Generic placeholder image

Current Materials Science

Editor-in-Chief

ISSN (Print): 2666-1454
ISSN (Online): 2666-1462

General Review Article

Effect of Friction Drilling on Metallurgical and Mechanical Properties of Composite Materials: A Review

Author(s): Mathew Alphonse, V.K. Bupesh Raja* and Kayaroganam Palanikumar

Volume 14, Issue 1, 2021

Published on: 07 December, 2020

Page: [53 - 69] Pages: 17

DOI: 10.2174/2666145413666201207204304

Price: $65

Abstract

The objective of this study is to carry out a literature review on the effect of friction drilling parameters on the mechanical and metallurgical properties of materials. The friction drilling process uses heat generated by friction between the workpiece and the tool. In a single step, tool penetrates into the work material, forming a circular hole and forms bushing without generating chips. Bushing acts as a structural scaffold and guide to assemble sheet metal parts without the need for separate threaded parts. This review focuses on the basics of friction drilling, advantages, applications, metallurgical and mechanical properties of the tool and materials. Tools reviewed in this research are high speed steel (HSS) and AISI H13 chromium hot work steel. The study observes that coated friction drilling tool life is more than uncoated friction drilling tool. At higher spindle speed and feed rate, good quality hole is produced with maximum bushing height and better surface finish.

Keywords: Friction drilling, bushing, wear, surface roughness, thrust force, torque.

Graphical Abstract

[1]
Alphonse M, Raja BVK, Logesh K, Nachippan M. Evolution and Recent Trends In Friction Drilling Technique and The Application of Thermography. IOP Conf Series. Materials Science and Engineering 2017; 197(1): 1-16.
[2]
Alphonse M, Bupesh RVK, Gupta M. Investigation on tribological behavior during friction drilling process-a review. Tribol Ind 2020; 42(2): 200-13.
[http://dx.doi.org/10.24874/ti.655.02.19.03]
[3]
Ho-Cheng H, Dharan CK. Delamination during drilling in composite laminates. J Eng Ind 1990; 112: 236-9.
[http://dx.doi.org/10.1115/1.2899580]
[4]
Gaitonde V, Karnik SR, Rubio JC, Correia AE, Abrao AM, Davim JP. Analysis of parametric influence on delamination in high-speed drilling of carbon fiber reinforced plastic composites. J Mater Process Technol 2008; 203: 431-8.
[http://dx.doi.org/10.1016/j.jmatprotec.2007.10.050]
[5]
Raja VB, Rajasekaran R, Francis AJ. An overview of non-traditional drilling process. IJAER 2014; 9(23): 23145-53.
[6]
Strenkowski JS, Hsieh CC, Shih AJ. An analytical finite element technique for predicting thrust force and torque in drilling. Int J Mach Tools Manuf 2004; 44(12-13): 1413-21.
[7]
Geffen JA. Piercing tools. US Patent 3939683 1976.
[8]
Geffen JA. Method and apparatuses for forming by frictional heat and pressure holes surrounded each by a boss in a metal plate or the wall of a metal tube. US Patent 4175413, 1979.
[9]
Geffen JA. Rotatable Piercing Tools for Forming Holes Surrounded Each by a Boss in Metal Plates or the Wall of Metal Tubes U.S. Patent 4177659, 1979.
[10]
Geffen JA. Rotatable piercing tools for forming bossed holes. US Patent 4185486, 1980.
[11]
Wittke P, Walther F. Cyclic deformation behaviour of friction drilled internal threads in AlSi10Mg and AZ31 Profiles. Procedia Struct Integ 2016; 2: 3264-71.
[http://dx.doi.org/10.1016/j.prostr.2016.06.407]
[12]
Eliseev AA, Fortuna SV, Kolubaev EA, Kalashnikova TA. Microstructure modification of 2024 aluminum alloy produced by friction drilling. Mater Sci Eng 2017; 691(2017): 121-5.
[13]
Somasundaram G, Rajendra BS, Palanikumar K. Modeling and analysis of roundness error in friction drilling of aluminum silicon carbide metal matrix composite. J Compos Mater 2015; 46(2): 1-13.
[14]
Somasundaram G, Boopathy SR. Fabrication and friction drilling of aluminum silicon carbide metal matrix composite. Natl J Adv Build Sci Mech 2010; 1(2): 27-33.
[http://dx.doi.org/10.1109/FAME.2010.5714793]
[15]
Ozek C, Demir Z. Investigate the friction drilling of aluminium alloys according to the thermal conductivity. TEM Journal 2013; 2: 93-101.
[16]
El-Bahloul SA, El-Shourbagy HE, El-Midany TT. Optimization of thermal friction drilling process based on Taguchi method and fuzzy logic technique. J Therm Sci Eng Appl 2015; 4(2): 55-9.
[http://dx.doi.org/10.7753/IJSEA0402.1006]
[17]
Skovron JD, Rohan PR, Ulutan D, et al. Effect of thermal assistance on the joint quality of Al6063-T5A during flow drill screw driving. J Manuf Sci Eng 2015; 137: 1-8.
[http://dx.doi.org/10.1115/1.4031242]
[18]
Biermann D, Liu Y. Innovative flow drilling on magnesium wrought alloy AZ31. Procedia CIRP 2014; 18: 209-14.
[http://dx.doi.org/10.1016/j.procir.2014.06.133]
[19]
Prabhu T, Arulmurugu A. Experimental and analysis of friction drilling on aluminium and copper. Int J Mech Eng Technol 2014; pp. 130-9.
[20]
Somasundaram G, Boopathy SR, Palanikumar K. Experimental investigation on roundness error in friction drilling and mechanical properties of Al/SiCp-MMC composites. Mech Ind 2011; 12: 445-57.
[21]
Kaya MT, Aktas A, Beylergil B, Akyildiz H. An experimental study on friction drilling of ST 12 steel. Trans Can Soc Mech Eng 2014; 38: 320-9.
[http://dx.doi.org/10.1139/tcsme-2014-0023]
[22]
Han G, Wang M, Liu Z, Wang PC. A new joining process for magnesium alloys: rotation friction drilling riveting. J Manuf Sci Eng 2013; 135: 1-9.
[http://dx.doi.org/10.1115/1.4023721]
[23]
Tsao CC, Hocheng H. The effect of chisel length and associated pilot hole on delamination when drilling composite materials. Int J Mach Tools Manuf 2003; 43: 1087-92.
[http://dx.doi.org/10.1016/S0890-6955(03)00127-5]
[24]
Krishna PG, Kishore K, Satyanarayana VV. Some investigations in friction drilling AA6351 using high speed steel tools. J Eng Appl Sci (Asian Res Publ Netw) 2010; 3: 11-5.
[25]
Tsao CC, Hocheng H. Effects of exit back-up on delamination in drilling composite materials using a saw drill and a core drill. Int J Mach Tools Manuf 2005; 45: 1261-70.
[http://dx.doi.org/10.1016/j.ijmachtools.2005.01.015]
[26]
Boopathi M, Shankar S, Manikandakumar S, Ramesh R. Experimental investigation of friction drilling on brass, aluminium and stainless steel. Procedia Eng 2013; 6: 1219-26.
[27]
Lee SM, Chow HM, Yan BH. Friction drilling of IN-713LC cast superalloy. Mater Manuf Process 2007; 22: 893-7.
[http://dx.doi.org/10.1080/10426910701451697]
[28]
Miller SF, Li R, Wang H, Shih AJ. Experimental and numerical analysis of the friction drilling process. Trans ASME 128: 802-10.
[http://dx.doi.org/10.1115/1.2193554]
[29]
Furness RJ, Tsao TC, Rankin JS, Muth MJ, Manes KW. Torque control for a form tool drilling operation. IEEE Trans Contr Syst Technol 1999; 7(1): 22-30.
[http://dx.doi.org/10.1109/87.736745]
[30]
Miller SF, Shih AJ, Blau PJ. Microstructure. J Mater Eng Perform 2005; 14: 647-53. [alterations associated with friction drilling of steel, aluminum and titanium
[http://dx.doi.org/10.1361/105994905X64558]
[31]
Lin SC, Chen IK. Drilling carbon fiber-reinforced composite material at high speed. Wear 1996; 194: 156-62.
[http://dx.doi.org/10.1016/0043-1648(95)06831-7]
[32]
Ramkumar J, Aravindan S, Malhotra SK, Krishnamurthy R. An enhancement of the machining performance of GFRP by oscillatory assisted drilling. Int J Adv Manuf Technol 2004; 23(3): 240-4.
[http://dx.doi.org/10.1007/s00170-003-1660-8]
[33]
Park KY, Choi JH, Lee DG. Delamination-free and high efficiency drilling of carbon fiber reinforced plastics. J Compos Mater 1995; 29: 1988-2002.
[http://dx.doi.org/10.1177/002199839502901503]
[34]
Davim JP, Reis P, Antonio CC. Experimental study of drilling glass fiber reinforced plastics (GFRP) manufactured by hand lay-up. Compos Sci Technol 2004; 64: 289-97.
[http://dx.doi.org/10.1016/S0266-3538(03)00253-7]
[35]
Palanikumar K. Experimental investigation and optimization in drilling of GFRP composites. Measurement 2011; 44: 2138-48.
[http://dx.doi.org/10.1016/j.measurement.2011.07.023]
[36]
Zitoune R, Krishnaraj V, Almabouacif BS, Collombet F, Sima M, Jolin A. Influence of machining parameters and new nano-coated tool on drilling performance of CFRP/Aluminium sandwich. Compos, Part B Eng 2012; 43: 1480-8.
[http://dx.doi.org/10.1016/j.compositesb.2011.08.054]
[37]
Karabulut Ş, Gökmen U, Cinici H. Study on the mechanical and drilling properties of AA7039 composites reinforced with Al2O3/B4C/SiC particles. Compos, Part B Eng 2016; 93: 43-55.
[http://dx.doi.org/10.1016/j.compositesb.2016.02.054]
[38]
Capello E. Workpiece damping and its effect on delamination damage in drilling thin composite laminates. J Mater Process Technol 2004; 148(2): 186-95.
[http://dx.doi.org/10.1016/S0924-0136(03)00812-4]
[39]
Tsao CC, Hocheng H. Effect of tool wear on delamination in drilling composite materials. Int J Mech Sci 2007; 49: 983-8.
[http://dx.doi.org/10.1016/j.ijmecsci.2007.01.001]
[40]
Rawat S, Attia H. Characterization of the dry high speed drilling process of woven composites using Machinability Maps approach. CIRP Annals 2009; 58: 105-8.
[41]
Park KY, Choi JH, Lee DG. Delamination-free and high efficiency drilling of carbon fiber reinforced plastics. J Compos Mater 1995; 29: 1988-2002.
[http://dx.doi.org/10.1177/002199839502901503]
[42]
Zubrzycki J, Świć A, Taranenko V. Mathematical model of the hole drilling process and typical automated process for designing hole drilling operations. Appl Mech Mater 2013; 282: 221-9.
[http://dx.doi.org/10.4028/www.scientific.net/AMM.282.221]
[43]
Hocheng H, Tsao CC. Comprehensive analysis of delamination in drilling of composite materials with various drill bits. J Mater Process Technol 2003; 140: 335-9.
[http://dx.doi.org/10.1016/S0924-0136(03)00749-0]
[44]
Faraz A, Biermann D, Weinert K. Cutting edge rounding: An innovative tool wear criterion in drilling CFRP composite laminates. Int J Mach Tools Manuf 2009; 49: 1185-96.
[http://dx.doi.org/10.1016/j.ijmachtools.2009.08.002]
[45]
Enemuoh EU, El-Gizawy AS, Okafor AC. An approach for development of damage-free drilling of carbon fiber reinforced thermosets. Int J Mach Tools Manuf 2001; 41: 1795-814.
[http://dx.doi.org/10.1016/S0890-6955(01)00035-9]
[46]
Durão LM, Gonçalves DJ, Tavares JM, de Albuquerque VH, Vieira AA, Marques AT. Drilling tool geometry evaluation for reinforced composite laminates. Compos Struct 2010; 92: 1545-50.
[http://dx.doi.org/10.1016/j.compstruct.2009.10.035]
[47]
Miller SF, Shih AJ. Thermo-mechanical finite element modeling of the friction drilling process. J Manuf Sci Eng 2007; 129: 531-8.
[48]
Raju P, Swamy K. Finite Element Simulation of a Friction Drilling process using Deform-3D. Int J Eng Res Appl 2012; 2: 716-21.
[49]
Qu J, Blau PJ. A new model to calculate friction coefficients and shear stresses in thermal drilling. J Manuf Sci Eng 2008; 130: 1-4.
[http://dx.doi.org/10.1115/1.2815341]
[50]
Davim P, Reis P. Drilling carbon fiber reinforced plastics manufactured by autoclave - experimental and statistical study. Mater Des 2003; 24: 315-24.
[http://dx.doi.org/10.1016/S0261-3069(03)00062-1]
[51]
Karnik SR, Gaitonde VN, Rubio JC, Correia AE, Abrão AM, Davim JP. Delamination analysis in high speed drilling of carbon fiber reinforced plastics (CFRP) using artificial neural network model. Mater Des 2008; 29: 1768-76.
[http://dx.doi.org/10.1016/j.matdes.2008.03.014]
[52]
Wang X, Wang LJ, Tao JP. Investigation on thrust in vibration drilling of fiber-reinforced plastics. J Mater Process Technol 2004; 148: 239-44.
[http://dx.doi.org/10.1016/j.jmatprotec.2003.12.019]
[53]
Jurko J, Panda A. Simulation of accompanying phenomena in the cutting zone during drilling of stainless steels. 3rd International Conference on Advanced Computer Theory and Engineering 2010; 1: 239-43.
[http://dx.doi.org/10.1109/ICACTE.2010.5579026]
[54]
Tagliaferri V, Caprino G, Diterlizzi A. Effect of drilling parameters on the finish and mechanical properties of GFRP composites. Int J Mach Tools Manuf 1999; 30(1): 77-84.
[55]
Tsao CC, Hocheng H. Effect of eccentricity of twist drill and candlestick drill on delamination in drilling composite materials. Int J Mach Tools Manuf 2005; 45: 125-30.
[http://dx.doi.org/10.1016/j.ijmachtools.2004.08.001]
[56]
Urbikain G, Perez JM, López de Lacalle LN, Andueza A. Combination of friction drilling and form tapping processes on dissimilar materials for making nutless joints. ProcI MechE Part B: J Eng Manu 2018. 232(6): 1-14.
[http://dx.doi.org/10.1177/0954405416661002]
[57]
Chong KZ, Shih TS. Optimization drilling conditions for AZ61A magnesium alloy. Mater Trans 2002; 43: 2148-056.
[http://dx.doi.org/10.2320/matertrans.43.2148]
[58]
Skovron JD, Rohan Prasad R, Ulutan D, et al. Effect of thermal assistance on the joint quality of Al6063-T5A during flow drill screw driving. J Manuf Sci Eng 2015; 137: 1-8.
[http://dx.doi.org/10.1115/1.4031242]
[59]
Abrão AM, Faria PE, Rubio JC, Reis P, Davim JP. Drilling of fiber reinforced plastics: a review. J Mater Process Technol 2007; 186: 1-7.
[http://dx.doi.org/10.1016/j.jmatprotec.2006.11.146]
[60]
Voisey KT, Fouquet S, Roy D, Clyne TW. Fibre swelling during laser drilling of carbon fibre composites. Opt Lasers Eng 2006; 44: 1185-97.
[http://dx.doi.org/10.1016/j.optlaseng.2005.10.008]
[61]
Wang J, Liu YB, An J, Wang LM. Wear mechanism map of uncoated HSS tools during drilling die-cast magnesium alloy. Wear 2008; 265(5-6): 685-91.
[http://dx.doi.org/10.1016/j.wear.2007.12.009]
[62]
Sønstabø JK, Morin D, Langseth M. Macroscopic modelling of flow-drill screw connections in thin - walled aluminum structures. Thin-walled Struct 2016; 105: 185-206.
[http://dx.doi.org/10.1016/j.tws.2016.04.013]
[63]
Engbert T, Heymann T, Biermann D, Zabel A. Flow drilling and thread forming of continuously reinforced aluminium extrusions. Proc Inst Mech Eng, B J Eng Manuf 2010; 225: 398-407.
[64]
Sitek P, Katunin A. Analysis of drilling process of composite structures – Part I: Evaluation of thermal condition. Institute of Fundamentals of Machinery Design, Silesian University of Technology. In: Modelowanie Inżynierskie. 2015; 55: pp. 88-94.
[65]
Outeiro JC, Lenoir P, Bosselut A. Thermo-mechanical effects in drilling using metal working fluid sand cryogenic cooling and their impact in tool performance. Prod Eng Res Devel 2015; pp. 1-15.
[66]
Tsao CC. The effect of pilot hole on delamination when core drill drilling composite materials. Int J Mach Tools Manuf 2006; 46: 1653-61.
[http://dx.doi.org/10.1016/j.ijmachtools.2005.08.015]
[67]
Khashaba UA Delamination in drilling GFR-thermoset composites. Compos Struct 2004; 63: 313-27.
[http://dx.doi.org/10.1016/S0263-8223(03)00180-6]
[68]
Basavarajappa S, Chandramohan G, Davim JP. Some studies on drilling of hybrid metal matrix composites based on Taguchi techniques. J Mater Process Technol 2008; 196: 332-8.
[http://dx.doi.org/10.1016/j.jmatprotec.2007.05.043]
[69]
Arul SV, Vijayaraghavan L, Malhotra SK, Krishnamurthy R. The effect of vibratory drilling on hole quality in polymeric composites. Int J Mach Tools Manuf 2006; 46: 252-9.
[http://dx.doi.org/10.1016/j.ijmachtools.2005.05.023]
[70]
Davim P, Rubio C, Abrao AM. A novel approach based on digital image analysis to evaluate the delamination factor after drilling composite laminates. Compos Sci Technol 2007; 67: 1939-45.
[http://dx.doi.org/10.1016/j.compscitech.2006.10.009]
[71]
Hocheng H, Tsao CC. The path towards delamination-free drilling of composite materials. J Mater Process Technol 2005; 167: 251-64.
[http://dx.doi.org/10.1016/j.jmatprotec.2005.06.039]
[72]
Tsao CC. Experimental study of drilling composite materials with step-core drill. Mater Des 2008; 29: 1740-4.
[http://dx.doi.org/10.1016/j.matdes.2008.03.022]
[73]
Krishnaraj V, Prabukarthi A, Ramanathan A, et al. Optimization of machining parameters at high speed drilling of carbon fiber reinforced plastic (CFRP) laminates. Compos, Part B Eng 2012; 43: 1791-9.
[http://dx.doi.org/10.1016/j.compositesb.2012.01.007]
[74]
Kilickap. Optimization of cutting parameters on delamination based on Taguchi method during drilling of GFRP composite. Expert Syst Appl 2010; 37: 6116-22.
[http://dx.doi.org/10.1016/j.eswa.2010.02.023]
[75]
Kerkhofs M, Van Stappen M, D’Olieslaeger M, Quaeyhaegens C, Stals LM. The Performance of (Ti,Al) N-coated flow drills. Surf Coat Tech 1994; 68: 741-6.
[http://dx.doi.org/10.1016/0257-8972(94)90247-X]
[76]
Gopichand A, Brahmam MV, Bhanuprakash D. Numerical simulation and analysis of friction drilling process for alumina alloy using ansys. Int J Eng Res Technol 2014; 3: 602-7.
[77]
Ku WL, Hung CL, Lee SM, Chow HM. Optimization in thermal friction drilling for SUS 304 stainless steel. Int J Adv Manuf Technol 2012; 53: 935-44.
[http://dx.doi.org/10.1007/s00170-010-2899-5]
[78]
Miller SF, Blau PJ, Shih AJ. Tool wear in friction drilling. Int J Mach Tools Manuf 2007; 47: 1636-45.
[http://dx.doi.org/10.1016/j.ijmachtools.2006.10.009]
[79]
Lee SM, Chow HM, Huang FY, Yan BH. Friction drilling of austenitic stainless steel by uncoated and PVD AlCrN and TiAlN-coated tungsten carbide tools. Int J Mach Tools Manuf 2009; 49: 81-8.
[http://dx.doi.org/10.1016/j.ijmachtools.2008.07.012]
[80]
Miller SF, Tao J, Shih AJ. Friction drilling of cast metals. Int J Mach Tools Manuf 2006; 46: 1526-35.
[http://dx.doi.org/10.1016/j.ijmachtools.2005.09.003]
[81]
Ozler L. The influence of variable feed rate on bushing and surface roughness in friction drilling. J Braz Soc Mech Sci Eng 2019; 41(308): 1-9.
[82]
Mutalib MZ, Ismail MI, Jalil NA. As’arry A. Characterization of tool wear in friction drilling. J Tribol 2018; 17: 93-103.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy