Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Research Article

Detection of Natural Inhibitors against Human Liver Cancer Cell Lines through QSAR, Molecular Docking and ADMET Studies

Author(s): Sarfaraz Alam, Sadaf Nasreen, Ateeque Ahmad, Mahendra Pandurang Darokar and Feroz Khan*

Volume 21, Issue 8, 2021

Published on: 04 December, 2020

Page: [686 - 695] Pages: 10

DOI: 10.2174/1568026620666201204155830

Price: $65

Abstract

Background: Liver cancer is ranked as the fifth most prevalent and third most lethal cancer worldwide. The incidence rates of this cancer are on the rise, and only limited treatment options are available.

Methods: To identify and optimize the inhibitors of liver cancer cell-lines, a QSAR model was developed by using multiple linear regression methods. The robustness of the model was validated through statistical methods and wet-lab experiments.

Results: The developed QSAR models yielded high activity descriptor relationship accuracy of 91%, referred to by regression coefficient (r2= 0.91), and a high activity prediction accuracy of 89%. The external predicted (pred_r2) ability of the model was found to be 90%.

Conclusion: The QSAR study indicates that chemical descriptors such as to measure of electronegative atom count (Epsilon3), atom type count descriptors (MMFF_10), number of a carbon atom connected with four single bonds (SssssCE- index), molecular weight and, number of oxygen atom connected with two aromatic bonds (SaaOE-index) are significantly correlated with anticancer activity. The model, which was validated statistically and through wet-lab experiments, was further used in the virtual screening of potential inhibitors against the liver cancer cell line WRL68. ADMET risk screening, synthetic accessibility, and Lipinski's rule of five are used to filter false positive hits. AfterwardS, to achieve a set of aligned ligand poses and rank the predicted active compounds, docking studies were carried out. The studied compounds and their metabolites were also analyzed for different pharmacokinetics parameters. Finally, a series of compounds was proposed as anticancer agents.

Keywords: QSAR, Virtual screening, Drug designing, ADMET, Anticancer, Docking.

Graphical Abstract

[1]
Fojo, T.; Mailankody, S.; Lo, A. Unintended consequences of expensive cancer therapeutics-the pursuit of marginal indications and a me-too mentality that stifles innovation and creativity: the John Conley Lecture. JAMA Otolaryngol. Head Neck Surg., 2014, 140(12), 1225-1236.
[http://dx.doi.org/10.1001/jamaoto.2014.1570] [PMID: 25068501]
[2]
Davis, G.L.; Dempster, J.; Meler, J.D.; Orr, D.W.; Walberg, M.W.; Brown, B.; Berger, B.D.; O’Connor, J.K.; Goldstein, R.M. Hepatocellular carcinoma: management of an increasingly common problem. Proc. Bayl. Univ. Med. Cent., 2008, 21(3), 266-280.
[http://dx.doi.org/10.1080/08998280.2008.11928410] [PMID: 18628926]
[3]
Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug resistance in cancer: an overview. Cancers (Basel), 2014, 6(3), 1769-1792.
[http://dx.doi.org/10.3390/cancers6031769] [PMID: 25198391]
[4]
Maeda, H.; Khatami, M. Analyses of repeated failures in cancer therapy for solid tumors: poor tumor-selective drug delivery, low therapeutic efficacy and unsustainable costs. Clin. Transl. Med., 2018, 7(1), 11.
[http://dx.doi.org/10.1186/s40169-018-0185-6] [PMID: 29541939]
[5]
Lill, M.A. Multi-dimensional QSAR in drug discovery. Drug Discov. Today, 2007, 12(23-24), 1013-1017.
[http://dx.doi.org/10.1016/j.drudis.2007.08.004] [PMID: 18061879]
[6]
Kalyaanamoorthy, S.; Chen, Y.P.P. Structure-based drug design to augment hit discovery. Drug Discov. Today, 2011, 16, 831-839.
[http://dx.doi.org/10.1016/j.drudis.2011.07.006]
[7]
van de Waterbeemd, H.; Gifford, E. ADMET in silico modelling: towards prediction paradise? Nat. Rev. Drug Discov., 2003, 2(3), 192-204.
[http://dx.doi.org/10.1038/nrd1032] [PMID: 12612645]
[8]
Kapetanovic, I.M. Computer-aided drug discovery and development (CADDD): in silico-chemico-biological approach. Chem. Biol. Interact., 2008, 171(2), 165-176.
[http://dx.doi.org/10.1016/j.cbi.2006.12.006] [PMID: 17229415]
[9]
da Silva, C.H.T.P.; Taft, C.A. 3D descriptors calculation and conformational search to investigate potential bioactive conformations, with application in 3D-QSAR and virtual screening in drug design. J. Biomol. Struct. Dyn., 2017, 35(13), 2966-2974.
[http://dx.doi.org/10.1080/07391102.2016.1237382] [PMID: 27739336]
[10]
Diniz, E.M.L.P. Tomich de Paula da Silva, C.H.; Gómez-Perez, V.; Federico, L.B.; Campos Rosa, J.M. GRIND2-based 3D-QSAR and prediction of activity spectra for symmetrical bis-pyridinium salts with promastigote antileishmanial activity. J. Biomol. Struct. Dyn., 2017, 35(11), 2430-2440.
[http://dx.doi.org/10.1080/07391102.2016.1221364] [PMID: 27495391]
[11]
Badhani, B.; Kakkar, R. In silico studies on potential MCF-7 inhibitors: a combination of pharmacophore and 3D-QSAR modeling, virtual screening, molecular docking, and pharmacokinetic analysis. J. Biomol. Struct. Dyn., 2017, 35(9), 1950-1967.
[http://dx.doi.org/10.1080/07391102.2016.1202863] [PMID: 27401212]
[12]
Vuppala, K Importance of ADME and Bioanalysis in the Drug Discovery. J. Bioequivalence Bioavailab., 2013, 05, 4.
[13]
OCDE. Guidance Document on the Validation of (Quantitative) Structure-Activity Relationship [(Q)SAR] Models; OECD Series on Testing and Assessment, OECD Publishing: Paris. 2014, 2.
[14]
Green, D.V.S. Virtual screening of virtual libraries. Prog. Med. Chem., 2003, 41, 61-97.
[http://dx.doi.org/10.1016/S0079-6468(02)41002-8] [PMID: 12774691]
[15]
Alam, S.; Khan, F. QSAR and docking studies on xanthone derivatives for anticancer activity targeting DNA topoisomerase IIα. Drug Des. Devel. Ther., 2014, 8(4), 183-195.
[http://dx.doi.org/10.2147/DDDT.S51577]]
[16]
Shing, T.K.M.; Wu, H.T.; Kwok, H.F.; Lau, C.B.S. Synthesis of chiral hydroxylated enones as potential anti-tumor agents. Bioorg. Med. Chem. Lett., 2012, 22(24), 7562-7565.
[http://dx.doi.org/10.1016/j.bmcl.2012.10.026] [PMID: 23102892]
[17]
Chattopadhyay, S.K.; Pal, A.; Maulik, P.R.; Kaur, T.; Garg, A.; Khanuja, S.P.S. Taxoid from the needles of the Himalayan yew Taxus wallichiana with cytotoxic and immunomodulatory activities. Bioorg. Med. Chem. Lett., 2006, 16(9), 2446-2449.
[http://dx.doi.org/10.1016/j.bmcl.2006.01.077] [PMID: 16480866]
[18]
Saxena, H.O.; Faridi, U.; Srivastava, S.; Kumar, J.K.; Darokar, M.P.; Luqman, S.; Chanotiya, C.S.; Krishna, V.; Negi, A.S.; Khanuja, S.P.S. Gallic acid-based indanone derivatives as anticancer agents. Bioorg. Med. Chem. Lett., 2008, 18(14), 3914-3918.
[http://dx.doi.org/10.1016/j.bmcl.2008.06.039] [PMID: 18586491]
[19]
Khan, M.; Garg, A.; Srivastava, S.K.; Darokar, M.P. A cytotoxic agent from strychnos nux-vomica and biological evaluation of its modified analogues. Med. Chem. Res., 2012, 21, 2975-2980.
[http://dx.doi.org/10.1007/s00044-011-9832-9]
[20]
Kálai, T.; Balog, M.; Szabó, A.; Gulyás, G.; Jekő, J.; Sümegi, B.; Hideg, K. New poly(ADP-ribose) polymerase-1 inhibitors with antioxidant activity based on 4-carboxamidobenzimidazole-2-ylpyrroline and -tetrahydropyridine nitroxides and their precursors. J. Med. Chem., 2009, 52(6), 1619-1629.
[http://dx.doi.org/10.1021/jm801476y] [PMID: 19245212]
[21]
Rane, R.A.; Sahu, N.U.; Gutte, S.D.; Mahajan, A.A.; Shah, C.P.; Bangalore, P. Synthesis and evaluation of novel marine bromopyrrole alkaloid-based hybrids as anticancer agents. Eur. J. Med. Chem., 2013, 63, 793-799.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.029] [PMID: 23584542]
[22]
Halgren, T.A. Merck molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94. J. Comput. Chem., 1996, 17, 553-586.
[http://dx.doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<553:AID-JCC3>3.0.CO;2-T]
[23]
Yadav, D.K.; Kalani, K.; Singh, A.K.; Khan, F.; Srivastava, S.K.; Pant, A.B. Design, synthesis and in vitro evaluation of 18β-glycyrrhetinic acid derivatives for anticancer activity against human breast cancer cell line MCF-7. Curr. Med. Chem., 2014, 21(9), 1160-1170.
[http://dx.doi.org/10.2174/09298673113206660330] [PMID: 24180274]
[24]
Alam, S.; Khan, F. QSAR, docking, ADMET, and system pharmacology studies on tormentic acid derivatives for anticancer activity. J. Biomol. Struct. Dyn., 2018, 36(9), 2373-2390.
[http://dx.doi.org/10.1080/07391102.2017.1355846] [PMID: 28705120]
[25]
Gobbi, A.; Lee, M.L. DISE: directed sphere exclusion. J. Chem. Inf. Comput. Sci., 2003, 43(1), 317-323.
[http://dx.doi.org/10.1021/ci025554v] [PMID: 12546567]
[26]
Hudson, B.D.; Hyde, R.M.; Rahr, E.; Wood, J.; Osman, J. Parameter based methods for compound selection from chemical databases. Quant. Struct. Relationships, 1996, 15, 285-289.
[http://dx.doi.org/10.1002/qsar.19960150402]
[27]
Yadav, D.K.; Khan, F. QSAR, docking and ADMET studies of camptothecin derivatives as inhibitors of DNA topoisomerase-I. J. Chemometr., 2013, 27(1-2), 21-33.
[http://dx.doi.org/10.1002/cem.2488]
[28]
Roy, K.; Kar, S.; Ambure, P. On a simple approach for determining applicability domain of QSAR models. Chemom. Intell. Lab. Syst., 2015, 145, 22-29.
[http://dx.doi.org/10.1016/j.chemolab.2015.04.013]
[29]
Alam, S.; Khan, F. Virtual screening, Docking, ADMET and System Pharmacology studies on Garcinia caged Xanthone derivatives for Anticancer activity. Sci. Rep., 2018, 8(1), 5524.
[30]
Doyle, A.; Griffiths, J. B Mammalian Cell Culture: Essential Techniques; Wiley: Hoboken, 1997.
[31]
Wang, M.; Zhang, Y.; Wang, T.; Zhang, J.; Zhou, Z.; Sun, Y.; Wang, S.; Shi, Y.; Luan, X.; Zhang, Y.; Wang, Y.; Wang, Y.; Zou, Z.; Kang, L.; Liu, H. The USP7 inhibitor P5091 induces cell death in ovarian cancers with different P53 status. Cell. Physiol. Biochem., 2017, 43(5), 1755-1766.
[http://dx.doi.org/10.1159/000484062] [PMID: 29049989]
[32]
Alam, S.; Khan, F. 3D-QSAR, docking, ADME/tox studies on flavone analogs reveal anticancer activity through tankyrase inhibition. Sci. Reports 2019,, 2019, 9(1), 5414.
[33]
Gutiérrez-Ruiz, M.C.; Bucio, L.; Souza, V.; Gómez, J.J.; Campos, C.; Cárabez, A. Expression of some hepatocyte-like functional properties of WRL-68 cells in culture. Vitr. Cell. Dev. Biol. -. Anim. J. Soc. Vitr. Biol., 1994, 30, 366-371.
[34]
Liu, H.; Xu, Y.; Xiang, J.; Long, L.; Green, S.; Yang, Z.; Zimdahl, B.; Lu, J.; Cheng, N.; Horan, L.H.; Liu, B.; Yan, S.; Wang, P.; Diaz, J.; Jin, L.; Nakano, Y.; Morales, J.F.; Zhang, P.; Liu, L.X.; Staley, B.K.; Priceman, S.J.; Brown, C.E.; Forman, S.J.; Chan, V.W.; Liu, C. Targeting Alpha-Fetoprotein (AFP)-MHC complex with CAR T-Cell therapy for liver cancer. Clin. Cancer Res., 2017, 23(2), 478-488.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1203] [PMID: 27535982]
[35]
Pletscher-Frankild, S.; Pallejà, A.; Tsafou, K.; Binder, J.X.; Jensen, L.J. DISEASES: text mining and data integration of disease-gene associations. Methods, 2015, 74, 83-89.
[http://dx.doi.org/10.1016/j.ymeth.2014.11.020] [PMID: 25484339]
[36]
Kapkoti, D.S.; Singh, S.; Alam, S.; Khan, F.; Luqman, S.; Bhakuni, R.S. In vitro antiproliferative activity of glabridin derivatives and their in silico target identification. Nat. Prod. Res., 2020, 34(12), 1735-1742.
[http://dx.doi.org/10.1080/14786419.2018.1530228] [PMID: 30580626]
[37]
Das, A.; Gangarde, Y.M.; Tomar, V.; Shinde, O.; Upadhyay, T.; Alam, S.; Ghosh, S.; Chaudhary, V.; Saraogi, I. Small-molecule inhibitor prevents insulin fibrillogenesis and preserves activity. Mol. Pharm., 2020, 17(6), 1827-1834.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b01080] [PMID: 32347728]
[38]
Bhukya, B.S.A.; Chaturvedi, V.; Trivedi, P.; Kumar, S.; Khan, F.; Negi, A.S.; Srivastava, S.K. Brevifoliol and its analogs: A new class of antitubercular agents. Curr. Top. Med. Chem., 2020. (Online ahead of print)
[http://dx.doi.org/10.2174/1568026620666200528155236]
[39]
Yadav, D.K.; Mudgal, V.; Agrawal, J.; Maurya, A.K.; Bawankule, D.U.; Chanotiya, C.S.; Khan, F.; Thul, S.T. Molecular docking and ADME studies of natural compounds of Agarwood oil for topical anti-inflammatory activity. Curr Comput Aided Drug Des, 2013, 9(3), 360-370.
[http://dx.doi.org/10.2174/1573409911309030012] [PMID: 23566359]
[40]
Singh, A.; Kumar, B.S.; Iqbal, H.; Alam, S.; Yadav, P.; Verma, A.K.; Shanker, K.; Hanif, K.; Negi, A.S.; Chanda, D. Antihypertensive activity of diethyl-4, 4′-dihydroxy-8, 3′-neolign-7, 7′-dien-9, 9′-dionate: A continuation study in L-NAME treated wistar rats. Eur. J. Pharmacol., 2019, 858172482
[http://dx.doi.org/10.1016/j.ejphar.2019.172482] [PMID: 31233749]
[41]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7, 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[42]
Alam, S.; Khan, F. 3D-QSAR studies on Maslinic acid analogs for anticancer activity against breast cancer cell line MCF-7. Sci. Rep., 2017, 7(1), 6019.
[http://dx.doi.org/10.1038/s41598-017-06131-0] [PMID: 28729623]
[43]
Johnson, P.J. The role of serum alpha-fetoprotein estimation in the diagnosis and management of hepatocellular carcinoma. Clin. Liver Dis., 2001, 5(1), 145-159.
[http://dx.doi.org/10.1016/S1089-3261(05)70158-6] [PMID: 11218912]
[44]
Li, P.; Wang, S.S.; Liu, H.; Li, N.; McNutt, M.A.; Li, G.; Ding, H.G. Elevated serum alpha fetoprotein levels promote pathological progression of hepatocellular carcinoma. World J. Gastroenterol., 2011, 17(41), 4563-4571.
[http://dx.doi.org/10.3748/wjg.v17.i41.4563] [PMID: 22147961]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy