Generic placeholder image

Venoms and Toxins

Editor-in-Chief

ISSN (Print): 2666-1217
ISSN (Online): 2666-1225

Review Article

Bee Venom PLA2 versus Snake Venom PLA2: Evaluation of Structural and Functional Properties

Author(s): Lara Bitar, Dania Jundia, Mohamad Rima, Jean-Marc Sabatier and Ziad Fajloun*

Volume 2, Issue 1, 2022

Published on: 01 January, 2021

Article ID: e01012021189841 Pages: 12

DOI: 10.2174/2666121701999210101225032

Price: $65

Abstract

Phospholipases A2 enzymes are found in many mammalian tissues and in animal venoms. Those present in bee venom (bvPLA2) and snake venom (svPLA2) have been studied more particularly for their biological activities of interest. Although they belong to the same family of secreted PLA2 (sPLA2), bvPLA2 and svPLA2 differ from a structural and functional point of view. In this review, we describe the morphological characteristics of these two enzymes and the structural determinants that govern their functions. After describing their cytotoxicity, we compared their biological activities, including antimicrobial, anti-tumor, anti-inflammatory, anti-neurodegenerative, and anti-nociceptive effects. In addition, we highlighted their therapeutical applications and deduced that bvPLA2 has better potential than svPLA2 in biotechnological and pharmaceutical innovations.

Keywords: phospholipase A2, bee venom, snake venom, bvPLA2, svPLA2, toxicity, therapeutical applications.

[1]
Spolaore B, Fernández J, Lomonte B, Massimino ML, Tonello F. Enzymatic labelling of snake venom phospholipase A2 toxins. Toxicon 2019; 170: 99-107.
[http://dx.doi.org/10.1016/j.toxicon.2019.09.019] [PMID: 31563525]
[2]
Kai S, Li X, Li B, Han X, Lu X. Calcium-dependent hydrolysis of supported planar lipids was triggered by honey bee venom phospholipase A2 with the right orientation at the interface. Phys Chem Chem Phys 2017; 20(1): 63-7.
[http://dx.doi.org/10.1039/C7CP06344J] [PMID: 29149234]
[3]
Schaloske RH, Dennis EA. The phospholipase A2 superfamily and its group numbering system. Biochim Biophys Acta 2006; 1761(11): 1246-59.
[http://dx.doi.org/10.1016/j.bbalip.2006.07.011] [PMID: 16973413]
[4]
Six DA, Dennis EA. The expanding superfamily of phospholipase A(2) enzymes: classification and characterization. Biochim Biophys Acta 2000; 1488(1-2): 1-19.
[http://dx.doi.org/10.1016/S1388-1981(00)00105-0] [PMID: 11080672]
[5]
Dennis EA, Cao J, Hsu Y-H, Magrioti V, Kokotos G. Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem Rev 2011; 111(10): 6130-85.
[http://dx.doi.org/10.1021/cr200085w] [PMID: 21910409]
[6]
Jang K K, et al. Identification and characterization of Vibrio vulnificus plpA encoding a phospholipase A2 essential for pathogenesis J Biol Chem 2017; 292 (41 ): 17129 -43 .
[7]
Tessmer MH, Anderson DM, Pickrum AM, Riegert MO, Frank DW. Identification and Verification of Ubiquitin-Activated Bacterial Phospholipases. J Bacteriol 2019; 201(4): 15.
[http://dx.doi.org/10.1128/JB.00623-18] [PMID: 30455285]
[8]
Soragni E, Bolchi A, Balestrini R, et al. A nutrient-regulated, dual localization phospholipase A(2) in the symbiotic fungus Tuber borchii. EMBO J 2001; 20(18): 5079-90.
[http://dx.doi.org/10.1093/emboj/20.18.5079] [PMID: 11566873]
[9]
Jablonická V, Mansfeld J, Heilmann I, Obložinský M, Heilmann M. Identification of a secretory phospholipase A2 from Papaver somniferum L. that transforms membrane phospholipids. Phytochemistry 2016; 129: 4-13.
[http://dx.doi.org/10.1016/j.phytochem.2016.07.010] [PMID: 27473012]
[10]
Burdge GC, Creaney A, Postle AD, Wilton DC. Mammalian secreted and cytosolic phospholipase A2 show different specificities for phospholipid molecular species. Int J Biochem Cell Biol 1995; 27(10): 1027-32.
[http://dx.doi.org/10.1016/1357-2725(95)00083-2] [PMID: 7496992]
[11]
Fairbairn D. The Phospholipase of the Venom of the Cottonmouth Moccasin (agkistrodon Piscivorus L) J Biol Chem 2020; 157(2): 633-44. http://www.jbc.org/content/157/2/633
[12]
Accary C, Mantash A, Mallem Y, Fajloun Z, Elkak A. Separation and Biological Activities of Phospholipase A2 (Mb-PLA2) from the Venom of Montivipera bornmuelleri, a Lebanese Viper. J Liq Chromatogr Relat Technol 2015; 38(8): 833-9.
[http://dx.doi.org/10.1080/10826076.2014.968660]
[13]
Valdez-Cruz NA, Segovia L, Corona M, Possani LD. Sequence analysis and phylogenetic relationship of genes encoding heterodimeric phospholipases A2 from the venom of the scorpion Anuroctonus phaiodactylus. Gene 2007; 396(1): 149-58.
[http://dx.doi.org/10.1016/j.gene.2007.03.007] [PMID: 17466468]
[14]
Frangieh J, Salma Y, Haddad K, et al. First Characterization of The Venom from Apis mellifera syriaca, A Honeybee from The Middle East Region. Toxins (Basel) 2019; 11(4): 30.
[http://dx.doi.org/10.3390/toxins11040191] [PMID: 30935025]
[15]
Murakami M, Taketomi Y, Miki Y, Sato H, Yamamoto K, Lambeau G. Emerging roles of secreted phospholipase A2 enzymes Biochimie (3rd edition).. 2014; 107 : 105 -13 .
[http://dx.doi.org/10.1016/j.biochi.2014.09.003]
[16]
Seilhamer JJ, Pruzanski W, Vadas P, et al. Cloning and recombinant expression of phospholipase A2 present in rheumatoid arthritic synovial fluid. J Biol Chem 1989; 264(10): 5335-8.
[PMID: 2925608]
[17]
Boyanovsky BB, Webb NR. Biology of secretory phospholipase A2. Cardiovasc Drugs Ther 2009; 23(1): 61-72.
[http://dx.doi.org/10.1007/s10557-008-6134-7] [PMID: 18853244]
[18]
Tatulian SA. Toward understanding interfacial activation of secretory phospholipase A2 (PLA2): membrane surface properties and membrane-induced structural changes in the enzyme contribute synergistically to PLA2 activation. Biophys J 2001; 80(2): 789-800.
[http://dx.doi.org/10.1016/S0006-3495(01)76058-4] [PMID: 11159446]
[19]
Wehbe R, Frangieh J, Rima M, El Obeid D, Sabatier J-M, Fajloun Z. Bee Venom: Overview of Main Compounds and Bioactivities for Therapeutic Interests. Molecules 2019; 24(16): E2997.
[http://dx.doi.org/10.3390/molecules24162997] [PMID: 31430861]
[20]
Carregari VC. Snake Venom Extracellular vesicles (SVEVs) reveal wide molecular and functional proteome diversity Sci Rep 2018; 8 (1 ): 12067 .
[21]
Rima M, Alavi Naini SM, Karam M, Sadek R, Sabatier J-M, Fajloun Z. Vipers of the Middle East: A Rich Source of Bioactive Molecules. Molecules 2018; 23(10)
[http://dx.doi.org/10.3390/molecules23102721] [PMID: 30360399]
[22]
Accary C, Hraoui-Bloquet S, Hamze M, et al. Protein content analysis and antimicrobial activity of the crude venom of Montivipera bornmuelleri; a viper from Lebanon. Infect Disord Drug Targets 2014; 14(1): 49-55.
[http://dx.doi.org/10.2174/1871526514666140522114754] [PMID: 24853875]
[23]
Condrea E, Devries A, Mager J. “Hemolysis and splitting of human erythrocyte phospholipids by snake venoms,” Biochimica et Biophysica Acta (BBA) -. Biochim Biophys Acta 1964; 84(1): 60-73.
[http://dx.doi.org/10.1016/0926-6542(64)90101-5] [PMID: 14124757]
[24]
Arni RK, Ward RJ. Phospholipase A2- a structural review. Toxicon 1996; 34(8): 827-41.
[http://dx.doi.org/10.1016/0041-0101(96)00036-0] [PMID: 8875770]
[25]
Scott DL, Otwinowski Z, Gelb MH, Sigler PB. Crystal structure of bee-venom phospholipase A2 in a complex with a transition-state analogue. Science 1990; 250(4987): 1563-6.
[http://dx.doi.org/10.1126/science.2274788] [PMID: 2274788]
[26]
Hu Y, Yang L, Yang H, He S, Wei J-F. Identification of snake venom allergens by two-dimensional electrophoresis followed by immunoblotting. Toxicon 2017; 125: 13-8.
[http://dx.doi.org/10.1016/j.toxicon.2016.11.251] [PMID: 27867095]
[27]
Corrêa EA, Kayano AM, Diniz-Sousa R, et al. Isolation, structural and functional characterization of a new Lys49 phospholipase A2 homologue from Bothrops neuwiedi urutu with bactericidal potential. Toxicon 2016; 115: 13-21.
[http://dx.doi.org/10.1016/j.toxicon.2016.02.021] [PMID: 26927324]
[28]
Shipolini RA, Callewaert GL, Cottrell RC, Vernon CA. The amino-acid sequence and carbohydrate content of phospholipase A2 from bee venom. Eur J Biochem 1974; 48(2): 465-76.
[http://dx.doi.org/10.1111/j.1432-1033.1974.tb03787.x] [PMID: 4448181]
[29]
Welker S, Markert Y, Köditz J, Mansfeld J, Ulbrich-Hofmann R. Disulfide bonds of phospholipase A2 from bee venom yield discrete contributions to its conformational stability. Biochimie 2011; 93(2): 195-201.
[http://dx.doi.org/10.1016/j.biochi.2010.09.012] [PMID: 20884319]
[30]
Zambelli VO, Picolo G, Fernandes CAH, Fontes MRM, Cury Y. Secreted Phospholipases A₂ from Animal Venoms in Pain and Analgesia. Toxins (Basel) 2017; 9(12): 19.
[http://dx.doi.org/10.3390/toxins9120406] [PMID: 29311537]
[31]
Fremont DH, Anderson DH, Wilson IA, Dennis EA, Xuong NH. Crystal structure of phospholipase A2 from Indian cobra reveals a trimeric association. Proc Natl Acad Sci USA 1993; 90(1): 342-6.
[http://dx.doi.org/10.1073/pnas.90.1.342] [PMID: 8419939]
[32]
Tzeng MC, Yen CH, Hseu MJ, Dupureur CM, Tsai MD. Conversion of bovine pancreatic phospholipase A2 at a single site into a competitor of neurotoxic phospholipases A2 by site-directed mutagenesis. J Biol Chem 1995; 270(5): 2120-3.
[http://dx.doi.org/10.1074/jbc.270.5.2120] [PMID: 7836440]
[33]
Rosman Y, Nashef F, Cohen-Engler A, Meir-Shafrir K, Lachover-Roth I, Confino-Cohen R. Exclusive Bee Venom Allergy: Risk Factors and Outcome of Immunotherapy. Int Arch Allergy Immunol 2019; 180(2): 128-34.
[http://dx.doi.org/10.1159/000500957] [PMID: 31216540]
[34]
Kuipers OP, Thunnissen MM, de Geus P, et al. Enhanced activity and altered specificity of phospholipase A2 by deletion of a surface loop. Science 1989; 244(4900): 82-5.
[http://dx.doi.org/10.1126/science.2704992] [PMID: 2704992]
[35]
Sobotka AK, Franklin RM, Adkinson NF Jr, Valentine M, Baer H, Lichtenstein LM. Allergy to insect stings. II. Phospholipase A: the major allergen in honeybee venom. J Allergy Clin Immunol 1976; 57(1): 29-40.
[http://dx.doi.org/10.1016/0091-6749(76)90076-2] [PMID: 54382]
[36]
Taketomi Y, Ueno N, Kojima T, et al. Mast cell maturation is driven via a group III phospholipase A2-prostaglandin D2-DP1 receptor paracrine axis. Nat Immunol 2013; 14(6): 554-63.
[http://dx.doi.org/10.1038/ni.2586] [PMID: 23624557]
[37]
Dudler T, Machado DC, Kolbe L, et al. A link between catalytic activity, IgE-independent mast cell activation, and allergenicity of bee venom phospholipase A2. J Immunol 1995; 155(5): 2605-13.
[PMID: 7544378]
[38]
Mustafa FB, Ng FSP, Nguyen TH, Lim LHK. Honeybee venom secretory phospholipase A2 induces leukotriene production but not histamine release from human basophils. Clin Exp Immunol 2008; 151(1): 94-100.
[http://dx.doi.org/10.1111/j.1365-2249.2007.03542.x] [PMID: 18005261]
[39]
Palm NW, Rosenstein RK, Yu S, Schenten DD, Florsheim E, Medzhitov R. Bee venom phospholipase A2 induces a primary type 2 response that is dependent on the receptor ST2 and confers protective immunity. Immunity 2013; 39(5): 976-85.
[http://dx.doi.org/10.1016/j.immuni.2013.10.006] [PMID: 24210353]
[40]
Bourgeois EA, Subramaniam S, Cheng TY, et al. Bee venom processes human skin lipids for presentation by CD1a. J Exp Med 2015; 212(2): 149-63.
[http://dx.doi.org/10.1084/jem.20141505] [PMID: 25584012]
[41]
Landucci ECT, Toyama M, Marangoni S, et al. Effect of crotapotin and heparin on the rat paw oedema induced by different secretory phospholipases A2. Toxicon 2000; 38(2): 199-208.
[http://dx.doi.org/10.1016/S0041-0101(99)00143-9] [PMID: 10665801]
[42]
Titsworth WL, Onifer SM, Liu N-K, Xu X-M. Focal phospholipases A2 group III injections induce cervical white matter injury and functional deficits with delayed recovery concomitant with Schwann cell remyelination. Exp Neurol 2007; 207(1): 150-62.
[http://dx.doi.org/10.1016/j.expneurol.2007.06.010] [PMID: 17678647]
[43]
Liu N-K, Zhang YP, Titsworth WL, et al. A novel role of phospholipase A2 in mediating spinal cord secondary injury. Ann Neurol 2006; 59(4): 606-19.
[http://dx.doi.org/10.1002/ana.20798] [PMID: 16498630]
[44]
Watala C, Kowalczyk JK. Hemolytic potency and phospholipase activity of some bee and wasp venoms. Comp Biochem Physiol C Comp Pharmacol Toxicol 1990; 97(1): 187-94.
[http://dx.doi.org/10.1016/0742-8413(90)90191-B] [PMID: 1981342]
[45]
Oršolić N. Bee venom in cancer therapy. Cancer Metastasis Rev 2012; 31(1-2): 173-94.
[http://dx.doi.org/10.1007/s10555-011-9339-3] [PMID: 22109081]
[46]
Arce-Bejarano R, Lomonte B, Gutiérrez JM. Intravascular hemolysis induced by the venom of the Eastern coral snake, Micrurus fulvius, in a mouse model: identification of directly hemolytic phospholipases A2. Toxicon 2014; 90: 26-35.
[http://dx.doi.org/10.1016/j.toxicon.2014.07.010] [PMID: 25088177]
[47]
Accary C, Hraoui-Bloquet S, Sadek R, et al. The relaxant effect of the Montivipera bornmuelleri snake venom on vascular contractility. J Venom Res 2016; 7: 10-5.
[PMID: 27826409]
[48]
Casais-E LL. -Silva, C. F. P. Teixeira, I. Lebrun, B. Lomonte, A. Alape-Girón, and J. M. Gutiérrez, “Lemnitoxin, the major component of Micrurus lemniscatus coral snake venom, is a myotoxic and pro-inflammatory phospholipase A2. Toxicol Lett 2016; 257: 60-71.
[http://dx.doi.org/10.1016/j.toxlet.2016.06.005]
[49]
Dixon RW, Harris JB. Myotoxic activity of the toxic phospholipase, notexin, from the venom of the Australian tiger snake. J Neuropathol Exp Neurol 1996; 55(12): 1230-7.
[http://dx.doi.org/10.1097/00005072-199612000-00006] [PMID: 8957446]
[50]
Logonder U, Jenko-Pražnikar Z, Scott-Davey T, Pungerčar J, Križaj I, Harris JB. Ultrastructural evidence for the uptake of a neurotoxic snake venom phospholipase A2 into mammalian motor nerve terminals. Exp Neurol 2009; 219(2): 591-4.
[http://dx.doi.org/10.1016/j.expneurol.2009.07.017] [PMID: 19631643]
[51]
Ramazanova AS, Zavada LL, Starkov VG, et al. Heterodimeric neurotoxic phospholipases A2--the first proteins from venom of recently established species Vipera nikolskii: implication of venom composition in viper systematics. Toxicon 2008; 51(4): 524-37.
[http://dx.doi.org/10.1016/j.toxicon.2007.11.001] [PMID: 18083205]
[52]
Sampaio SC, Hyslop S, Fontes MR, et al. Crotoxin: novel activities for a classic beta-neurotoxin. Toxicon 2010; 55(6): 1045-60.
[http://dx.doi.org/10.1016/j.toxicon.2010.01.011] [PMID: 20109480]
[53]
Teixeira CFP, Landucci ECT, Antunes E, Chacur M, Cury Y. Inflammatory effects of snake venom myotoxic phospholipases A2. Toxicon 2003; 42(8): 947-62.
[http://dx.doi.org/10.1016/j.toxicon.2003.11.006] [PMID: 15019493]
[54]
Yacoub T, Rima M, Sadek R, Hleihel W, Fajloun Z, Karam M. Montivipera bornmuelleri venom has immunomodulatory effects mainly up-regulating pro-inflammatory cytokines in the spleens of mice. Toxicol Rep 2018; 5: 318-23.
[http://dx.doi.org/10.1016/j.toxrep.2018.02.011] [PMID: 29854600]
[55]
Cedro RCA, Menaldo DL, Costa TR, et al. Cytotoxic and inflammatory potential of a phospholipase A2 from Bothrops jararaca snake venom. J Venom Anim Toxins Incl Trop Dis 2018; 24(1): 33.
[http://dx.doi.org/10.1186/s40409-018-0170-y] [PMID: 30498509]
[56]
Mamede CCN, de Sousa BB, Pereira DF, et al. Comparative analysis of local effects caused by Bothrops alternatus and Bothrops moojeni snake venoms: enzymatic contributions and inflammatory modulations. Toxicon 2016; 117: 37-45.
[http://dx.doi.org/10.1016/j.toxicon.2016.03.006] [PMID: 26975252]
[57]
Cintra-Francischinelli M, Caccin P, Chiavegato A, et al. Bothrops snake myotoxins induce a large efflux of ATP and potassium with spreading of cell damage and pain. Proc Natl Acad Sci USA 2010; 107(32): 14140-5.
[http://dx.doi.org/10.1073/pnas.1009128107] [PMID: 20660736]
[58]
Perumal Samy R, Gopalakrishnakone P, Thwin MM, et al. Antibacterial activity of snake, scorpion and bee venoms: a comparison with purified venom phospholipase A2 enzymes. J Appl Microbiol 2007; 102(3): 650-9.
[http://dx.doi.org/10.1111/j.1365-2672.2006.03161.x] [PMID: 17309613]
[59]
Yacoub T, Rima M, Karam M, Fajloun JSAZ. Antimicrobials from Venomous Animals: An Overview. Molecules 2020; 25(10)
[http://dx.doi.org/10.3390/molecules25102402] [PMID: 32455792]
[60]
Leandro LF, Mendes CA, Casemiro LA, et al. Antimicrobial activity of apitoxin, melittin and phospholipase A of honey bee (Apis mellifera) venom against oral pathogens. An Acad Bras Cienc 2015; 87(1): 147-55.
[http://dx.doi.org/10.1590/0001-3765201520130511] [PMID: 25806982]
[61]
Zolfagharian H, Mohajeri M, Babaie M. Bee Venom (Apis Mellifera) an Effective Potential Alternative to Gentamicin for Specific Bacteria Strains: Bee Venom an Effective Potential for Bacteria. J Pharmacopuncture 2016; 19(3): 225-30. https://www.journal.ac/article/19/3/225
[http://dx.doi.org/10.3831/KPI.2016.19.023] [PMID: 27695631]
[62]
Foreman-Wykert AK, Weinrauch Y, Elsbach P, Weiss J. Cell-wall determinants of the bactericidal action of group IIA phospholipase A2 against Gram-positive bacteria J Clin Invest 2020; 103(5): 715-21. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC408128/
[63]
Koduri RS, Grönroos JO, Laine VJ, et al. Bactericidal properties of human and murine groups I, II, V, X, and XII secreted phospholipases A(2). J Biol Chem 2002; 277(8): 5849-57.
[http://dx.doi.org/10.1074/jbc.M109699200] [PMID: 11694541]
[64]
Boutrin M-CF, Foster HA, Pentreath VW. The effects of bee (Apis mellifera) venom phospholipase A2 on Trypanosoma brucei brucei and enterobacteria. Exp Parasitol 2008; 119(2): 246-51.
[http://dx.doi.org/10.1016/j.exppara.2008.02.002] [PMID: 18343372]
[65]
Samel M, Vija H, Kurvet I, et al. Interactions of PLA2-s from Vipera lebetina, Vipera berus berus and Naja naja oxiana venom with platelets, bacterial and cancer cells. Toxins (Basel) 2013; 5(2): 203-23.
[http://dx.doi.org/10.3390/toxins5020203] [PMID: 23348053]
[66]
Zieler H, Keister D B, Dvorak J A, Ribeiro J M. A snake venom phospholipase A(2) blocks malaria parasite development in the mosquito midgut by inhibiting ookinete association with the midgut surface J Exp Biol 2001; 204 (23 ): 4157-67.
[67]
Annand RR, Kontoyianni M, Penzotti JE, Dudler T, Lybrand TP, Gelb MH. Active site of bee venom phospholipase A2: the role of histidine-34, aspartate-64 and tyrosine-87. Biochemistry 1996; 35(14): 4591-601.
[http://dx.doi.org/10.1021/bi9528412] [PMID: 8605210]
[68]
Fenard D, Lambeau G, Valentin E, Lefebvre J-C, Lazdunski M, Doglio A. Secreted phospholipases A(2), a new class of HIV inhibitors that block virus entry into host cells. J Clin Invest 1999; 104(5): 611-8.
[http://dx.doi.org/10.1172/JCI6915] [PMID: 10487775]
[69]
Fenard D, Lambeau G, Maurin T, Lefebvre J-C, Doglio A. A peptide derived from bee venom-secreted phospholipase A2 inhibits replication of T-cell tropic HIV-1 strains via interaction with the CXCR4 chemokine receptor. Mol Pharmacol 2001; 60(2): 341-7.
[http://dx.doi.org/10.1124/mol.60.2.341] [PMID: 11455021]
[70]
Cecilio AB, Caldas S, Oliveira RA, et al. Molecular characterization of Lys49 and Asp49 phospholipases A from snake venom and their antiviral activities against Dengue virus. Toxins (Basel) 2013; 5(10): 1780-98.
[http://dx.doi.org/10.3390/toxins5101780] [PMID: 24131891]
[71]
Zarrinnahad H, Mahmoodzadeh A, Hamidi MP, et al. Apoptotic Effect of Melittin Purified from Iranian Honey Bee Venom on Human Cervical Cancer HeLa Cell Line. Int J Pept Res Ther 2018; 24(4): 563-70.
[http://dx.doi.org/10.1007/s10989-017-9641-1] [PMID: 30416405]
[72]
Jeong Y-J, Park Y-Y, Park K-K, Choi YH, Kim C-H, Chang Y-C. Bee Venom Suppresses EGF-Induced Epithelial-Mesenchymal Transition and Tumor Invasion in Lung Cancer Cells. Am J Chin Med 2019; 47(8): 1869-83.
[http://dx.doi.org/10.1142/S0192415X19500952] [PMID: 31786944]
[73]
Ferguson EL, Duncan R. Dextrin-phospholipase A2: synthesis and evaluation as a bioresponsive anticancer conjugate. Biomacromolecules 2009; 10(6): 1358-64.
[http://dx.doi.org/10.1021/bm8013022] [PMID: 19354276]
[74]
Son DJ, Lee JW, Lee YH, Song HS, Lee CK, Hong JT. Therapeutic application of anti-arthritis, pain-releasing, and anti-cancer effects of bee venom and its constituent compounds. Pharmacol Ther 2007; 115(2): 246-70.
[http://dx.doi.org/10.1016/j.pharmthera.2007.04.004] [PMID: 17555825]
[75]
Putz T, Ramoner R, Gander H, et al. Bee venom secretory phospholipase A2 and phosphatidylinositol-homologues cooperatively disrupt membrane integrity, abrogate signal transduction and inhibit proliferation of renal cancer cells. Cancer Immunol Immunother 2007; 56(5): 627-40.
[http://dx.doi.org/10.1007/s00262-006-0220-0] [PMID: 16947021]
[76]
Toker A. Phosphoinositides and signal transduction. Cell Mol Life Sci 2002; 59(5): 761-79.
[http://dx.doi.org/10.1007/s00018-002-8465-z] [PMID: 12088277]
[77]
Sawan S, Yaacoub T, Hraoui-Bloquet S, et al. Montivipera bornmuelleri venom selectively exhibits high cytotoxic effects on keratinocytes cancer cell lines. Exp Toxicol Pathol 2017; 69(4): 173-8.
[http://dx.doi.org/10.1016/j.etp.2017.01.001] [PMID: 28077256]
[78]
Yan C-H, Liang Z-Q, Gu Z-L, Yang Y-P, Reid P, Qin Z-H. Contributions of autophagic and apoptotic mechanisms to CrTX-induced death of K562 cells. Toxicon 2006; 47(5): 521-30.
[http://dx.doi.org/10.1016/j.toxicon.2006.01.010] [PMID: 16542694]
[79]
Yan CH, Yang YP, Qin ZH, et al. Autophagy is involved in cytotoxic effects of crotoxin in human breast cancer cell line MCF-7 cells. Acta Pharmacol Sin 2007; 28(4): 540-8.
[http://dx.doi.org/10.1111/j.1745-7254.2007.00530.x] [PMID: 17376294]
[80]
Ye B, Xie Y, Qin ZH, et al. Anti-tumor activity of CrTX in human lung adenocarcinoma cell line A549. Acta Pharmacol Sin 2011; 32(11): 1397-401.
[http://dx.doi.org/10.1038/aps.2011.116] [PMID: 21946324]
[81]
Chen K-C, Liu W-H, Chang L-S. Taiwan cobra phospholipase A2-elicited JNK activation is responsible for autocrine fas-mediated cell death and modulating Bcl-2 and Bax protein expression in human leukemia K562 cells. J Cell Biochem 2010; 109(1): 245-54.
[http://dx.doi.org/10.1002/jcb.22404] [PMID: 19937732]
[82]
Higuchi DA, Barbosa CM, Bincoletto C, et al. Purification and partial characterization of two phospholipases A2 from Bothrops leucurus (white-tailed-jararaca) snake venom. Biochimie 2007; 89(3): 319-28.
[http://dx.doi.org/10.1016/j.biochi.2006.10.010] [PMID: 17110015]
[83]
Murakami T, Kamikado N, Fujimoto R, et al. A [Lys]phospholipase A from Protobothrops flavoviridis venom induces caspase-independent apoptotic cell death accompanied by rapid plasma-membrane rupture in human leukemia cells. Biosci Biotechnol Biochem 2011; 75(5): 864-70.
[http://dx.doi.org/10.1271/bbb.100783] [PMID: 21597201]
[84]
Bazaa A, Luis J, Srairi-Abid N, et al. MVL-PLA2, a phospholipase A2 from Macrovipera lebetina transmediterranea venom, inhibits tumor cells adhesion and migration. Matrix Biol 2009; 28(4): 188-93.
[http://dx.doi.org/10.1016/j.matbio.2009.03.007] [PMID: 19351557]
[85]
Bazaa A, Pasquier E, Defilles C, et al. MVL-PLA2, a snake venom phospholipase A2, inhibits angiogenesis through an increase in microtubule dynamics and disorganization of focal adhesions. PLoS One 2010; 5(4)
[http://dx.doi.org/10.1371/journal.pone.0010124] [PMID: 20405031]
[86]
Spence A, Klementowicz JE, Bluestone JA, Tang Q. Targeting Treg signaling for the treatment of autoimmune diseases. Curr Opin Immunol 2015; 37: 11-20.
[http://dx.doi.org/10.1016/j.coi.2015.09.002] [PMID: 26432763]
[87]
Shin D, Lee G, Sohn SH, et al. Regulatory T Cells Contribute to the Inhibition of Radiation-Induced Acute Lung Inflammation via Bee Venom Phospholipase A in Mice. Toxins (Basel) 2016; 8(5): 30.
[http://dx.doi.org/10.3390/toxins8050131] [PMID: 27144583]
[88]
Chung ES, Lee G, Lee C, et al. Bee Venom Phospholipase A2, a Novel Foxp3+ Regulatory T Cell Inducer, Protects Dopaminergic Neurons by Modulating Neuroinflammatory Responses in a Mouse Model of Parkinson’s Disease. J Immunol 2015; 195(10): 4853-60.
[http://dx.doi.org/10.4049/jimmunol.1500386] [PMID: 26453752]
[89]
Park S, Baek H, Jung KH, et al. Bee venom phospholipase A2 suppresses allergic airway inflammation in an ovalbumin-induced asthma model through the induction of regulatory T cells. Immun Inflamm Dis 2015; 3(4): 386-97.
[http://dx.doi.org/10.1002/iid3.76] [PMID: 26734460]
[90]
Kim H, Lee H, Lee G, et al. Phospholipase A2 inhibits cisplatin-induced acute kidney injury by modulating regulatory T cells by the CD206 mannose receptor. Kidney Int 2015; 88(3): 550-9.
[http://dx.doi.org/10.1038/ki.2015.147] [PMID: 25993317]
[91]
Caramalho I, Melo A, Pedro E, et al. Bee venom enhances the differentiation of human regulatory T cells. Allergy 2015; 70(10): 1340-5.
[http://dx.doi.org/10.1111/all.12691] [PMID: 26179427]
[92]
Pereira-Santos MC, Baptista AP, Melo A, et al. Expansion of circulating Foxp3+)D25bright CD4+ T cells during specific venom immunotherapy. Clin Exp Allergy 2008; 38(2): 291-7.
[http://dx.doi.org/10.1111/j.1365-2222.2007.02887.x] [PMID: 18070166]
[93]
Shin D, Choi W, Bae H. Bee Venom Phospholipase A2 Alleviate House Dust Mite-Induced Atopic Dermatitis-Like Skin Lesions by the CD206 Mannose Receptor. Toxins (Basel) 2018; 10(4): 4.
[http://dx.doi.org/10.3390/toxins10040146] [PMID: 29614845]
[94]
Giannotti KC, Leiguez E, Carvalho AEZ, et al. A snake venom group IIA PLA2 with immunomodulatory activity induces formation of lipid droplets containing 15-d-PGJ2 in macrophages. Sci Rep 2017; 7(1): 4098.
[http://dx.doi.org/10.1038/s41598-017-04498-8] [PMID: 28642580]
[95]
Masuda S, Yamamoto K, Hirabayashi T, et al. Human group III secreted phospholipase A2 promotes neuronal outgrowth and survival. Biochem J 2008; 409(2): 429-38.
[http://dx.doi.org/10.1042/BJ20070844] [PMID: 17868035]
[96]
Jeong J-K, Moon M-H, Bae B-C, Lee Y-J, Seol J-W, Park S-Y. Bee venom phospholipase A2 prevents prion peptide induced-cell death in neuronal cells. Int J Mol Med 2011; 28(5): 867-73.
[http://dx.doi.org/10.3892/ijmm.2011.730] [PMID: 21701769]
[97]
Terry AV Jr, Buccafusco JJ. The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: recent challenges and their implications for novel drug development. J Pharmacol Exp Ther 2003; 306(3): 821-7.
[http://dx.doi.org/10.1124/jpet.102.041616] [PMID: 12805474]
[98]
Ye M, Chung HS, Lee C, et al. Neuroprotective effects of bee venom phospholipase A2 in the 3xTg AD mouse model of Alzheimer’s disease. J Neuroinflammation 2016; 13: 10.
[http://dx.doi.org/10.1186/s12974-016-0476-z] [PMID: 26772975]
[99]
Baek H, Lee CJ, Choi DB, et al. Bee venom phospholipase A2 ameliorates Alzheimer’s disease pathology in Aβ vaccination treatment without inducing neuro-inflammation in a 3xTg-AD mouse model. Sci Rep 2018; 8(1): 17369.
[http://dx.doi.org/10.1038/s41598-018-35030-1] [PMID: 30478329]
[100]
Li D, Lee Y, Kim W, Lee K, Bae H, Kim SK. Analgesic Effects of Bee Venom Derived Phospholipase A(2) in a Mouse Model of Oxaliplatin-Induced Neuropathic Pain. Toxins (Basel) 2015; 7(7): 2422-34.
[http://dx.doi.org/10.3390/toxins7072422] [PMID: 26131771]
[101]
Nogueira-Neto F de S, Amorim RL, Brigatte P, et al. The analgesic effect of crotoxin on neuropathic pain is mediated by central muscarinic receptors and 5-lipoxygenase-derived mediators. Pharmacol Biochem Behav 2008; 91(2): 252-60.
[http://dx.doi.org/10.1016/j.pbb.2008.08.016] [PMID: 18778727]
[102]
Dyachenko IA, Murashev AN, Andreeva TV, Tsetlin VI, Utkin YN. Analysis of nociceptive effects of neurotoxic phospholipase A2 from Vipera nikolskii venom in mice. J Venom Res 2013; 4: 1-4.
[PMID: 23577231]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy