Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

淀粉样蛋白的降解产物:它们是罪魁祸首吗?

卷 17, 期 10, 2020

页: [869 - 880] 页: 12

弟呕挨: 10.2174/1567205017666201203142103

价格: $65

摘要

目标:β-淀粉样蛋白(Aβ)肽以寡聚形式对细胞最具毒性。普遍认为,低聚物可以在细胞膜上形成离子通道,并允许钙和其他离子进入细胞。其他机制的激活,例如细胞凋亡或脂质过氧化,加剧了毒性,但它本身可能源于相同的起始点,即由于膜通透性增加而引起的离子干扰。然而,由Aβ产生的膜通道的实验研究令人惊讶地受到限制。 方法:在这里,我们报告了一种新颖的流式细胞仪技术,该技术可用于检测膜暴露于淀粉样蛋白肽诱导的钙渗透性增加。使用钙敏感的荧光探针监测钙进入脂质体。完好的脂质膜不能渗透钙。在无钙培养基中制备的脂质体仅在形成通道后才能够在含钙培养基中积累钙。 结果:使用该技术,我们证明了添加短淀粉样蛋白片段Ab25-35(以其对培养的神经元的极高毒性而闻名)易于增加膜对钙的通透性。然而,大小相似的肽Ab22-35和全长肽Aβ1-42均未产生通道。在由带负电荷的脂质磷脂酰丝氨酸制成的膜中观察到通道的形成,但是在由中性磷脂酰胆碱制成的膜中未观察到通道的形成。 讨论:我们已经分析了几个对理解阿尔茨海默氏病的发病机理可能至关重要的问题,特别是1)需要带负电的膜来产生离子通道; 2)聚集形式在Aβ肽的细胞毒性中的潜在作用; 3)淀粉样蛋白多种降解产物的通道形成能力; 4)由淀粉样肽形成的离子通道的非特异性。形成通道的低聚物的潜在靶标似乎在细胞内,并且是阿尔茨海默氏病(线粒体和溶酶体)功能障碍众所周知的细胞器。实际上,溶酶体也可以是降解淀粉样蛋白的生产者。提供的推测支持以下假设:神经元毒性可能由β-淀粉样蛋白的降解产物引起。

关键词: 膜通道,β-淀粉样蛋白,神经毒性,蛋白质降解,阿尔茨海默氏病,脂质体。

Next »
[1]
Benilova I, Karran E, De Strooper B. The toxic Aβ oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat Neurosci 2012; 15(3): 349-57.
[http://dx.doi.org/10.1038/nn.3028 ] [PMID: 22286176]
[2]
Teplow DB. On the subject of rigor in the study of amyloid β-protein assembly. Alzheimers Res Ther 2013; 5(4): 39.
[http://dx.doi.org/10.1186/alzrt203] [PMID: 23981712]
[3]
Cline EN, Bicca MA, Viola KL, Klein WL. The amyloid-β oligomer hypothesis: Beginning of the third decade. J Alzheimers Dis 2018; 64(s1): S567-610.
[http://dx.doi.org/10.3233/JAD-179941] [PMID: 29843241]
[4]
Hong W, Wang Z, Liu W, et al. Diffusible, highly bioactive oligomers represent a critical minority of soluble Aβ in Alzheimer’s disease brain. Acta Neuropathol 2018; 136(1): 19-40.
[http://dx.doi.org/10.1007/s00401-018-1846-7] [PMID: 29687257]
[5]
Lal R, Lin H, Quist AP. Amyloid beta ion channel: 3D structure and relevance to amyloid channel paradigm. Biochim Biophys Acta 2007; 1768(8): 1966-75.
[http://dx.doi.org/10.1016/j.bbamem.2007.04.021] [PMID: 17553456]
[6]
Chiti F, Dobson CM. Protein misfolding, amyloid formation, and human disease: a summary of progress Over the Last Decade. Annu Rev Biochem 2017; 86(1): 27-68.
[7]
Glabe CG. Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. Neurobiol Aging 2006; 27(4): 570-5.
[http://dx.doi.org/10.1016/j.neurobiolaging.2005.04.017 ] [PMID: 16481071]
[8]
Glabe CG. Structural classification of toxic amyloid oligomers. J Biol Chem 2008; 283(44): 29639-43.
[http://dx.doi.org/10.1074/jbc.R800016200 ] [PMID: 18723507]
[9]
Glabe CG, Kayed R. Common structure and toxic function of amyloid oligomers implies a common mechanism of pathogenesis. Neurology 2006; 66(2)(Suppl. 1): S74-8.
[http://dx.doi.org/10.1212/01.wnl.0000192103.24796.42] [PMID: 16432151]
[10]
Fan L, Mao C, Hu X, et al. New insights into the pathogenesis of Alzheimer’s disease. Front Neurol 2020; 10: 1312.
[http://dx.doi.org/10.3389/fneur.2019.01312]
[11]
Kayed R, Lasagna-Reeves CA. Molecular mechanisms of amyloid oligomers toxicity. J Alzheimers Dis 2013; 33(1): S67-78.
[http://dx.doi.org/10.3233/JAD-2012-129001] [PMID: 22531422]
[12]
Matsuzaki K. How do membranes initiate Alzheimer’s disease? Formation of toxic amyloid fibrils by the amyloid β-protein on ganglioside clusters. Acc Chem Res 2014; 47(8): 2397-404.
[http://dx.doi.org/10.1021/ar500127z ] [PMID: 25029558]
[13]
Mucke L, Selkoe DJ. Neurotoxicity of amyloid β-protein: synaptic and network dysfunction. Cold Spring Harb Perspect Med 2012; 2(7)a006338
[http://dx.doi.org/10.1101/cshperspect.a006338]
[14]
Salahuddin P, Fatima MT, Abdelhameed AS, Nusrat S, Khan RH. Structure of amyloid oligomers and their mechanisms of toxicities: targeting amyloid oligomers using novel therapeutic approaches. Eur J Med Chem 2016; 114: 41-58.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.065 ] [PMID: 26974374]
[15]
Tolar M, Abushakra S, Sabbagh M. The path forward in Alzheimer’s disease therapeutics: Reevaluating the amyloid cascade hypothesis. Alzheimers Dement 2020; 16(11): 1553-60.
[PMID: 31706733]
[16]
Arispe N, Pollard HB, Rojas E. Giant multilevel cation channels formed by Alzheimer disease amyloid beta-protein [A beta P-(1-40)] in bilayer membranes. Proc Natl Acad Sci USA 1993; 90(22): 10573-7.
[http://dx.doi.org/10.1073/pnas.90.22.10573] [PMID: 7504270]
[17]
Arispe N, Pollard HB, Rojas E. The ability of amyloid beta-protein [A beta P (1-40)] to form Ca2+ channels provides a mechanism for neuronal death in Alzheimer’s disease. Ann N Y Acad Sci 1994; 747: 256-66.
[http://dx.doi.org/10.1111/j.1749-6632.1994.tb44414.x ] [PMID: 7847675]
[18]
Arispe N, Pollard HB, Rojas E. beta-Amyloid Ca(2+)-channel hypothesis for neuronal death in Alzheimer disease. Mol Cell Biochem 1994; 140(2): 119-25.
[http://dx.doi.org/10.1007/BF00926750 ] [PMID: 7898484]
[19]
Arispe N, Rojas E, Pollard HB. Alzheimer disease amyloid beta protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminum. Proc Natl Acad Sci USA 1993; 90(2): 567-71.
[http://dx.doi.org/10.1073/pnas.90.2.567] [PMID: 8380642]
[20]
Galdzicki Z, Fukuyama R, Wadhwani KC, Rapoport SI, Ehrenstein G. Beta-Amyloid increases choline conductance of PC12 cells: possible mechanism of toxicity in Alzheimer’s disease. Brain Res 1994; 646(2): 332-6.
[http://dx.doi.org/10.1016/0006-8993(94)90101-5] [PMID: 8069685]
[21]
Lin H, Zhu YJ, Lal R. Amyloid beta protein (1-40) forms calcium-permeable, Zn2+-sensitive channel in reconstituted lipid vesicles. Biochemistry 1999; 38(34): 11189-96.
[http://dx.doi.org/10.1021/bi982997c] [PMID: 10460176]
[22]
Mirzabekov T, Lin MC, Yuan WL, et al. Channel formation in planar lipid bilayers by a neurotoxic fragment of the beta-amyloid peptide. Biochem Biophys Res Commun 1994; 202(2): 1142-8.
[http://dx.doi.org/10.1006/bbrc.1994.2047 ] [PMID: 7519420]
[23]
Pollard HB, Rojas E, Arispe N. A new hypothesis for the mechanism of amyloid toxicity, based on the calcium channel activity of amyloid beta protein (A beta P) in phospholipid bilayer membranes. Ann N Y Acad Sci 1993; 695: 165-8.
[http://dx.doi.org/10.1111/j.1749-6632.1993.tb23046.x ] [PMID: 8239277]
[24]
Lasagna-Reeves CA, Glabe CG, Kayed R. Amyloid-β annular protofibrils evade fibrillar fate in Alzheimer disease brain. J Biol Chem 2011; 286(25): 22122-30.
[http://dx.doi.org/10.1074/jbc.M111.236257 ] [PMID: 21507938]
[25]
Parodi J, Sepúlveda FJ, Roa J, Opazo C, Inestrosa NC, Aguayo LG. Beta-amyloid causes depletion of synaptic vesicles leading to neurotransmission failure. J Biol Chem 2010; 285(4): 2506-14.
[http://dx.doi.org/10.1074/jbc.M109.030023 ] [PMID: 19915004]
[26]
Ahmed M, Davis J, Aucoin D, et al. Structural conversion of neurotoxic amyloid-beta(1-42) oligomers to fibrils. Nat Struct Mol Biol 2010; 17(5): 561-7.
[http://dx.doi.org/10.1038/nsmb.1799] [PMID: 20383142]
[27]
Alarcón JM, Brito JA, Hermosilla T, Atwater I, Mears D, Rojas E. Ion channel formation by Alzheimer’s disease amyloid beta-peptide (Abeta40) in unilamellar liposomes is determined by anionic phospholipids. Peptides 2006; 27(1): 95-104.
[http://dx.doi.org/10.1016/j.peptides.2005.07.004] [PMID: 16139931]
[28]
Pollard HB, Arispe N, Rojas E. Ion channel hypothesis for Alzheimer amyloid peptide neurotoxicity. Cell Mol Neurobiol 1995; 15(5): 513-26.
[http://dx.doi.org/10.1007/BF02071314 ] [PMID: 8719038]
[29]
Sokolov Y, Kozak JA, Kayed R, Chanturiya A, Glabe C, Hall JE. Soluble amyloid oligomers increase bilayer conductance by altering dielectric structure. J Gen Physiol 2006; 128(6): 637-47.
[http://dx.doi.org/10.1085/jgp.200609533] [PMID: 17101816]
[30]
Bevers EM, Williamson PL. Getting to the Outer Leaflet: physiology of phosphatidylserine exposure at the plasma membrane. Physiol Rev 2016; 96(2): 605-45.
[http://dx.doi.org/10.1152/physrev.00020.2015] [PMID: 26936867]
[31]
Kanekiyo T, Cirrito JR, Liu C-C, Shinohara M, Li J, Schuler DR, et al. neuronal clearance of amyloid-β by endocytic receptor LRP1 2013; 33(49): 19276-83.
[http://dx.doi.org/10.1523/JNEUROSCI.3487-13.2013]
[32]
Li J, Kanekiyo T, Shinohara M, Zhang Y, LaDu MJ, Xu H, et al. Differential regulation of amyloid-β endocytic trafficking and lysosomal degradation by apolipoprotein E isoforms. J Biol Chem 2012; 287(53): 44593-601.
[http://dx.doi.org/10.1074/jbc.M112.420224 ] [PMID: 23132858]
[33]
Kaneko I, Morimoto K, Kubo T. Drastic neuronal loss in vivo by beta-amyloid racemized at Ser(26) residue: conversion of non-toxic [D-Ser(26)]beta-amyloid 1-40 to toxic and proteinase-resistant fragments. Neuroscience 2001; 104(4): 1003-11.
[http://dx.doi.org/10.1016/S0306-4522(01)00155-5 ] [PMID: 11457586]
[34]
Itzhaki RF, Lathe R, Balin BJ, et al. Microbes and Alzheimer’s disease. J Alzheimers Dis 2016; 51(4): 979-84.
[http://dx.doi.org/10.3233/JAD-160152 ] [PMID: 26967229]
[35]
Sochocka M, Zwolińska K, Leszek J. The infectious etiology of alzheimer’s disease. Curr Neuropharmacol 2017; 15(7): 996-1009.
[http://dx.doi.org/10.2174/1570159X15666170313122937 ] [PMID: 28294067]
[36]
Cascella R, Evangelisti E, Bigi A, et al. Soluble oligomers require a ganglioside to trigger neuronal calcium overload. J Alzheimers Dis 2017; 60(3): 923-38.
[http://dx.doi.org/10.3233/JAD-170340] [PMID: 28922156]
[37]
Evangelisti E, Wright D, Zampagni M, et al. Lipid rafts mediate amyloid-induced calcium dyshomeostasis and oxidative stress in Alzheimer’s disease. Curr Alzheimer Res 2013; 10(2): 143-53.
[http://dx.doi.org/10.2174/1567205011310020004 ] [PMID: 22950913]
[38]
Vestergaard M, Hamada T, Morita M, Takagi M. Cholesterol, lipids, amyloid Beta, and Alzheimer’s. Curr Alzheimer Res 2010; 7(3): 262-70.
[http://dx.doi.org/10.2174/156720510791050821 ] [PMID: 19715550]
[39]
Pagani L, Eckert A. Amyloid-Beta interaction with mitochondria. Int J Alzheimers Dis 2011; 2011925050
[http://dx.doi.org/10.4061/2011/925050 ] [PMID: 21461357]
[40]
Nixon RA. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer’s disease: inseparable partners in a multifactorial disease. FASEB J 2017; 31(7): 2729-43.
[http://dx.doi.org/10.1096/fj.201700359 ] [PMID: 28663518]
[41]
Hirakura Y, Lin MC, Kagan BL. Alzheimer amyloid abeta1-42 channels: effects of solvent, pH, and Congo Red. J Neurosci Res 1999; 57(4): 458-66.
[PMID: 10440895]
[42]
Mindell JA. Lysosomal acidification mechanisms. Annu Rev Physiol 2012; 74(1): 69-86.
[43]
Lührs T, Ritter C, Adrian M, et al. 3D structure of Alzheimer’s amyloid-beta(1-42) fibrils. Proc Natl Acad Sci USA 2005; 102(48): 17342-7.
[http://dx.doi.org/10.1073/pnas.0506723102] [PMID: 16293696]
[44]
Jang H, Arce FT, Ramachandran S, et al. Truncated beta-amyloid peptide channels provide an alternative mechanism for Alzheimer’s Disease and Down syndrome. Proc Natl Acad Sci USA 2010; 107(14): 6538-43.
[http://dx.doi.org/10.1073/pnas.0914251107 ] [PMID: 20308552]
[45]
Jang H, Arce FT, Ramachandran S, Kagan BL, Lal R, Nussinov R. Disordered amyloidogenic peptides may insert into the membrane and assemble into common cyclic structural motifs. Chem Soc Rev 2014; 43(19): 6750-64.
[http://dx.doi.org/10.1039/C3CS60459D ] [PMID: 24566672]
[46]
Gennis RB. Biomembranes: Molecular structure and function. N.Y.: Springer-Verlag 1989.
[http://dx.doi.org/10.1007/978-1-4757-2065-5]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy