Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

LncRNAs as Architects in Cancer Biomarkers with Interface of Epitranscriptomics- Incipient Targets in Cancer Therapy

Author(s): Suman Kumar Ray and Sukhes Mukherjee*

Volume 21, Issue 5, 2021

Published on: 06 January, 2021

Page: [416 - 427] Pages: 12

DOI: 10.2174/1568009620666210106122421

Price: $65

Abstract

Long non-coding RNAs (LncRNAs) epitomize a class of non-coding regulatory RNAs with more than 200 nucleotides, which are long and situated in the nucleus or cytoplasm and rarely encode proteins. Accruing evidence signposts that lncRNAs act as molecular switches in different cellular activities like differentiation, apoptosis, as well as reprogramming of cellular states by modifying gene expression patterns. The revelation of immense numbers of lncRNA with their wide variety of expression patterns in different kinds of malignancy, tumor explicitness, and their steadiness in circulating body fluids deliver an innovative groundwork for emerging diagnosis and treatments for cancer. Mechanisms associating lncRNAs in carcinogenesis are conquered by deregulation of cellular signaling pathways and altered epitranscriptome along with their expression. Specified these attributes, it becomes clear that the improvement of new tools to identify lncRNAs with higher affectability will be fundamental to allow the identification of the expression pattern of lncRNAs in various kinds of malignant growth and may likewise be utilized to envisage cancer prognosis in addition to the patients' outcome. Improvement of RNA targeting-based therapeutics is delivering incredible prospects to modulate lncRNAs for anti-cancer initiatives. Henceforth, lncRNAs can be used exclusively as possible cancer biomarkers for early diagnosis and anticipation of malignancy, as well as metastasis. In addition to the basic curative targets and along these, lncRNAs hold resilient assurance towards the revelation of innovative diagnostics and therapeutics for malignant growth with the interface of epitranscriptomics information. This review aims to briefly discuss the latest findings regarding the roles and mechanisms of some important lncRNAs in the pathogenesis, regulation, and lncRNA-associated epigenetics of cancer along with targeting lncRNAs with potential approaches for impending diagnosis and therapeutic intervention in malignancies.

Keywords: LncRNA, epigenetic, gene expression, malignant growth, metastasis, innovative diagnostics.

[1]
Lander, E.S.; Linton, L.M.; Birren, B.; Nusbaum, C.; Zody, M.C.; Baldwin, J.; Devon, K.; Dewar, K.; Doyle, M.; FitzHugh, W.; Funke, R.; Gage, D.; Harris, K.; Heaford, A.; Howland, J.; Kann, L.; Lehoczky, J.; LeVine, R.; McEwan, P.; McKernan, K.; Meldrim, J.; Mesirov, J.P.; Miranda, C.; Morris, W.; Naylor, J.; Raymond, C.; Rosetti, M.; Santos, R.; Sheridan, A.; Sougnez, C.; Stange-Thomann, Y.; Stojanovic, N.; Subramanian, A.; Wyman, D.; Rogers, J.; Sulston, J.; Ainscough, R.; Beck, S.; Bentley, D.; Burton, J.; Clee, C.; Carter, N.; Coulson, A.; Deadman, R.; Deloukas, P.; Dunham, A.; Dunham, I.; Durbin, R.; French, L.; Grafham, D.; Gregory, S.; Hubbard, T.; Humphray, S.; Hunt, A.; Jones, M.; Lloyd, C.; McMurray, A.; Matthews, L.; Mercer, S.; Milne, S.; Mullikin, J.C.; Mungall, A.; Plumb, R.; Ross, M.; Shownkeen, R.; Sims, S.; Waterston, R.H.; Wilson, R.K.; Hillier, L.W.; McPherson, J.D.; Marra, M.A.; Mardis, E.R.; Fulton, L.A.; Chinwalla, A.T.; Pepin, K.H.; Gish, W.R.; Chissoe, S.L.; Wendl, M.C.; Delehaunty, K.D.; Miner, T.L.; Delehaunty, A.; Kramer, J.B.; Cook, L.L.; Fulton, R.S.; Johnson, D.L.; Minx, P.J.; Clifton, S.W.; Hawkins, T.; Branscomb, E.; Predki, P.; Richardson, P.; Wenning, S.; Slezak, T.; Doggett, N.; Cheng, J.F.; Olsen, A.; Lucas, S.; Elkin, C.; Uberbacher, E.; Frazier, M.; Gibbs, R.A.; Muzny, D.M.; Scherer, S.E.; Bouck, J.B.; Sodergren, E.J.; Worley, K.C.; Rives, C.M.; Gorrell, J.H.; Metzker, M.L.; Naylor, S.L.; Kucherlapati, R.S.; Nelson, D.L.; Weinstock, G.M.; Sakaki, Y.; Fujiyama, A.; Hattori, M.; Yada, T.; Toyoda, A.; Itoh, T.; Kawagoe, C.; Watanabe, H.; Totoki, Y.; Taylor, T.; Weissenbach, J.; Heilig, R.; Saurin, W.; Artiguenave, F.; Brottier, P.; Bruls, T.; Pelletier, E.; Robert, C.; Wincker, P.; Smith, D.R.; Doucette-Stamm, L.; Rubenfield, M.; Weinstock, K.; Lee, H.M.; Dubois, J.; Rosenthal, A.; Platzer, M.; Nyakatura, G.; Taudien, S.; Rump, A.; Yang, H.; Yu, J.; Wang, J.; Huang, G.; Gu, J.; Hood, L.; Rowen, L.; Madan, A.; Qin, S.; Davis, R.W.; Federspiel, N.A.; Abola, A.P.; Proctor, M.J.; Myers, R.M.; Schmutz, J.; Dickson, M.; Grimwood, J.; Cox, D.R.; Olson, M.V.; Kaul, R.; Raymond, C.; Shimizu, N.; Kawasaki, K.; Minoshima, S.; Evans, G.A.; Athanasiou, M.; Schultz, R.; Roe, B.A.; Chen, F.; Pan, H.; Ramser, J.; Lehrach, H.; Reinhardt, R.; McCombie, W.R.; de la Bastide, M.; Dedhia, N.; Blöcker, H.; Hornischer, K.; Nordsiek, G.; Agarwala, R.; Aravind, L.; Bailey, J.A.; Bateman, A.; Batzoglou, S.; Birney, E.; Bork, P.; Brown, D.G.; Burge, C.B.; Cerutti, L.; Chen, H.C.; Church, D.; Clamp, M.; Copley, R.R.; Doerks, T.; Eddy, S.R.; Eichler, E.E.; Furey, T.S.; Galagan, J.; Gilbert, J.G.; Harmon, C.; Hayashizaki, Y.; Haussler, D.; Hermjakob, H.; Hokamp, K.; Jang, W.; Johnson, L.S.; Jones, T.A.; Kasif, S.; Kaspryzk, A.; Kennedy, S.; Kent, W.J.; Kitts, P.; Koonin, E.V.; Korf, I.; Kulp, D.; Lancet, D.; Lowe, T.M.; McLysaght, A.; Mikkelsen, T.; Moran, J.V.; Mulder, N.; Pollara, V.J.; Ponting, C.P.; Schuler, G.; Schultz, J.; Slater, G.; Smit, A.F.; Stupka, E.; Szustakowki, J.; Thierry-Mieg, D.; Thierry-Mieg, J.; Wagner, L.; Wallis, J.; Wheeler, R.; Williams, A.; Wolf, Y.I.; Wolfe, K.H.; Yang, S.P.; Yeh, R.F.; Collins, F.; Guyer, M.S.; Peterson, J.; Felsenfeld, A.; Wetterstrand, K.A.; Patrinos, A.; Morgan, M.J.; de Jong, P.; Catanese, J.J.; Osoegawa, K.; Shizuya, H.; Choi, S.; Chen, Y.J.; Szustakowki, J. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature, 2001, 409(6822), 860-921.
[http://dx.doi.org/10.1038/35057062] [PMID: 11237011]
[2]
Bertone, P.; Stolc, V.; Royce, T.E.; Rozowsky, J.S.; Urban, A.E.; Zhu, X.; Rinn, J.L.; Tongprasit, W.; Samanta, M.; Weissman, S.; Gerstein, M.; Snyder, M. Global identification of human transcribed sequences with genome tiling arrays. Science, 2004, 306(5705), 2242-2246.
[http://dx.doi.org/10.1126/science.1103388] [PMID: 15539566]
[3]
Ponting, C.P.; Oliver, P.L.; Reik, W. Evolution and functions of long noncoding RNAs. Cell, 2009, 136(4), 629-641.
[http://dx.doi.org/10.1016/j.cell.2009.02.006] [PMID: 19239885]
[4]
Shin, T.J.; Lee, K.H.; Cho, J.Y. Epigenetic Mechanisms of LncRNAs Binding to Protein in Carcinogenesis. Cancers (Basel), 2020, 12(10), 2925.
[http://dx.doi.org/10.3390/cancers12102925] [PMID: 33050646]
[5]
Harrow, J.; Frankish, A.; Gonzalez, J.M.; Tapanari, E.; Diekhans, M.; Kokocinski, F.; Aken, B.L.; Barrell, D.; Zadissa, A.; Searle, S.; Barnes, I.; Bignell, A.; Boychenko, V.; Hunt, T.; Kay, M.; Mukherjee, G.; Rajan, J.; Despacio-Reyes, G.; Saunders, G.; Steward, C.; Harte, R.; Lin, M.; Howald, C.; Tanzer, A.; Derrien, T.; Chrast, J.; Walters, N.; Balasubramanian, S.; Pei, B.; Tress, M.; Rodriguez, J.M.; Ezkurdia, I.; van Baren, J.; Brent, M.; Haussler, D.; Kellis, M.; Valencia, A.; Reymond, A.; Gerstein, M.; Guigó, R.; Hubbard, T.J. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res., 2012, 22(9), 1760-1774.
[http://dx.doi.org/10.1101/gr.135350.111] [PMID: 22955987]
[6]
Jin, K.T.; Yao, J.Y.; Fang, X.L.; Di, H.; Ma, Y.Y. Roles of lncRNAs in cancer: Focusing on angiogenesis. Life Sci., 2020, 252, 117647.
[http://dx.doi.org/10.1016/j.lfs.2020.117647] [PMID: 32275935]
[7]
DiStefano, J.K. Long noncoding RNAs in the initiation, progression, and metastasis of hepatocellular carcinoma. Noncoding RNA Res., 2017, 2(3-4), 129-136.
[http://dx.doi.org/10.1016/j.ncrna.2017.11.001] [PMID: 30159431]
[8]
Balas, M.M.; Johnson, A.M. Exploring the mechanisms behind long noncoding RNAs and cancer. Noncoding RNA Res., 2018, 3(3), 108-117.
[http://dx.doi.org/10.1016/j.ncrna.2018.03.001] [PMID: 30175284]
[9]
Khalil, A.M.; Guttman, M.; Huarte, M.; Garber, M.; Raj, A.; Rivea Morales, D.; Thomas, K.; Presser, A.; Bernstein, B.E.; van Oudenaarden, A.; Regev, A.; Lander, E.S.; Rinn, J.L. Many human large intergenic noncoding RNAs associate with chromatin- modifying complexes and affect gene expression. Proc. Natl. Acad. Sci. USA, 2009, 106(28), 11667-11672.
[http://dx.doi.org/10.1073/pnas.0904715106] [PMID: 19571010]
[10]
Dastmalchi, N.; Safaralizadeh, R.; Nargesi, M.M. LncRNAs: Potential Novel Prognostic and Diagnostic Biomarkers in Colorectal Cancer. Curr. Med. Chem., 2020, 27(30), 5067-5077.
[http://dx.doi.org/10.2174/0929867326666190227230024] [PMID: 30827228]
[11]
Glassman, M.L.; de Groot, N.; Hochberg, A. Relaxation of imprinting in carcinogenesis. Cancer Genet. Cytogenet., 1996, 89(1), 69-73.
[http://dx.doi.org/10.1016/0165-4608(95)00364-9] [PMID: 8689615]
[12]
Bhan, A.; Mandal, S.S. Long noncoding RNAs: emerging stars in gene regulation, epigenetics and human disease. ChemMedChem, 2014, 9(9), 1932-1956.
[http://dx.doi.org/10.1002/cmdc.201300534] [PMID: 24677606]
[13]
Ma, L.; Bajic, V.B.; Zhang, Z. On the classification of long non- coding RNAs. RNA Biol., 2013, 10(6), 925-933.
[http://dx.doi.org/10.4161/rna.24604] [PMID: 23696037]
[14]
Tragante, V.; Moore, J.H.; Asselbergs, F.W. The ENCODE project and perspectives on pathways. Genet. Epidemiol., 2014, 38(4), 275-280.
[http://dx.doi.org/10.1002/gepi.21802] [PMID: 24723339]
[15]
St Laurent, G.; Wahlestedt, C.; Kapranov, P. The Landscape of long noncoding RNA classification. Trends Genet., 2015, 31(5), 239-251.
[http://dx.doi.org/10.1016/j.tig.2015.03.007] [PMID: 25869999]
[16]
Dhanoa, J.K.; Sethi, R.S.; Verma, R.; Arora, J.S.; Mukhopadhyay, C.S. Long non-coding RNA: its evolutionary relics and biological implications in mammals: a review. J. Anim. Sci. Technol., 2018, 60, 25.
[http://dx.doi.org/10.1186/s40781-018-0183-7] [PMID: 30386629]
[17]
Haerty, W.; Ponting, C.P. Unexpected selection to retain high GC content and splicing enhancers within exons of multiexonic lncRNA loci. RNA, 2015, 21(3), 333-346.
[http://dx.doi.org/10.1261/rna.047324.114] [PMID: 25589248]
[18]
Novikova, I.V.; Hennelly, S.P.; Sanbonmatsu, K.Y. Sizing up long non-coding RNAs: do lncRNAs have secondary and tertiary structure? Bioarchitecture, 2012, 2(6), 189-199.
[http://dx.doi.org/10.4161/bioa.22592] [PMID: 23267412]
[19]
Liu, F.; Somarowthu, S.; Pyle, A.M. Visualizing the secondary and tertiary architectural domains of lncRNA RepA. Nat. Chem. Biol., 2017, 13(3), 282-289.
[http://dx.doi.org/10.1038/nchembio.2272] [PMID: 28068310]
[20]
Guo, X.; Gao, L.; Wang, Y.; Chiu, D.K.; Wang, T.; Deng, Y. Advances in long noncoding RNAs: identification, structure prediction and function annotation. Brief. Funct. Genomics, 2016, 15(1), 38-46.
[http://dx.doi.org/10.1093/bfgp/elv022] [PMID: 26072035]
[21]
Zampetaki, A.; Albrecht, A.; Steinhofel, K. Long-noncoding RNA structure and function: is there a link? Front. Physiol., 2018, 9, 1201.
[http://dx.doi.org/10.3389/fphys.2018.01201] [PMID: 30197605]
[22]
Cao, J. The functional role of long non-coding RNAs and epigenetics. Biol. Proced. Online, 2014, 16, 11.
[http://dx.doi.org/10.1186/1480-9222-16-11] [PMID: 25276098]
[23]
Aprile, M.; Katopodi, V.; Leucci, E.; Costa, V. LncRNAs in Cancer: From garbage to Junk. Cancers (Basel), 2020, 12(11), 3220.
[http://dx.doi.org/10.3390/cancers12113220] [PMID: 33142861]
[24]
Wang, K.C.; Chang, H.Y. Molecular mechanisms of long noncoding RNAs. Mol. Cell, 2011, 43(6), 904-914.
[http://dx.doi.org/10.1016/j.molcel.2011.08.018] [PMID: 21925379]
[25]
Marques, A.C.; Hughes, J.; Graham, B.; Kowalczyk, M.S.; Higgs, D.R.; Ponting, C.P. Chromatin signatures at transcriptional start sites separate two equally populated yet distinct classes of intergenic long noncoding RNAs. Genome Biol., 2013, 14(11), R131.
[http://dx.doi.org/10.1186/gb-2013-14-11-r131] [PMID: 24289259]
[26]
Louro, R.; Smirnova, A.S.; Verjovski-Almeida, S. Long intronic noncoding RNA transcription: expression noise or expression choice? Genomics, 2009, 93(4), 291-298.
[http://dx.doi.org/10.1016/j.ygeno.2008.11.009] [PMID: 19071207]
[27]
Xie, W.; Ren, B. Developmental biology. Enhancing pluripotency and lineage specification. Science, 2013, 341(6143), 245-247.
[http://dx.doi.org/10.1126/science.1236254] [PMID: 23869010]
[28]
Rinn, JL; Chang, HY Genome regulation by long noncoding RNAs. Annu Rev Biochem, 2012.
[http://dx.doi.org/10.1146/annurev-biochem-051410-092902]
[29]
Schmitz, S.U.; Grote, P.; Herrmann, B.G. Mechanisms of long noncoding RNA function in development and disease. Cell. Mol. Life Sci., 2016, 73(13), 2491-2509.
[http://dx.doi.org/10.1007/s00018-016-2174-5] [PMID: 27007508]
[30]
Sparmann, A.; van Lohuizen, M. Polycomb silencers control cell fate, development and cancer. Nat. Rev. Cancer, 2006, 6(11), 846-856.
[http://dx.doi.org/10.1038/nrc1991] [PMID: 17060944]
[31]
Kong, Y.; Hsieh, C.H.; Alonso, L.C. ANRIL: AlncRNA at the CDKN2A/B Locus with Roles in Cancer and Metabolic Disease Front Endocrinol (Lausanne). 2018, 9, 405.
[32]
Che, J. Molecular mechanisms of the intracranial aneurysms and their association with the long noncoding ribonucleic acid ANRIL - A review of literature. Neurol. India, 2017, 65(4), 718-728.
[http://dx.doi.org/10.4103/neuroindia.NI_1074_15] [PMID: 28681739]
[33]
Liu, P.; Zhang, M.; Niu, Q.; Zhang, F.; Yang, Y.; Jiang, X. Knockdown of long non-coding RNA ANRIL inhibits tumorigenesis in human gastric cancer cells via microRNA-99a-mediated down-regulation of BMI1. Braz. J. Med. Biol. Res., 2018, 51(10), e6839.
[http://dx.doi.org/10.1590/1414-431x20186839] [PMID: 30156609]
[34]
Zhang, X.T.; Pan, S.X.; Wang, A.H.; Kong, Q.Y.; Jiang, K.T.; Yu, Z.B. Long Non-Coding RNA (lncRNA) X-Inactive Specific Transcript (XIST) Plays a Critical Role in Predicting Clinical Prognosis and Progression of Colorectal Cancer. Med. Sci. Monit., 2019, 25, 6429-6435.
[http://dx.doi.org/10.12659/MSM.915329] [PMID: 31452526]
[35]
Agrelo, R.; Souabni, A.; Novatchkova, M.; Haslinger, C.; Leeb, M.; Komnenovic, V.; Kishimoto, H.; Gresh, L.; Kohwi-Shigematsu, T.; Kenner, L.; Wutz, A. SATB1 defines the developmental context for gene silencing by Xist in lymphoma and embryonic cells. Dev. Cell, 2009, 16(4), 507-516.
[http://dx.doi.org/10.1016/j.devcel.2009.03.006] [PMID: 19386260]
[36]
Plath, K.; Fang, J.; Mlynarczyk-Evans, S.K.; Cao, R.; Worringer, K.A.; Wang, H.; de la Cruz, C.C.; Otte, A.P.; Panning, B.; Zhang, Y. Role of histone H3 lysine 27 methylation in X inactivation. Science, 2003, 300(5616), 131-135.
[http://dx.doi.org/10.1126/science.1084274] [PMID: 12649488]
[37]
Kim, K.; Choi, J.; Heo, K.; Kim, H.; Levens, D.; Kohno, K.; Johnson, E.M.; Brock, H.W.; An, W. Isolation and characterization of a novel H1.2 complex that acts as a repressor of p53-mediated transcription. J. Biol. Chem., 2008, 283(14), 9113-9126.
[http://dx.doi.org/10.1074/jbc.M708205200] [PMID: 18258596]
[38]
Yoon, J.H.; Abdelmohsen, K.; Srikantan, S.; Yang, X.; Martindale, J.L.; De, S.; Huarte, M.; Zhan, M.; Becker, K.G.; Gorospe, M. LincRNA-p21 suppresses target mRNA translation. Mol. Cell, 2012, 47(4), 648-655.
[http://dx.doi.org/10.1016/j.molcel.2012.06.027] [PMID: 22841487]
[39]
Jin, S.; Yang, X.; Li, J.; Yang, W.; Ma, H.; Zhang, Z. p53-targeted lincRNA-p21 acts as a tumor suppressor by inhibiting JAK2/STAT3 signaling pathways in head and neck squamous cell carcinoma. Mol. Cancer, 2019, 18(1), 38.
[http://dx.doi.org/10.1186/s12943-019-0993-3] [PMID: 30857539]
[40]
Arita, T.; Ichikawa, D.; Konishi, H.; Komatsu, S.; Shiozaki, A.; Shoda, K.; Kawaguchi, T.; Hirajima, S.; Nagata, H.; Kubota, T.; Fujiwara, H.; Okamoto, K.; Otsuji, E. Circulating long non-coding RNAs in plasma of patients with gastric cancer. Anticancer Res., 2013, 33(8), 3185-3193.
[PMID: 23898077]
[41]
Ren, S.; Wang, F.; Shen, J.; Sun, Y.; Xu, W.; Lu, J.; Wei, M.; Xu, C.; Wu, C.; Zhang, Z.; Gao, X.; Liu, Z.; Hou, J.; Huang, J.; Sun, Y. Long non-coding RNA metastasis associated in lung adenocarcinoma transcript 1 derived miniRNA as a novel plasma-based biomarker for diagnosing prostate cancer. Eur. J. Cancer, 2013, 49(13), 2949-2959.
[http://dx.doi.org/10.1016/j.ejca.2013.04.026] [PMID: 23726266]
[42]
Zhou, X.; Yin, C.; Dang, Y.; Ye, F.; Zhang, G. Identification of the long non-coding RNA H19 in plasma as a novel biomarker for diagnosis of gastric cancer. Sci. Rep., 2015, 5, 11516.
[http://dx.doi.org/10.1038/srep11516] [PMID: 26096073]
[43]
Huang, X.; Yuan, T.; Tschannen, M.; Sun, Z.; Jacob, H.; Du, M.; Liang, M.; Dittmar, R.L.; Liu, Y.; Liang, M.; Kohli, M.; Thibodeau, S.N.; Boardman, L.; Wang, L. Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics, 2013, 14, 319.
[http://dx.doi.org/10.1186/1471-2164-14-319] [PMID: 23663360]
[44]
Li, Q.; Shao, Y.; Zhang, X.; Zheng, T.; Miao, M.; Qin, L.; Wang, B.; Ye, G.; Xiao, B.; Guo, J. Plasma long noncoding RNA protected by exosomes as a potential stable biomarker for gastric cancer. Tumour Biol., 2015, 36(3), 2007-2012.
[http://dx.doi.org/10.1007/s13277-014-2807-y] [PMID: 25391424]
[45]
Chi, Y.; Wang, D.; Wang, J.; Yu, W.; Yang, J. Long Non-Coding RNA in the Pathogenesis of Cancers. Cells, 2019, 8(9), 1015.
[http://dx.doi.org/10.3390/cells8091015] [PMID: 31480503]
[46]
He, X.; Yan, Q.; Kuang, G.; Wang, Y.; Cao, P.; Ou, C. Metastasis-associated lung adenocarcinoma transcript 1 regulates tumor progression: old wine in a new bottle. J. Thorac. Dis., 2018, 10(Suppl. 9), S1088-S1091.
[http://dx.doi.org/10.21037/jtd.2018.04.13] [PMID: 29850189]
[47]
Jiang, Y.; Li, Y.; Fang, S.; Jiang, B.; Qin, C.; Xie, P.; Zhou, G.; Li, G. The role of MALAT1 correlates with HPV in cervical cancer. Oncol. Lett., 2014, 7(6), 2135-2141.
[http://dx.doi.org/10.3892/ol.2014.1996] [PMID: 24932303]
[48]
Yuan, J.H.; Yang, F.; Wang, F.; Ma, J.Z.; Guo, Y.J.; Tao, Q.F.; Liu, F.; Pan, W.; Wang, T.T.; Zhou, C.C.; Wang, S.B.; Wang, Y.Z.; Yang, Y.; Yang, N.; Zhou, W.P.; Yang, G.S.; Sun, S.H. A long noncoding RNA activated by TGF-β promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell, 2014, 25(5), 666-681.
[http://dx.doi.org/10.1016/j.ccr.2014.03.010] [PMID: 24768205]
[49]
Xing, Z.; Lin, A.; Li, C.; Liang, K.; Wang, S.; Liu, Y.; Park, P.K.; Qin, L.; Wei, Y.; Hawke, D.H.; Hung, M.C.; Lin, C.; Yang, L. lncRNA directs cooperative epigenetic regulation downstream of chemokine signals. Cell, 2014, 159(5), 1110-1125.
[http://dx.doi.org/10.1016/j.cell.2014.10.013] [PMID: 25416949]
[50]
Yang, L.; Lin, C.; Jin, C.; Yang, J.C.; Tanasa, B.; Li, W.; Merkurjev, D.; Ohgi, K.A.; Meng, D.; Zhang, J.; Evans, C.P.; Rosenfeld, M.G. lncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs. Nature, 2013, 500(7464), 598-602.
[http://dx.doi.org/10.1038/nature12451] [PMID: 23945587]
[51]
Zhang, A.; Zhao, J.C.; Kim, J.; Fong, K.W.; Yang, Y.A.; Chakravarti, D.; Mo, Y.Y.; Yu, J. LncRNA HOTAIR Enhances the Androgen-Receptor-Mediated Transcriptional Program and Drives Castration-Resistant Prostate Cancer. Cell Rep., 2015, 13(1), 209-221.
[http://dx.doi.org/10.1016/j.celrep.2015.08.069] [PMID: 26411689]
[52]
Takayama, K.; Horie-Inoue, K.; Katayama, S.; Suzuki, T.; Tsutsumi, S.; Ikeda, K.; Urano, T.; Fujimura, T.; Takagi, K.; Takahashi, S.; Homma, Y.; Ouchi, Y.; Aburatani, H.; Hayashizaki, Y.; Inoue, S. Androgen-responsive long noncoding RNA CTBP1-AS promotes prostate cancer. EMBO J., 2013, 32(12), 1665-1680.
[http://dx.doi.org/10.1038/emboj.2013.99] [PMID: 23644382]
[53]
Tseng, Y.Y.; Moriarity, B.S.; Gong, W.; Akiyama, R.; Tiwari, A.; Kawakami, H.; Ronning, P.; Reuland, B.; Guenther, K.; Beadnell, T.C.; Essig, J.; Otto, G.M.; O’Sullivan, M.G.; Largaespada, D.A.; Schwertfeger, K.L.; Marahrens, Y.; Kawakami, Y.; Bagchi, A. PVT1 dependence in cancer with MYC copy-number increase. Nature, 2014, 512(7512), 82-86.
[http://dx.doi.org/10.1038/nature13311] [PMID: 25043044]
[54]
Huarte, M.; Guttman, M.; Feldser, D.; Garber, M.; Koziol, M.J.; Kenzelmann-Broz, D.; Khalil, A.M.; Zuk, O.; Amit, I.; Rabani, M.; Attardi, L.D.; Regev, A.; Lander, E.S.; Jacks, T.; Rinn, J.L. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell, 2010, 142(3), 409-419.
[http://dx.doi.org/10.1016/j.cell.2010.06.040] [PMID: 20673990]
[55]
Marín-Béjar, O.; Marchese, F.P.; Athie, A.; Sánchez, Y.; González, J.; Segura, V.; Huang, L.; Moreno, I.; Navarro, A.; Monzó, M.; García-Foncillas, J.; Rinn, J.L.; Guo, S.; Huarte, M. Pint lincRNA connects the p53 pathway with epigenetic silencing by the Polycomb repressive complex 2. Genome Biol., 2013, 14(9), R104.
[http://dx.doi.org/10.1186/gb-2013-14-9-r104] [PMID: 24070194]
[56]
Sánchez, Y.; Segura, V.; Marín-Béjar, O.; Athie, A.; Marchese, F.P.; González, J.; Bujanda, L.; Guo, S.; Matheu, A.; Huarte, M. Genome-wide analysis of the human p53 transcriptional network unveils a lncRNA tumour suppressor signature. Nat. Commun., 2014, 5, 5812.
[http://dx.doi.org/10.1038/ncomms6812] [PMID: 25524025]
[57]
Younger, S.T.; Kenzelmann-Broz, D.; Jung, H.; Attardi, L.D.; Rinn, J.L. Integrative genomic analysis reveals widespread enhancer regulation by p53 in response to DNA damage. Nucleic Acids Res., 2015, 43(9), 4447-4462.
[http://dx.doi.org/10.1093/nar/gkv284] [PMID: 25883152]
[58]
Zhang, E.B.; Yin, D.D.; Sun, M.; Kong, R.; Liu, X.H.; You, L.H.; Han, L.; Xia, R.; Wang, K.M.; Yang, J.S.; De, W.; Shu, Y.Q.; Wang, Z.X. P53-regulated long non-coding RNA TUG1 affects cell proliferation in human non-small cell lung cancer, partly through epigenetically regulating HOXB7 expression. Cell Death Dis., 2014, 5, e1243.
[http://dx.doi.org/10.1038/cddis.2014.201] [PMID: 24853421]
[59]
Schmitt, A.M.; Chang, H.Y. Long Noncoding RNAs in Cancer Pathways. Cancer Cell, 2016, 29(4), 452-463.
[http://dx.doi.org/10.1016/j.ccell.2016.03.010] [PMID: 27070700]
[60]
Mourtada-Maarabouni, M.; Pickard, M.R.; Hedge, V.L.; Farzaneh, F.; Williams, G.T. GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene, 2009, 28(2), 195-208.
[http://dx.doi.org/10.1038/onc.2008.373] [PMID: 18836484]
[61]
Rippe, K.; Luke, B. TERRA and the state of the telomere. Nat. Struct. Mol. Biol., 2015, 22(11), 853-858.
[http://dx.doi.org/10.1038/nsmb.3078] [PMID: 26581519]
[62]
Flockhart, R.J.; Webster, D.E.; Qu, K.; Mascarenhas, N.; Kovalski, J.; Kretz, M.; Khavari, P.A. BRAFV600E remodels the melanocyte transcriptome and induces BANCR to regulate melanoma cell migration. Genome Res., 2012, 22(6), 1006-1014.
[http://dx.doi.org/10.1101/gr.140061.112] [PMID: 22581800]
[63]
Hu, Y.; Wang, J.; Qian, J.; Kong, X.; Tang, J.; Wang, Y.; Chen, H.; Hong, J.; Zou, W.; Chen, Y.; Xu, J.; Fang, J.Y. Long noncoding RNA GAPLINC regulates CD44-dependent cell invasiveness and associates with poor prognosis of gastric cancer. Cancer Res., 2014, 74(23), 6890-6902.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0686] [PMID: 25277524]
[64]
Huarte, M. The emerging role of lncRNAs in cancer. Nat. Med., 2015, 21(11), 1253-1261.
[http://dx.doi.org/10.1038/nm.3981] [PMID: 26540387]
[65]
Wang, Y.; He, L.; Du, Y.; Zhu, P.; Huang, G.; Luo, J.; Yan, X.; Ye, B.; Li, C.; Xia, P.; Zhang, G.; Tian, Y.; Chen, R.; Fan, Z. The long noncoding RNA lncTCF7 promotes self-renewal of human liver cancer stem cells through activation of Wnt signaling. Cell Stem Cell, 2015, 16(4), 413-425.
[http://dx.doi.org/10.1016/j.stem.2015.03.003] [PMID: 25842979]
[66]
Prensner, J.R.; Zhao, S.; Erho, N.; Schipper, M.; Iyer, M.K.; Dhanasekaran, S.M.; Magi-Galluzzi, C.; Mehra, R.; Sahu, A.; Siddiqui, J.; Davicioni, E.; Den, R.B.; Dicker, A.P.; Karnes, R.J.; Wei, J.T.; Klein, E.A.; Jenkins, R.B.; Chinnaiyan, A.M.; Feng, F.Y. RNA biomarkers associated with metastatic progression in prostate cancer: a multi-institutional high-throughput analysis of SChLAP1. Lancet Oncol., 2014, 15(13), 1469-1480.
[http://dx.doi.org/10.1016/S1470-2045(14)71113-1] [PMID: 25456366]
[67]
Prensner, J.R.; Iyer, M.K.; Sahu, A.; Asangani, I.A.; Cao, Q.; Patel, L.; Vergara, I.A.; Davicioni, E.; Erho, N.; Ghadessi, M.; Jenkins, R.B.; Triche, T.J.; Malik, R.; Bedenis, R.; McGregor, N.; Ma, T.; Chen, W.; Han, S.; Jing, X.; Cao, X.; Wang, X.; Chandler, B.; Yan, W.; Siddiqui, J.; Kunju, L.P.; Dhanasekaran, S.M.; Pienta, K.J.; Feng, F.Y.; Chinnaiyan, A.M. The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nat. Genet., 2013, 45(11), 1392-1398.
[http://dx.doi.org/10.1038/ng.2771] [PMID: 24076601]
[68]
Kretz, M.; Siprashvili, Z.; Chu, C.; Webster, D.E.; Zehnder, A.; Qu, K.; Lee, C.S.; Flockhart, R.J.; Groff, A.F.; Chow, J.; Johnston, D.; Kim, G.E.; Spitale, R.C.; Flynn, R.A.; Zheng, G.X.; Aiyer, S.; Raj, A.; Rinn, J.L.; Chang, H.Y.; Khavari, P.A. Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature, 2013, 493(7431), 231-235.
[http://dx.doi.org/10.1038/nature11661] [PMID: 23201690]
[69]
Pandey, G.K.; Mitra, S.; Subhash, S.; Hertwig, F.; Kanduri, M.; Mishra, K.; Fransson, S.; Ganeshram, A.; Mondal, T.; Bandaru, S.; Ostensson, M.; Akyürek, L.M.; Abrahamsson, J.; Pfeifer, S.; Larsson, E.; Shi, L.; Peng, Z.; Fischer, M.; Martinsson, T.; Hedborg, F.; Kogner, P.; Kanduri, C. The risk-associated long noncoding RNA NBAT-1 controls neuroblastoma progression by regulating cell proliferation and neuronal differentiation. Cancer Cell, 2014, 26(5), 722-737.
[http://dx.doi.org/10.1016/j.ccell.2014.09.014] [PMID: 25517750]
[70]
Bhan, A.; Soleimani, M.; Mandal, S.S. Long Noncoding RNA and Cancer: A New Paradigm. Cancer Res., 2017, 77(15), 3965-3981.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2634] [PMID: 28701486]
[71]
Sahu, A.; Singhal, U.; Chinnaiyan, A.M. Long noncoding RNAs in cancer: from function to translation. Trends Cancer, 2015, 1(2), 93-109.
[http://dx.doi.org/10.1016/j.trecan.2015.08.010] [PMID: 26693181]
[72]
Ørom, U.A.; Derrien, T.; Beringer, M.; Gumireddy, K.; Gardini, A.; Bussotti, G.; Lai, F.; Zytnicki, M.; Notredame, C.; Huang, Q.; Guigo, R.; Shiekhattar, R. Long noncoding RNAs with enhancer- like function in human cells. Cell, 2010, 143(1), 46-58.
[http://dx.doi.org/10.1016/j.cell.2010.09.001] [PMID: 20887892]
[73]
Dimitrova, N.; Zamudio, J.R.; Jong, R.M.; Soukup, D.; Resnick, R.; Sarma, K.; Ward, A.J.; Raj, A.; Lee, J.T.; Sharp, P.A.; Jacks, T. LincRNA-p21 activates p21 in cis to promote Polycomb target gene expression and to enforce the G1/S checkpoint. Mol. Cell, 2014, 54(5), 777-790.
[http://dx.doi.org/10.1016/j.molcel.2014.04.025] [PMID: 24857549]
[74]
Trimarchi, T.; Bilal, E.; Ntziachristos, P.; Fabbri, G.; Dalla-Favera, R.; Tsirigos, A.; Aifantis, I. Genome-wide mapping and characterization of Notch-regulated long noncoding RNAs in acute leukemia. Cell, 2014, 158(3), 593-606.
[http://dx.doi.org/10.1016/j.cell.2014.05.049] [PMID: 25083870]
[75]
Zhu, Y.; Rowley, M.J.; Böhmdorfer, G.; Wierzbicki, A.T.A. A SWI/SNF chromatin-remodeling complex acts in noncoding RNA-mediated transcriptional silencing. Mol. Cell, 2013, 49(2), 298-309.
[http://dx.doi.org/10.1016/j.molcel.2012.11.011] [PMID: 23246435]
[76]
Sigova, A.A.; Abraham, B.J.; Ji, X.; Molinie, B.; Hannett, N.M.; Guo, Y.E.; Jangi, M.; Giallourakis, C.C.; Sharp, P.A.; Young, R.A. Transcription factor trapping by RNA in gene regulatory elements. Science, 2015, 350(6263), 978-981.
[http://dx.doi.org/10.1126/science.aad3346] [PMID: 26516199]
[77]
Schmitz, K.M.; Mayer, C.; Postepska, A.; Grummt, I. Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Genes Dev., 2010, 24(20), 2264-2269.
[http://dx.doi.org/10.1101/gad.590910] [PMID: 20952535]
[78]
Batista, P.J.; Chang, H.Y. Long noncoding RNAs: cellular address codes in development and disease. Cell, 2013, 152(6), 1298-1307.
[http://dx.doi.org/10.1016/j.cell.2013.02.012] [PMID: 23498938]
[79]
Chu, C.; Qu, K.; Zhong, F.L.; Artandi, S.E.; Chang, H.Y. Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol. Cell, 2011, 44(4), 667-678.
[http://dx.doi.org/10.1016/j.molcel.2011.08.027] [PMID: 21963238]
[80]
Gendrel, A.V.; Heard, E. Fifty years of X-inactivation research. Development, 2011, 138(23), 5049-5055.
[http://dx.doi.org/10.1242/dev.068320] [PMID: 22069183]
[81]
Lee, J.T.; Bartolomei, M.S. X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell, 2013, 152(6), 1308-1323.
[http://dx.doi.org/10.1016/j.cell.2013.02.016] [PMID: 23498939]
[82]
Pageau, G.J.; Hall, L.L.; Ganesan, S.; Livingston, D.M.; Lawrence, J.B. The disappearing Barr body in breast and ovarian cancers. Nat. Rev. Cancer, 2007, 7(8), 628-633.
[http://dx.doi.org/10.1038/nrc2172] [PMID: 17611545]
[83]
Koirala, P.; Zou, D.H.; Mo, Y.Y. Long non-coding RNAs as key regulators of cancer metastasis. J. Cancer Metastasis Treat., 2016, 2, 1-10.
[84]
Devaskar, S.U.; Raychaudhuri, S. Epigenetics- a science of heritable biological adaptation. Pediatr. Res., 2007, 61(5 Pt 2), 1R-4R.
[http://dx.doi.org/10.1203/pdr.0b013e31805cdbd8] [PMID: 17452883]
[85]
Ashapkin, V.V.; Linkova, N.S.; Khavinson, V.Kh.; Vanyushin, B.F. Epigenetic mechanisms of peptidergic regulation of gene expression during aging of human cells. Biochemistry (Mosc.), 2015, 80(3), 310-322.
[http://dx.doi.org/10.1134/S0006297915030062] [PMID: 25761685]
[86]
Gupta, R.A.; Shah, N.; Wang, K.C.; Kim, J.; Horlings, H.M.; Wong, D.J.; Tsai, M.C.; Hung, T.; Argani, P.; Rinn, J.L.; Wang, Y.; Brzoska, P.; Kong, B.; Li, R.; West, R.B.; van de Vijver, M.J.; Sukumar, S.; Chang, H.Y. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 2010, 464(7291), 1071-1076.
[http://dx.doi.org/10.1038/nature08975] [PMID: 20393566]
[87]
Niinuma, T.; Suzuki, H.; Nojima, M.; Nosho, K.; Yamamoto, H.; Takamaru, H.; Yamamoto, E.; Maruyama, R.; Nobuoka, T.; Miyazaki, Y.; Nishida, T.; Bamba, T.; Kanda, T.; Ajioka, Y.; Taguchi, T.; Okahara, S.; Takahashi, H.; Nishida, Y.; Hosokawa, M.; Hasegawa, T.; Tokino, T.; Hirata, K.; Imai, K.; Toyota, M.; Shinomura, Y. Upregulation of miR-196a and HOTAIR drive malignant character in gastrointestinal stromal tumors. Cancer Res., 2012, 72(5), 1126-1136.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1803] [PMID: 22258453]
[88]
Gutschner, T.; Hämmerle, M.; Diederichs, S. MALAT1 - a paradigm for long noncoding RNA function in cancer. J. Mol. Med. (Berl.), 2013, 91(7), 791-801.
[http://dx.doi.org/10.1007/s00109-013-1028-y] [PMID: 23529762]
[89]
Fan, Y.; Shen, B.; Tan, M.; Mu, X.; Qin, Y.; Zhang, F.; Liu, Y. TGF-β-induced upregulation of malat1 promotes bladder cancer metastasis by associating with suz12. Clin. Cancer Res., 2014, 20(6), 1531-1541.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-1455] [PMID: 24449823]
[90]
Akers, J.C.; Gonda, D.; Kim, R.; Carter, B.S.; Chen, C.C. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J. Neurooncol., 2013, 113(1), 1-11.
[http://dx.doi.org/10.1007/s11060-013-1084-8] [PMID: 23456661]
[91]
Shi, T.; Gao, G.; Cao, Y. Long noncoding RNAs as novel biomarkers have a promising future in cancer diagnostics. Dis. Markers, 2016, 2016, 9085195.
[http://dx.doi.org/10.1155/2016/9085195] [PMID: 27143813]
[92]
Wang, F.; Ren, S.; Chen, R.; Lu, J.; Shi, X.; Zhu, Y.; Zhang, W.; Jing, T.; Zhang, C.; Shen, J.; Xu, C.; Wang, H.; Wang, H.; Wang, Y.; Liu, B.; Li, Y.; Fang, Z.; Guo, F.; Qiao, M.; Wu, C.; Wei, Q.; Xu, D.; Shen, D.; Lu, X.; Gao, X.; Hou, J.; Sun, Y. Development and prospective multicenter evaluation of the long noncoding RNA MALAT-1 as a diagnostic urinary biomarker for prostate cancer. Oncotarget, 2014, 5(22), 11091-11102.
[http://dx.doi.org/10.18632/oncotarget.2691] [PMID: 25526029]
[93]
Svoboda, M.; Slyskova, J.; Schneiderova, M.; Makovicky, P.; Bielik, L.; Levy, M.; Lipska, L.; Hemmelova, B.; Kala, Z.; Protivankova, M.; Vycital, O.; Liska, V.; Schwarzova, L.; Vodickova, L.; Vodicka, P. HOTAIR long non-coding RNA is a negative prognostic factor not only in primary tumors, but also in the blood of colorectal cancer patients. Carcinogenesis, 2014, 35(7), 1510-1515.
[http://dx.doi.org/10.1093/carcin/bgu055] [PMID: 24583926]
[94]
Shappell, S.B. Clinical utility of prostate carcinoma molecular diagnostic tests. Rev. Urol., 2008, 10(1), 44-69.
[PMID: 18470278]
[95]
Yang, F.; Zhang, L.; Huo, X.S.; Yuan, J.H.; Xu, D.; Yuan, S.X.; Zhu, N.; Zhou, W.P.; Yang, G.S.; Wang, Y.Z.; Shang, J.L.; Gao, C.F.; Zhang, F.R.; Wang, F.; Sun, S.H. Long noncoding RNA high expression in hepatocellular carcinoma facilitates tumor growth through enhancer of zeste homolog 2 in humans. Hepatology, 2011, 54(5), 1679-1689.
[http://dx.doi.org/10.1002/hep.24563] [PMID: 21769904]
[96]
Sun, J.; Bie, B.; Zhang, S.; Yang, J.; Li, Z. Long non-coding RNAs: critical players in hepatocellular carcinoma. Int. J. Mol. Sci., 2014, 15(11), 20434-20448.
[http://dx.doi.org/10.3390/ijms151120434] [PMID: 25387074]
[97]
Yang, F.; Huo, X.S.; Yuan, S.X.; Zhang, L.; Zhou, W.P.; Wang, F.; Sun, S.H. Repression of the long noncoding RNA-LET by histone deacetylase 3 contributes to hypoxia-mediated metastasis. Mol. Cell, 2013, 49(6), 1083-1096.
[http://dx.doi.org/10.1016/j.molcel.2013.01.010] [PMID: 23395002]
[98]
Wilusz, J.E. Long noncoding RNAs: Re-writing dogmas of RNA processing and stability. Biochim. Biophys. Acta, 2016, 1859(1), 128-138.
[http://dx.doi.org/10.1016/j.bbagrm.2015.06.003] [PMID: 26073320]
[99]
Prensner, J.R.; Chinnaiyan, A.M. The emergence of lncRNAs in cancer biology. Cancer Discov., 2011, 1(5), 391-407.
[http://dx.doi.org/10.1158/2159-8290.CD-11-0209] [PMID: 22096659]
[100]
Zhang, A.; Zhou, N.; Huang, J.; Liu, Q.; Fukuda, K.; Ma, D.; Lu, Z.; Bai, C.; Watabe, K.; Mo, Y.Y. The human long non-coding RNA-RoR is a p53 repressor in response to DNA damage. Cell Res., 2013, 23(3), 340-350.
[http://dx.doi.org/10.1038/cr.2012.164] [PMID: 23208419]
[101]
Liu, Q.; Huang, J.; Zhou, N.; Zhang, Z.; Zhang, A.; Lu, Z.; Wu, F.; Mo, Y.Y. LncRNA loc285194 is a p53-regulated tumor suppressor. Nucleic Acids Res., 2013, 41(9), 4976-4987.
[http://dx.doi.org/10.1093/nar/gkt182] [PMID: 23558749]
[102]
Lennox, K.A.; Behlke, M.A. Cellular localization of long non-coding RNAs affects silencing by RNAi more than by antisense oligonucleotides. Nucleic Acids Res., 2016, 44(2), 863-877.
[http://dx.doi.org/10.1093/nar/gkv1206] [PMID: 26578588]
[103]
Ideue, T.; Hino, K.; Kitao, S.; Yokoi, T.; Hirose, T. Efficient oligonucleotide-mediated degradation of nuclear noncoding RNAs in mammalian cultured cells. RNA, 2009, 15(8), 1578-1587.
[http://dx.doi.org/10.1261/rna.1657609] [PMID: 19535462]
[104]
Büller, H.R.; Bethune, C.; Bhanot, S.; Gailani, D.; Monia, B.P.; Raskob, G.E.; Segers, A.; Verhamme, P.; Weitz, J.I. FXI-ASO TKA Investigators. Factor XI antisense oligonucleotide for prevention of venous thrombosis. N. Engl. J. Med., 2015, 372(3), 232-240.
[http://dx.doi.org/10.1056/NEJMoa1405760] [PMID: 25482425]
[105]
Gaudet, D.; Brisson, D.; Tremblay, K.; Alexander, V.J.; Singleton, W.; Hughes, S.G.; Geary, R.S.; Baker, B.F.; Graham, M.J.; Crooke, R.M.; Witztum, J.L. Targeting APOC3 in the familial chylomicronemia syndrome. N. Engl. J. Med., 2014, 371(23), 2200-2206.
[http://dx.doi.org/10.1056/NEJMoa1400284] [PMID: 25470695]
[106]
Hong, D.; Kurzrock, R.; Kim, Y.; Woessner, R.; Younes, A.; Nemunaitis, J.; Fowler, N.; Zhou, T.; Schmidt, J.; Jo, M.; Lee, S.J.; Yamashita, M.; Hughes, S.G.; Fayad, L.; Piha-Paul, S.; Nadella, M.V.; Mohseni, M.; Lawson, D.; Reimer, C.; Blakey, D.C.; Xiao, X.; Hsu, J.; Revenko, A.; Monia, B.P.; MacLeod, A.R. AZD9150, a next-generation antisense oligonucleotide inhibitor of STAT3 with early evidence of clinical activity in lymphoma and lung cancer. Sci. Transl. Med., 2015, 7(314), 314ra185.
[http://dx.doi.org/10.1126/scitranslmed.aac5272] [PMID: 26582900]
[107]
Meng, L.; Ward, A.J.; Chun, S.; Bennett, C.F.; Beaudet, A.L.; Rigo, F. Towards a therapy for Angelman syndrome by targeting a long non-coding RNA. Nature, 2015, 518(7539), 409-412.
[http://dx.doi.org/10.1038/nature13975] [PMID: 25470045]
[108]
Ling, H.; Fabbri, M.; Calin, G.A. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat. Rev. Drug Discov., 2013, 12(11), 847-865.
[http://dx.doi.org/10.1038/nrd4140] [PMID: 24172333]
[109]
Guo, J.; Ding, Y.; Yang, H.; Guo, H.; Zhou, X.; Chen, X. Aberrant expression of lncRNA MALAT1 modulates radioresistance in colorectal cancer in vitro via miR-101-3p sponging. Exp. Mol. Pathol., 2020, 115, 104448.
[http://dx.doi.org/10.1016/j.yexmp.2020.104448] [PMID: 32380053]
[110]
Lin, A.; Hu, Q.; Li, C.; Xing, Z.; Ma, G.; Wang, C.; Li, J.; Ye, Y.; Yao, J.; Liang, K.; Wang, S.; Park, P.K.; Marks, J.R.; Zhou, Y.; Zhou, J.; Hung, M.C.; Liang, H.; Hu, Z.; Shen, H.; Hawke, D.H.; Han, L.; Zhou, Y.; Lin, C.; Yang, L. The LINK-A lncRNA interacts with PtdIns(3,4,5)P3 to hyperactivate AKT and confer resistance to AKT inhibitors. Nat. Cell Biol., 2017, 19(3), 238-251.
[http://dx.doi.org/10.1038/ncb3473] [PMID: 28218907]
[111]
Deng, R.; Liu, B.; Wang, Y.; Yan, F.; Hu, S.; Wang, H.; Wang, T.; Li, B.; Deng, X.; Xiang, S.; Yang, Y.; Zhang, J. High Expression of the Newly Found Long Noncoding RNA Z38 Promotes Cell Proliferation and Oncogenic Activity in Breast Cancer. J. Cancer, 2016, 7(5), 576-586.
[http://dx.doi.org/10.7150/jca.13117] [PMID: 27053956]
[112]
Yarmishyn, A.A.; Kurochkin, I.V. Long noncoding RNAs: a potential novel class of cancer biomarkers. Front. Genet., 2015, 6, 145.
[http://dx.doi.org/10.3389/fgene.2015.00145] [PMID: 25954300]
[113]
Martens-Uzunova, E.S.; Böttcher, R.; Croce, C.M.; Jenster, G.; Visakorpi, T.; Calin, G.A. Long noncoding RNA in prostate, bladder, and kidney cancer. Eur. Urol., 2014, 65(6), 1140-1151.
[http://dx.doi.org/10.1016/j.eururo.2013.12.003] [PMID: 24373479]
[114]
Wang, X.S.; Zhang, Z.; Wang, H.C.; Cai, J.L.; Xu, Q.W.; Li, M.Q.; Chen, Y.C.; Qian, X.P.; Lu, T.J.; Yu, L.Z.; Zhang, Y.; Xin, D.Q.; Na, Y.Q.; Chen, W.F. Rapid identification of UCA1 as a very sensitive and specific unique marker for human bladder carcinoma. Clin. Cancer Res., 2006, 12(16), 4851-4858.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-0134] [PMID: 16914571]
[115]
Sánchez-Rivera, F.J.; Jacks, T. Applications of the CRISPR-Cas9 system in cancer biology. Nat. Rev. Cancer, 2015, 15(7), 387-395.
[http://dx.doi.org/10.1038/nrc3950] [PMID: 26040603]
[116]
Dates, C.R.; Tollefsbol, T.O. Transforming cancer epigenetics using nutritive approaches and noncoding RNAs. Curr. Cancer Drug Targets, 2018, 18(1), 32-38.
[PMID: 28176654]
[117]
Begolli, R.; Sideris, N.; Giakountis, A. LncRNAs as chromatin regulators in cancer: from molecular function to clinical potential. Cancers (Basel), 2019, 11(10), 1524.
[http://dx.doi.org/10.3390/cancers11101524] [PMID: 31658672]
[118]
Zhou, Z.; Lin, Z.; Pang, X.; Tariq, M.A.; Ao, X.; Li, P.; Wang, J. Epigenetic regulation of long non-coding RNAs in gastric cancer. Oncotarget, 2017, 9(27), 19443-19458.
[http://dx.doi.org/10.18632/oncotarget.23821] [PMID: 29721215]
[119]
Meseure, D.; Drak Alsibai, K.; Nicolas, A.; Bieche, I.; Morillon, A. long noncoding RNAs as new architects in cancer epigenetics, prognostic biomarkers, and potential therapeutic targets. BioMed Res. Int., 2015, 2015, 320214.
[http://dx.doi.org/10.1155/2015/320214] [PMID: 26448935]
[120]
Du, Z.; Fei, T.; Verhaak, R.G.; Su, Z.; Zhang, Y.; Brown, M.; Chen, Y.; Liu, X.S. Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer. Nat. Struct. Mol. Biol., 2013, 20(7), 908-913.
[http://dx.doi.org/10.1038/nsmb.2591] [PMID: 23728290]
[121]
Ho, T.T.; Zhou, N.; Huang, J.; Koirala, P.; Xu, M.; Fung, R.; Wu, F.; Mo, Y.Y. Targeting non-coding RNAs with the CRISPR/Cas9 system in human cell lines. Nucleic Acids Res., 2015, 43(3), e17.
[http://dx.doi.org/10.1093/nar/gku1198] [PMID: 25414344]
[122]
Bie, L.; Luo, S.; Li, D.; Wei, Y.; Mu, Y.; Chen, X.; Wang, S.; Guo, P.; Lu, X. HOTAIR competitively binds MiRNA330 as a molecular sponge to increase the resistance of gastric cancer to trastuzumab. Curr. Cancer Drug Targets, 2020, 20(9), 700-709.
[http://dx.doi.org/10.2174/1568009620666200504114000] [PMID: 32364078]
[123]
Qi, Y.; Song, C.; Zhang, J.; Guo, C.; Yuan, C. oncogenic LncRNA CASC9 in cancer progression. Curr. Pharm. Des., 2020.
[http://dx.doi.org/10.2174/1381612826666200917150130] [PMID: 32940174]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy