Research Article

基于TGF-β1的CRISPR/Cas9基因治疗可减轻辐射诱导的肺损伤

卷 22, 期 1, 2022

发表于: 30 December, 2020

页: [59 - 65] 页: 7

弟呕挨: 10.2174/1566523220666201230100523

价格: $65

摘要

背景:放射性肺损伤(RILI)缺乏有效的治疗策略。在本研究中,我们对RILI进行了基于TGF-β1的CRISPR/Cas9基因治疗。目的:用单剂量20gy γ射线照射小鼠肺,然后静脉注射Ad- crispr - tgf -β1或Ad- CRISPR-Null。 方法:采用苏木素、伊红染色和马松染色观察肺组织形态。采用ELISA法测定支气管肺泡灌洗液中白蛋白和IgM的浓度。用ELISA和/或real-time PCR检测细胞因子水平,并采用末端脱氧核苷酸转移酶介导的末端标记。 结果:Ad-CRISPR-TGF-β1改善肺损伤的组织病理学和生化指标,减少炎性细胞因子的分泌和表达,抑制纤维化的进展。重要的是,SK1/S1P轴通过S1P1在TGF-β1依赖的S1PR模式重构中发挥关键作用,并促进纤维化。 结论:我们的研究结果为RILI治疗提供了新的思路。

关键词: CRISPR/Cas9,纤维化,炎症,肺,基因治疗,CRISPR/Cas9。

图形摘要

[1]
Zhang J, Li B, Ding X, et al. Genetic variants in inducible nitric oxide synthase gene are associated with the risk of radiation-induced lung injury in lung cancer patients receiving definitive thoracic radiation. Radiother Oncol 2014; 111(2): 194-8.
[http://dx.doi.org/10.1016/j.radonc.2014.03.001] [PMID: 24746566]
[2]
Zheng L, Zhu Q, Xu C, et al. Glycyrrhizin mitigates radiation-induced acute lung injury by inhibiting the HMGB1/TLR4 signalling pathway. J Cell Mol Med 2020; 24(1): 214-26.
[http://dx.doi.org/10.1111/jcmm.14703] [PMID: 31657123]
[3]
Zhou J, Wu P, Sun H, Zhou H, Zhang Y, Xiao Z. Lung tissue extracellular matrix-derived hydrogels protect against radiation-induced lung injury by suppressing epithelial-mesenchymal transition. J Cell Physiol 2020; 235(3): 2377-88.
[http://dx.doi.org/10.1002/jcp.29143] [PMID: 31490023]
[4]
Zhang C, Zeng W, Yao Y, et al. Naringenin Ameliorates Radiation-Induced Lung Injury by Lowering IL-1β Level. J Pharmacol Exp Ther 2018; 366(2): 341-8.
[http://dx.doi.org/10.1124/jpet.118.248807] [PMID: 29866791]
[5]
Zhang Y, Zhang X, Rabbani ZN, Jackson IL, Vujaskovic Z. Oxidative stress mediates radiation lung injury by inducing apoptosis. Int J Radiat Oncol Biol Phys 2012; 83(2): 740-8.
[http://dx.doi.org/10.1016/j.ijrobp.2011.08.005] [PMID: 22270165]
[6]
Zhang H, Jiang T, Yu H, et al. Polyene phosphatidylcholine protects against radiation induced tissue injury without affecting radiotherapeutic efficacy in lung cancer. Am J Cancer Res 2019; 9(6): 1091-103.
[PMID: 31285944]
[7]
Liu M, Han X, Liu H, Chen D, Li Y, Hu W. The effects of CRISPR-Cas9 knockout of the TGF-β1 gene on antler cartilage cells in vitro. Cell Mol Biol Lett 2019; 24: 44.
[http://dx.doi.org/10.1186/s11658-019-0171-z] [PMID: 31285745]
[8]
Zhang W, Wang J, Tang M, et al. Quantitative study of lung perfusion SPECT scanning and pulmonary function testing for early radiation-induced lung injury in patients with locally advanced non-small cell lung cancer. Exp Ther Med 2012; 3(4): 631-5.
[http://dx.doi.org/10.3892/etm.2012.468] [PMID: 22969942]
[9]
Zhou S, Nissao E, Jackson IL, et al. Radiation-induced lung injury is mitigated by blockade of gastrin-releasing peptide. Am J Pathol 2013; 182(4): 1248-54.
[http://dx.doi.org/10.1016/j.ajpath.2012.12.024] [PMID: 23395092]
[10]
Zhen S, Hua L, Takahashi Y, Narita S, Liu YH, Li Y. In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by CRISPR/Cas9. Biochem Biophys Res Commun 2014; 450(4): 1422-6.
[http://dx.doi.org/10.1016/j.bbrc.2014.07.014] [PMID: 25044113]
[11]
Kasper M, Schuh D, Müller M. Bauhinia purpurea lectin (BPA) binding of rat type I pneumocytes: alveolar epithelial alterations after radiation-induced lung injury. Exp Toxicol Pathol 1994; 46(4-5): 361-7.
[http://dx.doi.org/10.1016/S0940-2993(11)80118-1] [PMID: 7894248]
[12]
Wang L, Zhang J, Wang B, Wang G, Xu J. Blocking HMGB1 signal pathway protects early radiation-induced lung injury. Int J Clin Exp Pathol 2015; 8(5): 4815-22.
[PMID: 26191172]
[13]
Xu PT, Maidment BW III, Antonic V, et al. Cerium Oxide Nanoparticles: A Potential Medical Countermeasure to Mitigate Radiation-Induced Lung Injury in CBA/J Mice. Radiat Res 2016; 185(5): 516-26.
[http://dx.doi.org/10.1667/RR14261.1] [PMID: 27135969]
[14]
Xu S, Liu C, Ji HL. Concise review: Therapeutic potential of the mesenchymal stem cell derived secretome and extracellular vesicles for radiation-induced lung injury: Progress and hypotheses. Stem Cells Transl Med 2019; 8(4): 344-54.
[http://dx.doi.org/10.1002/sctm.18-0038] [PMID: 30618085]
[15]
Yin Z, Deng S, Liang Z, Wang Q. Consecutive CT-guided core needle tissue biopsy of lung lesions in the same dog at different phases of radiation-induced lung injury. J Radiat Res (Tokyo) 2016; 57(5): 499-504.
[http://dx.doi.org/10.1093/jrr/rrw053] [PMID: 27422930]
[16]
Wang H, Yang YF, Zhao L, et al. Hepatocyte growth factor gene-modified mesenchymal stem cells reduce radiation-induced lung injury. Hum Gene Ther 2013; 24(3): 343-53.
[http://dx.doi.org/10.1089/hum.2012.177] [PMID: 23458413]
[17]
Susskind H, Weber DA, Lau YH, et al. Impaired permeability in radiation-induced lung injury detected by technetium-99m-DTPA lung clearance. J Nucl Med 1997; 38(6): 966-71.
[PMID: 9189152]
[18]
Xie L, Zhou J, Zhang S, et al. Integrating microRNA and mRNA expression profiles in response to radiation-induced injury in rat lung. Radiat Oncol 2014; 9: 111.
[http://dx.doi.org/10.1186/1748-717X-9-111] [PMID: 24886372]
[19]
Xia P, Cao K, Hu X, et al. KATP channel blocker glibenclamide prevents radiation-induced lung injury and inhibits radiation-induced apoptosis of vascular endothelial cells by increased Ca2+ influx and subsequent PKC activation. Radiat Res 2020; 193(2): 171-85.
[http://dx.doi.org/10.1667/RR15381.1] [PMID: 31877256]
[20]
Kong FM, Anscher MS, Sporn TA, et al. Loss of heterozygosity at the mannose 6-phosphate insulin-like growth factor 2 receptor (M6P/IGF2R) locus predisposes patients to radiation-induced lung injury. Int J Radiat Oncol Biol Phys 2001; 49(1): 35-41.
[http://dx.doi.org/10.1016/S0360-3016(00)01377-8] [PMID: 11163495]
[21]
Yang K, Palm J, König J, et al. Matrix-Metallo-Proteinases and their tissue inhibitors in radiation-induced lung injury. Int J Radiat Biol 2007; 83(10): 665-76.
[http://dx.doi.org/10.1080/09553000701558977] [PMID: 17729161]
[22]
Wu X, Ji H, Wang Y, et al. Melatonin alleviates radiation-induced lung injury via regulation of miR-30e/NLRP3 axis. Oxid Med Cell Longev 2019; 20194087298
[http://dx.doi.org/10.1155/2019/4087298] [PMID: 30755784]
[23]
Yamamoto N, Miyamoto T, Nishimura H, et al. Preoperative carbon ion radiotherapy for non-small cell lung cancer with chest wall invasion--pathological findings concerning tumor response and radiation induced lung injury in the resected organs. Lung Cancer 2003; 42(1): 87-95.
[http://dx.doi.org/10.1016/S0169-5002(03)00243-5] [PMID: 14512192]
[24]
Wang J, Zhang YY, Cheng J, Zhang JL, Li BS. Preventive and therapeutic effects of quercetin on experimental radiation induced lung injury in mice. Asian Pac J Cancer Prev 2015; 16(7): 2909-14.
[http://dx.doi.org/10.7314/APJCP.2015.16.7.2909] [PMID: 25854382]
[25]
Zhang K, Yang S, Zhu Y, Mo A, Zhang D, Liu L. Protection against acute radiation-induced lung injury: a novel role for the anti-angiogenic agent Endostar. Mol Med Rep 2012; 6(2): 309-15.
[http://dx.doi.org/10.3892/mmr.2012.903] [PMID: 22562140]
[26]
Yildiz OG, Soyuer S, Saraymen R, Eroglu C. Protective effects of caffeic acid phenethyl ester on radiation induced lung injury in rats. Clin Invest Med 2008; 31(5): E242-7.
[http://dx.doi.org/10.25011/cim.v31i5.4870] [PMID: 18980713]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy