Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

铁螯合在骨肉瘤中的作用

卷 21, 期 5, 2021

发表于: 29 December, 2020

页: [443 - 455] 页: 13

弟呕挨: 10.2174/1568009620666201230090531

价格: $65

摘要

背景:骨肉瘤是一种侵袭性骨肿瘤。它代表了儿童癌症相关死亡的主要原因。考虑到最近关于铁在癌症中的作用的发现,已经研究了铁螯合在许多肿瘤中的抗肿瘤特性。地拉罗司是最常用的铁螯合剂化合物,在之前的研究中显示出对血液系统和实体恶性肿瘤的抗癌作用。 Eltrombopag 是一种血小板生成素受体,用于血小板减少症,也结合和动员铁。它证明了对铁过载条件以及对比癌细胞增殖的影响。 目的:我们分析了地拉罗司和艾曲波帕对人骨肉瘤细胞的影响,试图确定该肿瘤的其他治疗方法。 方法:我们培养并用地拉罗司和艾曲波帕单独或联合处理两种人骨肉瘤细胞系 MG63 和 143B。暴露 72 小时后,我们进行了 RTqPCR、蛋白质印迹、铁测定和细胞荧光测定,以评估对活力、细胞凋亡、细胞周期进程和 ROS 产生的影响。 结果:这两种化合物的铁螯合特性也在骨肉瘤中得到证实,但我们没有观察到对肿瘤进展的任何直接影响。 讨论:我们首次在人骨肉瘤细胞中单独和联合测试了地拉罗司和艾曲波帕,并证明它们的铁螯合活性不影响与癌症进展和维持相关的生化途径。 结论:尽管对肿瘤微环境细胞介导的可能影响的进一步研究可能具有重要意义,但骨肉瘤中的体外铁螯合不会损害肿瘤进展。

关键词: 骨肉瘤、地拉罗司、艾曲波帕、铁螯合剂、143B、MG63。

« Previous
图形摘要

[1]
Rivera-Valentin, R.K.; Zhu, L.; Hughes, D.P. Bone Sarcomas in Pediatrics: Progress in Our Understanding of Tumor Biology and Implications for Therapy. Paediatr. Drugs, 2015, 17(4), 257-271.
[http://dx.doi.org/10.1007/s40272-015-0134-4] [PMID: 26002157]
[2]
Isakoff, M.S.; Bielack, S.S.; Meltzer, P.; Gorlick, R. Osteosarcoma: Current Treatment and a Collaborative Pathway to Success. J. Clin. Oncol., 2015, 33(27), 3029-3035.
[http://dx.doi.org/10.1200/JCO.2014.59.4895] [PMID: 26304877]
[3]
Lee, J.A. Osteosarcoma in Korean children and adolescents. Korean J. Pediatr., 2015, 58(4), 123-128.
[http://dx.doi.org/10.3345/kjp.2015.58.4.123] [PMID: 25932033]
[4]
Botter, S.M.; Neri, D.; Fuchs, B. Recent advances in osteosarcoma. Curr. Opin. Pharmacol., 2014, 16, 15-23.
[http://dx.doi.org/10.1016/j.coph.2014.02.002] [PMID: 24632219]
[5]
Anderson, M.E. Update on survival in osteosarcoma. Orthop. Clin. North Am., 2016, 47(1), 283-292.
[http://dx.doi.org/10.1016/j.ocl.2015.08.022] [PMID: 26614941]
[6]
Brennecke, P.; Arlt, M.J.; Campanile, C.; Husmann, K.; Gvozdenovic, A.; Apuzzo, T.; Thelen, M.; Born, W.; Fuchs, B. CXCR4 antibody treatment suppresses metastatic spread to the lung of intratibial human osteosarcoma xenografts in mice. Clin. Exp. Metastasis, 2014, 31(3), 339-349.
[http://dx.doi.org/10.1007/s10585-013-9632-3] [PMID: 24390633]
[7]
Le, N.T.; Richardson, D.R. The role of iron in cell cycle progression and the proliferation of neoplastic cells. Biochim. Biophys. Acta, 2002, 1603(1), 31-46.
[PMID: 12242109]
[8]
Raza, M.; Chakraborty, S.; Choudhury, M.; Ghosh, P.C.; Nag, A. Cellular iron homeostasis and therapeutic implications of iron chelators in cancer. Curr. Pharm. Biotechnol., 2014, 15(12), 1125-1140.
[http://dx.doi.org/10.2174/138920101512141202111915] [PMID: 25496094]
[9]
Corcé, V.; Gouin, S.G.; Renaud, S.; Gaboriau, F.; Deniaud, D. Recent advances in cancer treatment by iron chelators. Bioorg. Med. Chem. Lett., 2016, 26(2), 251-256.
[http://dx.doi.org/10.1016/j.bmcl.2015.11.094] [PMID: 26684852]
[10]
Hassan, M.A.; Tolba, O.A. Iron chelation monotherapy in transfusion-dependent beta-thalassemia major patients: a comparative study of deferasirox and deferoxamine. Electron. Physician, 2016, 8(5), 2425-2431.
[http://dx.doi.org/10.19082/2425] [PMID: 27382454]
[11]
Linden, T.; Wenger, R.H. Iron chelation, angiogenesis and tumor therapy. Int. J. Cancer, 2003, 106(3), 458-459.
[http://dx.doi.org/10.1002/ijc.11223] [PMID: 12845689]
[12]
Kim, J.L.; Lee, D.H.; Na, Y.J.; Kim, B.R.; Jeong, Y.A.; Lee, S.I.; Kang, S.; Joung, S.Y.; Lee, S.Y.; Oh, S.C.; Min, B.W. Iron chelator-induced apoptosis via the ER stress pathway in gastric cancer cells. Tumour Biol., 2016, 37(7), 9709-9719.
[http://dx.doi.org/10.1007/s13277-016-4878-4] [PMID: 26803514]
[13]
Taher, A.T.; Porter, J.B.; Kattamis, A.; Viprakasit, V.; Cappellini, M.D. Efficacy and safety of iron-chelation therapy with deferoxamine, deferiprone, and deferasirox for the treatment of iron-loaded patients with nontransfusion-dependent thalassemia syndromes. Drug Des. Devel. Ther., 2016, 10, 4073-4078.
[http://dx.doi.org/10.2147/DDDT.S117080] [PMID: 28008230]
[14]
Bilgin, B.K.; Yozgat, A.K.; Isik, P.; Çulha, V.; Kacar, D.; Kara, A.; Ozbek, N.Y.; Yarali, N. The effect of deferasirox on endocrine complications in children with thalassemia. Pediatr. Hematol. Oncol., 2020, 37(6), 455-464.
[http://dx.doi.org/10.1080/08880018.2020.1734124] [PMID: 32131650]
[15]
Li, B.; Esposito, B. P.; Wang, S.; Zhang, J.; Xu, M.; Zhang, S.; Zhang, Z.; Liu, S. Desferrioxamine-caffeine shows improved efficacy in chelating iron and depleting cancer stem cells J. trace elements med. biol., 2019, 52, 232-238.
[16]
Li, P.; Zheng, X.; Shou, K.; Niu, Y.; Jian, C.; Zhao, Y.; Yi, W.; Hu, X.; Yu, A. The iron chelator Dp44mT suppresses osteosarcoma’s proliferation, invasion and migration: in vitro and in vivo. Am. J. Transl. Res., 2016, 8(12), 5370-5385.
[PMID: 28078009]
[17]
Rao, V.A.; Klein, S.R.; Agama, K.K.; Toyoda, E.; Adachi, N.; Pommier, Y.; Shacter, E.B. The iron chelator Dp44mT causes DNA damage and selective inhibition of topoisomerase IIalpha in breast cancer cells. Cancer Res., 2009, 69(3), 948-957.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1437] [PMID: 19176392]
[18]
Zhou, J.; Jiang, Y.; Zhao, J.; Zhang, H.; Fu, J.; Luo, P.; Ma, Y.; Zou, D.; Gao, H.; Hu, J.; Zhang, Y.; Jing, Z. Dp44mT, an iron chelator, suppresses growth and induces apoptosis via RORA-mediated NDRG2-IL6/JAK2/STAT3 signaling in glioma. Cell Oncol. (Dordr.), 2020, 43(3), 461-475.
[http://dx.doi.org/10.1007/s13402-020-00502-y] [PMID: 32207044]
[19]
Krishan, S.; Sahni, S.; Leck, L.Y.W.; Jansson, P.J.; Richardson, D.R. Regulation of autophagy and apoptosis by Dp44mT-mediated activation of AMPK in pancreatic cancer cells. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(5)
[http://dx.doi.org/10.1016/j.bbadis.2019.165657] [PMID: 31904416]
[20]
Cappellini, M.D.; Cohen, A.; Piga, A.; Bejaoui, M.; Perrotta, S.; Agaoglu, L.; Aydinok, Y.; Kattamis, A.; Kilinc, Y.; Porter, J.; Capra, M.; Galanello, R.; Fattoum, S.; Drelichman, G.; Magnano, C.; Verissimo, M.; Athanassiou-Metaxa, M.; Giardina, P.; Kourakli-Symeonidis, A.; Janka-Schaub, G.; Coates, T.; Vermylen, C.; Olivieri, N.; Thuret, I.; Opitz, H.; Ressayre-Djaffer, C.; Marks, P.; Alberti, D. A phase 3 study of deferasirox (ICL670), a once-daily oral iron chelator, in patients with beta-thalassemia. Blood, 2006, 107(9), 3455-3462.
[http://dx.doi.org/10.1182/blood-2005-08-3430] [PMID: 16352812]
[21]
Shimizu, R.; Takeuchi, M.; Sakaida, E.; Ohwada, C.; Toyosaki, M.; Machida, S.; Onizuka, M.; Shono, K.; Onoda, M.; Saito, T.; Yano, S.; Tanaka, M.; Fujisawa, S.; Mori, T.; Usuki, K.; Takahashi, S.; Kanamori, H.; Nakaseko, C.; Okamoto, S. Efficacy and safety of oral deferasirox treatment for transfusional iron overload in pure red cell aplasia patients after allogeneic stem cell transplantation. Ann. Hematol., 2019, 98(7), 1781-1783.
[http://dx.doi.org/10.1007/s00277-019-03717-8] [PMID: 31119366]
[22]
Higashino, S.; Yasu, T.; Momo, K.; Kuroda, S. Effects of formulation changes for deferasirox from dispersible tablets to granules in patients with red blood cell transfusion-induced iron overload. Am. J. Ther., 2019, 26(6), e728-e730.
[http://dx.doi.org/10.1097/MJT.0000000000000882] [PMID: 31135385]
[23]
Dou, H.; Qin, Y.; Chen, G.; Zhao, Y. Effectiveness and Safety of Deferasirox in Thalassemia with Iron Overload: A Meta-Analysis. Acta Haematol., 2019, 141(1), 32-42.
[http://dx.doi.org/10.1159/000494487] [PMID: 30504715]
[24]
Messa, E.; Carturan, S.; Maffè, C.; Pautasso, M.; Bracco, E.; Roetto, A.; Messa, F.; Arruga, F.; Defilippi, I.; Rosso, V.; Zanone, C.; Rotolo, A.; Greco, E.; Pellegrino, R.M.; Alberti, D.; Saglio, G.; Cilloni, D. Deferasirox is a powerful NF-kappaB inhibitor in myelodysplastic cells and in leukemia cell lines acting independently from cell iron deprivation by chelation and reactive oxygen species scavenging. Haematologica, 2010, 95(8), 1308-1316.
[http://dx.doi.org/10.3324/haematol.2009.016824] [PMID: 20534700]
[25]
Ohyashiki, J.H.; Kobayashi, C.; Hamamura, R.; Okabe, S.; Tauchi, T.; Ohyashiki, K. The oral iron chelator deferasirox represses signaling through the mTOR in myeloid leukemia cells by enhancing expression of REDD1. Cancer Sci., 2009, 100(5), 970-977.
[http://dx.doi.org/10.1111/j.1349-7006.2009.01131.x] [PMID: 19298223]
[26]
Ford, S.J.; Obeidy, P.; Lovejoy, D.B.; Bedford, M.; Nichols, L.; Chadwick, C.; Tucker, O.; Lui, G.Y.; Kalinowski, D.S.; Jansson, P.J.; Iqbal, T.H.; Alderson, D.; Richardson, D.R.; Tselepis, C. Deferasirox (ICL670A) effectively inhibits oesophageal cancer growth in vitro and in vivo. Br. J. Pharmacol., 2013, 168(6), 1316-1328.
[http://dx.doi.org/10.1111/bph.12045] [PMID: 23126308]
[27]
Lui, G.Y.; Obeidy, P.; Ford, S.J.; Tselepis, C.; Sharp, D.M.; Jansson, P.J.; Kalinowski, D.S.; Kovacevic, Z.; Lovejoy, D.B.; Richardson, D.R. The iron chelator, deferasirox, as a novel strategy for cancer treatment: oral activity against human lung tumor xenografts and molecular mechanism of action. Mol. Pharmacol., 2013, 83(1), 179-190.
[http://dx.doi.org/10.1124/mol.112.081893] [PMID: 23074173]
[28]
Choi, J.H.; Kim, J.S.; Won, Y.W.; Uhm, J.; Park, B.B.; Lee, Y.Y. The potential of deferasirox as a novel therapeutic modality in gastric cancer. World J. Surg. Oncol., 2016, 14, 77.
[http://dx.doi.org/10.1186/s12957-016-0829-1] [PMID: 26965928]
[29]
Saeki, I.; Yamamoto, N.; Yamasaki, T.; Takami, T.; Maeda, M.; Fujisawa, K.; Iwamoto, T.; Matsumoto, T.; Hidaka, I.; Ishikawa, T.; Uchida, K.; Tani, K.; Sakaida, I. Effects of an oral iron chelator, deferasirox, on advanced hepatocellular carcinoma. World J. Gastroenterol., 2016, 22(40), 8967-8977.
[http://dx.doi.org/10.3748/wjg.v22.i40.8967] [PMID: 27833388]
[30]
Yamamoto, N.; Yamasaki, T.; Takami, T.; Uchida, K.; Fujisawa, K.; Matsumoto, T.; Saeki, I.; Terai, S.; Sakaida, I. Deferasirox, an oral iron chelator, prevents hepatocarcinogenesis and adverse effects of sorafenib. J. Clin. Biochem. Nutr., 2016, 58(3), 202-209.
[http://dx.doi.org/10.3164/jcbn.15-127] [PMID: 27257345]
[31]
Cilloni, D.; Andreani, G.; Dragani, M.; De Gobbi, M.; Saglio, G. Synergistic effect of eltrombopag and deferasirox in aplastic anemia: a clinical case and review of the literature. Leuk. Lymphoma, 2020, 61(1), 234-236.
[http://dx.doi.org/10.1080/10428194.2019.1660969] [PMID: 31502895]
[32]
Fattizzo, B.; Levati, G.; Cassin, R.; Barcellini, W. Eltrombopag in immune thrombocytopenia, aplastic anemia, and myelodysplastic syndrome: from megakaryopoiesis to immunomodulation. Drugs, 2019, 79(12), 1305-1319.
[http://dx.doi.org/10.1007/s40265-019-01159-0] [PMID: 31292909]
[33]
Hong, Y.; Li, X.; Wan, B.; Li, N.; Chen, Y. Efficacy and safety of eltrombopag for aplastic anemia: a systematic review and meta-analysis. Clin. Drug Investig., 2019, 39(2), 141-156.
[http://dx.doi.org/10.1007/s40261-018-0725-2] [PMID: 30406906]
[34]
Zhao, Z.; Sun, Q.; Sokoll, L.J.; Streiff, M.; Cheng, Z.; Grasmeder, S.; Townsley, D.M.; Young, N.S.; Dunbar, C.E.; Winkler, T. Eltrombopag mobilizes iron in patients with aplastic anemia. Blood, 2018, 131(21), 2399-2402.
[http://dx.doi.org/10.1182/blood-2018-01-826784] [PMID: 29632023]
[35]
Fattizzo, B.; Cavallaro, F.; Milesi, G.; Barcellini, W. Iron mobilization in a real life cohort of aplastic anemia patients treated with eltrombopag. Am. J. Hematol., 2019, 94(9), E237-E239.
[http://dx.doi.org/10.1002/ajh.25550] [PMID: 31172568]
[36]
Vlachodimitropoulou, E.; Chen, Y.L.; Garbowski, M.; Koonyosying, P.; Psaila, B.; Sola-Visner, M.; Cooper, N.; Hider, R.; Porter, J. Eltrombopag: a powerful chelator of cellular or extracellular iron(III) alone or combined with a second chelator. Blood, 2017, 130(17), 1923-1933.
[http://dx.doi.org/10.1182/blood-2016-10-740241] [PMID: 28864815]
[37]
Burness, C.B.; Keating, G.M.; Garnock-Jones, K.P. Eltrombopag: a review in paediatric chronic immune thrombocytopenia. Drugs, 2016, 76(8), 869-878.
[http://dx.doi.org/10.1007/s40265-016-0581-4] [PMID: 27151255]
[38]
Kuter, D.J. The biology of thrombopoietin and thrombopoietin receptor agonists. Int. J. Hematol., 2013, 98(1), 10-23.
[http://dx.doi.org/10.1007/s12185-013-1382-0] [PMID: 23821332]
[39]
Merli, P.; Strocchio, L.; Vinti, L.; Palumbo, G.; Locatelli, F. Eltrombopag for treatment of thrombocytopenia-associated disorders. Expert Opin. Pharmacother., 2015, 16(14), 2243-2256.
[http://dx.doi.org/10.1517/14656566.2015.1085512] [PMID: 26364898]
[40]
Punzo, F.; Tortora, C.; Argenziano, M.; Casale, M.; Perrotta, S.; Rossi, F. Iron chelating properties of Eltrombopag: Investigating its role in thalassemia-induced osteoporosis. PLoS One, 2018, 13(12)
[http://dx.doi.org/10.1371/journal.pone.0208102] [PMID: 30507954]
[41]
Kalota, A.; Selak, M.A.; Garcia-Cid, L.A.; Carroll, M. Eltrombopag modulates reactive oxygen species and decreases acute myeloid leukemia cell survival. PLoS One, 2015, 10(4)
[http://dx.doi.org/10.1371/journal.pone.0126691] [PMID: 25915523]
[42]
Roth, M.; Will, B.; Simkin, G.; Narayanagari, S.; Barreyro, L.; Bartholdy, B.; Tamari, R.; Mitsiades, C.S.; Verma, A.; Steidl, U. Eltrombopag inhibits the proliferation of leukemia cells via reduction of intracellular iron and induction of differentiation. Blood, 2012, 120(2), 386-394.
[http://dx.doi.org/10.1182/blood-2011-12-399667] [PMID: 22627766]
[43]
Shi, M.; Xu, F.; Yang, X.; Bai, Y.; Niu, J.; Drokow, E.K.; Chen, M.; Chen, Y.; Sun, K. The synergistic antileukemic effects of eltrombopag and decitabine in myeloid leukemia cells. Cancer Manag. Res., 2019, 11, 8229-8238.
[http://dx.doi.org/10.2147/CMAR.S213931] [PMID: 31564981]
[44]
Kurokawa, T.; Murata, S.; Zheng, Y.W.; Iwasaki, K.; Kohno, K.; Fukunaga, K.; Ohkohchi, N. The Eltrombopag antitumor effect on hepatocellular carcinoma. Int. J. Oncol., 2015, 47(5), 1696-1702.
[http://dx.doi.org/10.3892/ijo.2015.3180] [PMID: 26397763]
[45]
Sun, W.; Wang, B.; Qu, X.L.; Zheng, B.Q.; Huang, W.D.; Sun, Z.W.; Wang, C.M.; Chen, Y. Metabolism of reactive oxygen species in osteosarcoma and potential treatment applications. Cells, 2019, 9(1), E87.
[http://dx.doi.org/10.3390/cells9010087] [PMID: 31905813]
[46]
Lambert, M.P.; Witmer, C.M.; Kwiatkowski, J.L. Therapy induced iron deficiency in children treated with eltrombopag for immune thrombocytopenia. Am. J. Hematol., 2017, 92(6), E88-E91.
[http://dx.doi.org/10.1002/ajh.24705] [PMID: 28240793]
[47]
Bastian, T.W.; Duck, K.A.; Michalopoulos, G.C.; Chen, M.J.; Liu, Z.J.; Connor, J.R.; Lanier, L.M.; Sola-Visner, M.C.; Georgieff, M.K. Eltrombopag, a thrombopoietin mimetic, crosses the blood-brain barrier and impairs iron-dependent hippocampal neuron dendrite development. J. Thromb. Haemost., 2017, 15(3), 565-574.
[http://dx.doi.org/10.1111/jth.13602] [PMID: 28005311]
[48]
Yanatori, I.; Kishi, F. DMT1 and iron transport. Free Radic. Biol. Med., 2019, 133, 55-63.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.07.020] [PMID: 30055235]
[49]
Cheli, V.T.; Santiago González, D.A.; Marziali, L.N.; Zamora, N.N.; Guitart, M.E.; Spreuer, V.; Pasquini, J.M.; Paez, P.M. The divalent metal transporter 1 (DMT1) is required for iron uptake and normal development of oligodendrocyte progenitor cells. J. Neurosci., 2018, 38(43), 9142-9159.
[http://dx.doi.org/10.1523/JNEUROSCI.1447-18.2018] [PMID: 30190412]
[50]
Worthington, M.T.; Browne, L.; Battle, E.H.; Luo, R.Q. Functional properties of transfected human DMT1 iron transporter. Am. J. Physiol. Gastrointest. Liver Physiol., 2000, 279(6), G1265-G1273.
[http://dx.doi.org/10.1152/ajpgi.2000.279.6.G1265] [PMID: 11093950]
[51]
Andrews, N.C. The iron transporter DMT1. Int. J. Biochem. Cell Biol., 1999, 31(10), 991-994.
[http://dx.doi.org/10.1016/S1357-2725(99)00065-5] [PMID: 10582331]
[52]
Nevil, G.; Roth, M.; Gill, J.; Zhang, W.; Teicher, B.; Erickson, S.W.; Gatto, G.; Smith, M.; Kolb, E.A.; Gorlick, R. Initial in vivo testing of TPO-receptor agonist eltrombopag in osteosarcoma patient-derived xenograft models by the pediatric preclinical testing consortium. Pediatr. Hematol. Oncol., 2020, •••, 1-6.
[http://dx.doi.org/10.1080/08880018.2020.1802539] [PMID: 32804009]
[53]
Shen, Y.; Zhang, B.; Su, Y.; Badshah, S.A.; Wang, X.; Li, X.; Xue, Y.; Xie, L.; Wang, Z.; Yang, Z.; Zhang, G.; Shang, P. Iron promotes dihydroartemisinin cytotoxicity via ROS production and blockade of autophagic flux via lysosomal damage in osteosarcoma. Front. Pharmacol., 2020, 11, 444.
[http://dx.doi.org/10.3389/fphar.2020.00444] [PMID: 32431605]
[54]
Hassan, M.; Watari, H.; AbuAlmaaty, A.; Ohba, Y.; Sakuragi, N. Apoptosis and molecular targeting therapy in cancer. BioMed Res. Int., 2014, 2014
[http://dx.doi.org/10.1155/2014/150845] [PMID: 25013758]
[55]
Giotakis, A.I.; Kontos, C.K.; Manolopoulos, L.D.; Sismanis, A.; Konstadoulakis, M.M.; Scorilas, A. High BAX/BCL2 mRNA ratio predicts favorable prognosis in laryngeal squamous cell carcinoma, particularly in patients with negative lymph nodes at the time of diagnosis. Clin. Biochem., 2016, 49(12), 890-896.
[http://dx.doi.org/10.1016/j.clinbiochem.2016.04.010] [PMID: 27129795]
[56]
Choudhary, G.S.; Al-Harbi, S.; Almasan, A. Caspase-3 activation is a critical determinant of genotoxic stress-induced apoptosis. Methods Mol. Biol., 2015, 1219, 1-9.
[http://dx.doi.org/10.1007/978-1-4939-1661-0_1] [PMID: 25308257]
[57]
Abu-Qare, A.W.; Abou-Donia, M.B. Biomarkers of apoptosis: release of cytochrome c, activation of caspase-3, induction of 8-hydroxy-2′-deoxyguanosine, increased 3-nitrotyrosine, and alteration of p53 gene. J. Toxicol. Environ. Health B Crit. Rev., 2001, 4(3), 313-332.
[http://dx.doi.org/10.1080/109374001301419737] [PMID: 11503418]
[58]
Casimiro, M.C.; Crosariol, M.; Loro, E.; Li, Z.; Pestell, R.G. Cyclins and cell cycle control in cancer and disease. Genes Cancer, 2012, 3(11-12), 649-657.
[http://dx.doi.org/10.1177/1947601913479022] [PMID: 23634253]
[59]
Nam, E.J.; Kim, Y.T. Alteration of cell-cycle regulation in epithelial ovarian cancer. Int. J. Gynecol. Cancer, 2008, 18(6), 1169-1182.
[http://dx.doi.org/10.1111/j.1525-1438.2008.01191.x] [PMID: 18298566]
[60]
Hashiguchi, Y.; Tsuda, H.; Inoue, T.; Nishimura, S.; Suzuki, T.; Kawamura, N. Alteration of cell cycle regulators correlates with survival in epithelial ovarian cancer patients. Hum. Pathol., 2004, 35(2), 165-175.
[http://dx.doi.org/10.1016/j.humpath.2003.07.018] [PMID: 14991533]
[61]
Yin, X.; Yu, J.; Zhou, Y.; Wang, C.; Jiao, Z.; Qian, Z.; Sun, H.; Chen, B. Identification of CDK2 as a novel target in treatment of prostate cancer. Future Oncol., 2018, 14(8), 709-718.
[http://dx.doi.org/10.2217/fon-2017-0561] [PMID: 29323532]
[62]
Chohan, T.A.; Qian, H.; Pan, Y.; Chen, J.Z. Cyclin-dependent kinase-2 as a target for cancer therapy: progress in the development of CDK2 inhibitors as anti-cancer agents. Curr. Med. Chem., 2015, 22(2), 237-263.
[http://dx.doi.org/10.2174/0929867321666141106113633] [PMID: 25386824]
[63]
Shang, S.; Hua, F.; Hu, Z.W. The regulation of β-catenin activity and function in cancer: therapeutic opportunities. Oncotarget, 2017, 8(20), 33972-33989.
[http://dx.doi.org/10.18632/oncotarget.15687] [PMID: 28430641]
[64]
Cheng, X.; Xu, X.; Chen, D.; Zhao, F.; Wang, W. Therapeutic potential of targeting the Wnt/β-catenin signaling pathway in colorectal cancer. Biomed. Pharmacother., 2019, 110, 473-481.
[http://dx.doi.org/10.1016/j.biopha.2018.11.082] [PMID: 30530050]
[65]
Cui, C.; Zhou, X.; Zhang, W.; Qu, Y.; Ke, X. Is β-catenin a druggable target for cancer therapy? Trends Biochem. Sci., 2018, 43(8), 623-634.
[http://dx.doi.org/10.1016/j.tibs.2018.06.003] [PMID: 30056837]
[66]
McCubrey, J.A.; Steelman, L.S.; Chappell, W.H.; Abrams, S.L.; Wong, E.W.; Chang, F.; Lehmann, B.; Terrian, D.M.; Milella, M.; Tafuri, A.; Stivala, F.; Libra, M.; Basecke, J.; Evangelisti, C.; Martelli, A.M.; Franklin, R.A. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim. Biophys. Acta, 2007, 1773(8), 1263-1284.
[http://dx.doi.org/10.1016/j.bbamcr.2006.10.001] [PMID: 17126425]
[67]
Rozpędek, W.; Pytel, D.; Dziki, Ł.; Nowak, A.; Dziki, A.; Diehl, J.A.; Majsterek, I. Inhibition of PERK-dependent pro-adaptive signaling pathway as a promising approach for cancer treatment. Pol. Przegl. Chir., 2017, 89(3), 7-10.
[http://dx.doi.org/10.5604/01.3001.0010.1020] [PMID: 28703114]
[68]
Bu, Y.; Diehl, J.A. PERK integrates oncogenic signaling and cell survival during cancer development. J. Cell. Physiol., 2016, 231(10), 2088-2096.
[http://dx.doi.org/10.1002/jcp.25336] [PMID: 26864318]
[69]
Pezzuto, A.; Carico, E. Role of HIF-1 in cancer progression: novel insights. a review. Curr. Mol. Med., 2018, 18(6), 343-351.
[http://dx.doi.org/10.2174/1566524018666181109121849] [PMID: 30411685]
[70]
Xie, Y.B.; Li, J.P.; Shen, K.; Meng, F.; Wang, L.; Han, G.X.; Ai, G.; Jiang, B.L.; Zhao, Q.Q.; Hou, Y.; Yang, H.Y.; Li, W.Q. Effect of HIF-1α on angiogenesis-related factors in K562 cells Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2019, 27(5), 1476-1481.
[PMID: 31607301]
[71]
Makker, K.; Afolayan, A.J.; Teng, R.J.; Konduri, G.G. Altered hypoxia-inducible factor-1α (HIF-1α) signaling contributes to impaired angiogenesis in fetal lambs with persistent pulmonary hypertension of the newborn (PPHN). Physiol. Rep., 2019, 7(3)
[http://dx.doi.org/10.14814/phy2.13986] [PMID: 30706701]
[72]
Li, J.; Zhang, H.; Guo, X.; Cui, S.; Liu, H. Expression of HIF-1α and correlation with angiogenesis in tissue of breast cancer complicated with diabetes Zhonghua Yi Xue Za Zhi, 2015, 95(4), 252-255.
[PMID: 25877238]
[73]
Feng, L.; Tao, L.; Dawei, H.; Xuliang, L.; Xiaodong, L. HIF-1α expression correlates with cellular apoptosis, angiogenesis and clinical prognosis in rectal carcinoma. Pathol. Oncol. Res., 2014, 20(3), 603-610.
[http://dx.doi.org/10.1007/s12253-013-9738-6] [PMID: 24374863]
[74]
Prasad, S.; Gupta, S.C.; Tyagi, A.K. Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Lett., 2017, 387, 95-105.
[http://dx.doi.org/10.1016/j.canlet.2016.03.042] [PMID: 27037062]
[75]
Srinivas, U.S.; Tan, B.W.Q.; Vellayappan, B.A.; Jeyasekharan, A.D. ROS and the DNA damage response in cancer. Redox Biol., 2019, 25
[http://dx.doi.org/10.1016/j.redox.2018.101084] [PMID: 30612957]
[76]
Qiu, J.; Zhang, T.; Zhu, X.; Yang, C.; Wang, Y.; Zhou, N.; Ju, B.; Zhou, T.; Deng, G.; Qiu, C. Hyperoside induces breast cancer cells apoptosis via ROS-mediated nf-κb signaling pathway. Int. J. Mol. Sci., 2019, 21(1), E131.
[http://dx.doi.org/10.3390/ijms21010131] [PMID: 31878204]
[77]
Punzo, F.; Bellini, G.; Tortora, C.; Pinto, D.D.; Argenziano, M.; Pota, E.; Paola, A.D.; Martino, M.D.; Rossi, F. Mifamurtide and TAM-like macrophages: effect on proliferation, migration and differentiation of osteosarcoma cells. Oncotarget, 2020, 11(7), 687-698.
[http://dx.doi.org/10.18632/oncotarget.27479] [PMID: 32133045]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy