.1016/j.microc.2019.104249]
[46]
Tejada-Casado, C.; Lara, F.J.; García-Campaña, A.M.; Del Olmo-Iruela, M. Ultra-high performance liquid chromatography with fluorescence detection following salting-out assisted liquid-liquid extraction for the analysis of benzimidazole residues in farm fish samples. J. Chromatogr. A, 2018, 1543, 58-66.
[http://dx.doi.org/10.1016/j.chroma.2018.02.042] [PMID: 29496191]
[47]
Sazali, N.H.; Alshishani, A.; Saad, B.; Chew, K.Y.; Chong, M.M.; Miskam, M. Salting-out assisted liquid-liquid extraction coupled with high-performance liquid chromatography for the determination of vitamin D3 in milk samples. R. Soc. Open Sci., 2019, 6(8)
[http://dx.doi.org/10.1098/rsos.190952] [PMID: 31598260]
[48]
Bedassa, T. Salting-out assisted liquid-liquid extraction for the determination of multiresidue pesticides in alcoholic beverages by high performance liquid chromatography. Sci. J. Anal. Chem, 2017, 5(3), 38-45.
[http://dx.doi.org/10.11648/j.sjac.20170503.11]
[49]
Ramos, R.M.; Valente, I.M.; Rodrigues, J.A. Analysis of biogenic amines in wines by salting-out assisted liquid-liquid extraction and high-performance liquid chromatography with fluorimetric detection. Talanta, 2014, 124, 146-151.
[http://dx.doi.org/10.1016/j.talanta.2014.02.026] [PMID: 24767456]
[50]
Abu-Bakar, N.B.; Makahleh, A.; Saad, B. Vortex-assisted liquid-liquid microextraction coupled with high performance liquid chromatography for the determination of furfurals and patulin in fruit juices. Talanta, 2014, 120, 47-54.
[http://dx.doi.org/10.1016/j.talanta.2013.11.081] [PMID: 24468341]
[51]
Myasein, F.; Kim, E.; Zhang, J.; Wu, H.; El-Shourbagy, T.A. Rapid, simultaneous determination of lopinavir and ritonavir in human plasma by stacking protein precipitations and salting-out assisted liquid/liquid extraction, and ultrafast LC-MS/MS. Anal. Chim. Acta, 2009, 651(1), 112-116.
[http://dx.doi.org/10.1016/j.aca.2009.08.010] [PMID: 19733744]
[52]
Zhang, J.; Rodila, R.; Gage, E.; Hautman, M.; Fan, L.; King, L.L.; Wu, H.; El-Shourbagy, T.A. High-throughput salting-out assisted liquid/liquid extraction with acetonitrile for the simultaneous determination of simvastatin and simvastatin acid in human plasma with liquid chromatography. Anal. Chim. Acta, 2010, 661(2), 167-172.
[http://dx.doi.org/10.1016/j.aca.2009.12.023] [PMID: 20113731]
[53]
Xiong, X.; Yang, L. Salting-out-assisted liquid-liquid extraction with acetonitrile for the determination of trimetazidine in rat plasma using liquid chromatography-mass spectrometry. Biomed. Chromatogr., 2015, 29(2), 268-274.
[http://dx.doi.org/10.1002/bmc.3271] [PMID: 24954771]
[54]
Xiong, X.; Zhang, L.; Cheng, L.; Mao, W. High-throughput salting-out assisted liquid-liquid extraction with acetonitrile for the determination of anandamide in plasma of hemodialysis patients with liquid chromatography tandem mass spectrometry. Biomed. Chromatogr., 2015, 29(9), 1317-1324.
[http://dx.doi.org/10.1002/bmc.3425] [PMID: 25622579]
[55]
Li, Q.; Huie, C.W. Coupling of acetonitrile deproteinization and salting-out extraction with acetonitrile stacking for biological sample clean-up and the enrichment of hydrophobic compounds (porphyrins) in capillary electrophoresis. Electrophoresis, 2006, 27(21), 4219-4229.
[http://dx.doi.org/10.1002/elps.200600306] [PMID: 17022021]
[56]
So, T.S.K.; Huie, C.W. Salting-out solvent extraction for the off-line preconcentration of benzalkonium chloride in capillary electrophoresis. Electrophoresis, 2001, 22(11), 2143-2149.
[http://dx.doi.org/10.1002/1522-2683(20017)22:11<2143:AID-ELPS2143>3.0.CO;2-E] [PMID: 11504045]
[57]
Wang, M.; Cai, Z.; Xu, L. Coupling of acetonitrile deproteinization and salting-out extraction with acetonitrile stacking in chiral capillary electrophoresis for the determination of warfarin enantiomers. J. Chromatogr. A, 2011, 1218(26), 4045-4051.
[http://dx.doi.org/10.1016/j.chroma.2011.04.067] [PMID: 21601863]
[58]
Song, S.; Ediage, E.N.; Wu, A.; De Saeger, S. Development and application of salting-out assisted liquid/liquid extraction for multi-mycotoxin biomarkers analysis in pig urine with high performance liquid chromatography/tandem mass spectrometry. J. Chromatogr. A, 2013, 1292, 111-120.
[http://dx.doi.org/10.1016/j.chroma.2012.10.071] [PMID: 23177157]
[59]
Zhao, F.J.; Tang, H.; Zhang, Q.H.; Yang, J.; Davey, A.K.; Wang, J.P. Salting-out homogeneous liquid-liquid extraction approach applied in sample pre-processing for the quantitative determination of entecavir in human plasma by LC-MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2012, 881-882, 119-125.
[http://dx.doi.org/10.1016/j.jchromb.2011.12.003] [PMID: 22197609]
[60]
Yanes, E.G.; Lovett, D.P. High-throughput bioanalytical method for analysis of synthetic cannabinoid metabolites in urine using salting-out sample preparation and LC-MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2012, 909, 42-50.
[http://dx.doi.org/10.1016/j.jchromb.2012.10.013] [PMID: 23153643]
[61]
Akramipour, R.; Fattahi, N.; Pirsaheb, M.; Gheini, S. Combination of counter current salting-out homogenous liquid-liquid extraction and dispersive liquid-liquid microextraction as a novel microextraction of drugs in urine samples. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1012-1013, 162-168.
[http://dx.doi.org/10.1016/j.jchromb.2016.01.031] [PMID: 26828152]
[62]
Xue, Y.J.; Liu, J.; Unger, S. A 96-well single-pot liquid-liquid extraction, hydrophilic interaction liquid chromatography-mass spectrometry method for the determination of muraglitazar in human plasma. J. Pharm. Biomed. Anal., 2006, 41(3), 979-988.
[http://dx.doi.org/10.1016/j.jpba.2006.02.006] [PMID: 16533587]
[63]
Pasupuleti, R.R.; Tsai, P.C.; Lin, P.D.; Wu, M.T.; Ponnusamy, V.K. Rapid and sensitive analytical procedure for biomonitoring of organophosphate pesticide metabolites in human urine samples using a vortex-assisted salt-induced liquid-liquid microextraction technique coupled with ultra-high-performance liquid chromatography/ tandem mass spectrometry. Rapid Commun. Mass Spectrom., 2020, 34(Suppl. 1)..
[http://dx.doi.org/10.1002/rcm.8565] [PMID: 31469446]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy