Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

Degradation Products of Amyloid Protein: Are They The Culprits?

Author(s): Dmitry V. Zaretsky* and Maria Zaretskaia

Volume 17, Issue 10, 2020

Page: [869 - 880] Pages: 12

DOI: 10.2174/1567205017666201203142103

Price: $65

Abstract

Objectives: Beta-amyloid (Aβ) peptides are most toxic to cells in oligomeric form. It is commonly accepted that oligomers can form ion channels in cell membranes and allow calcium and other ions to enter cells. The activation of other mechanisms, such as apoptosis or lipid peroxidation, aggravates the toxicity, but it itself can result from the same initial point, that is, ion disturbance due to an increased permeability of membranes. However, experimental studies of membrane channels created by Aβ are surprisingly limited.

Methods: Here, we report a novel flow cytometry technique which can be used to detect increased permeability of membranes to calcium induced by the exposure to amyloid peptides. Calcium entry into the liposome is monitored using calcium-sensitive fluorescent probe. Undamaged lipid membranes are not permeable to calcium. Liposomes that are prepared in a calcium-free medium become able to accumulate calcium in a calcium-containing medium only after the formation of channels.

Results: Using this technique, we demonstrated that the addition of short amyloid fragment Ab25-35, which is known for its extreme toxicity on cultured neurons, readily increased membrane permeability to calcium. However, neither similarly sized peptide Ab22-35 nor full-length peptide Aβ1-42 were producing channels. The formation of channels was observed in the membranes made of phosphatidylserine, a negatively charged lipid, but not in membranes made of the neutral phosphatidylcholine.

Discussion: We have analyzed several issues which could be critical for understanding the pathogenesis of Alzheimer’s disease, specifically 1) the need for a negatively charged membrane to produce the ion channel; 2) the potential role of the aggregated form in cellular toxicity of Aβ peptides; 3) channelforming ability of multiple degradation products of amyloid; 4) non-specificity of ion channels formed by amyloid peptides. Potential targets of channel-forming oligomers appear to be intracellular and are organelles well-known for dysfunction in Alzheimer’s disease (mitochondria and lysosomes). In fact, lysosomes can also be the producers of degraded amyloid. Provided speculations support the hypothesis that neuronal toxicity can be caused by the degradation products of beta-amyloid.

Keywords: Membrane channels, beta-amyloid, neurotoxicity, protein degradation, Alzheimer’s disease, liposome.

Next »
[1]
Benilova I, Karran E, De Strooper B. The toxic Aβ oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat Neurosci 2012; 15(3): 349-57.
[http://dx.doi.org/10.1038/nn.3028 ] [PMID: 22286176]
[2]
Teplow DB. On the subject of rigor in the study of amyloid β-protein assembly. Alzheimers Res Ther 2013; 5(4): 39.
[http://dx.doi.org/10.1186/alzrt203] [PMID: 23981712]
[3]
Cline EN, Bicca MA, Viola KL, Klein WL. The amyloid-β oligomer hypothesis: Beginning of the third decade. J Alzheimers Dis 2018; 64(s1): S567-610.
[http://dx.doi.org/10.3233/JAD-179941] [PMID: 29843241]
[4]
Hong W, Wang Z, Liu W, et al. Diffusible, highly bioactive oligomers represent a critical minority of soluble Aβ in Alzheimer’s disease brain. Acta Neuropathol 2018; 136(1): 19-40.
[http://dx.doi.org/10.1007/s00401-018-1846-7] [PMID: 29687257]
[5]
Lal R, Lin H, Quist AP. Amyloid beta ion channel: 3D structure and relevance to amyloid channel paradigm. Biochim Biophys Acta 2007; 1768(8): 1966-75.
[http://dx.doi.org/10.1016/j.bbamem.2007.04.021] [PMID: 17553456]
[6]
Chiti F, Dobson CM. Protein misfolding, amyloid formation, and human disease: a summary of progress Over the Last Decade. Annu Rev Biochem 2017; 86(1): 27-68.
[7]
Glabe CG. Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. Neurobiol Aging 2006; 27(4): 570-5.
[http://dx.doi.org/10.1016/j.neurobiolaging.2005.04.017 ] [PMID: 16481071]
[8]
Glabe CG. Structural classification of toxic amyloid oligomers. J Biol Chem 2008; 283(44): 29639-43.
[http://dx.doi.org/10.1074/jbc.R800016200 ] [PMID: 18723507]
[9]
Glabe CG, Kayed R. Common structure and toxic function of amyloid oligomers implies a common mechanism of pathogenesis. Neurology 2006; 66(2)(Suppl. 1): S74-8.
[http://dx.doi.org/10.1212/01.wnl.0000192103.24796.42] [PMID: 16432151]
[10]
Fan L, Mao C, Hu X, et al. New insights into the pathogenesis of Alzheimer’s disease. Front Neurol 2020; 10: 1312.
[http://dx.doi.org/10.3389/fneur.2019.01312]
[11]
Kayed R, Lasagna-Reeves CA. Molecular mechanisms of amyloid oligomers toxicity. J Alzheimers Dis 2013; 33(1): S67-78.
[http://dx.doi.org/10.3233/JAD-2012-129001] [PMID: 22531422]
[12]
Matsuzaki K. How do membranes initiate Alzheimer’s disease? Formation of toxic amyloid fibrils by the amyloid β-protein on ganglioside clusters. Acc Chem Res 2014; 47(8): 2397-404.
[http://dx.doi.org/10.1021/ar500127z ] [PMID: 25029558]
[13]
Mucke L, Selkoe DJ. Neurotoxicity of amyloid β-protein: synaptic and network dysfunction. Cold Spring Harb Perspect Med 2012; 2(7)a006338
[http://dx.doi.org/10.1101/cshperspect.a006338]
[14]
Salahuddin P, Fatima MT, Abdelhameed AS, Nusrat S, Khan RH. Structure of amyloid oligomers and their mechanisms of toxicities: targeting amyloid oligomers using novel therapeutic approaches. Eur J Med Chem 2016; 114: 41-58.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.065 ] [PMID: 26974374]
[15]
Tolar M, Abushakra S, Sabbagh M. The path forward in Alzheimer’s disease therapeutics: Reevaluating the amyloid cascade hypothesis. Alzheimers Dement 2020; 16(11): 1553-60.
[PMID: 31706733]
[16]
Arispe N, Pollard HB, Rojas E. Giant multilevel cation channels formed by Alzheimer disease amyloid beta-protein [A beta P-(1-40)] in bilayer membranes. Proc Natl Acad Sci USA 1993; 90(22): 10573-7.
[http://dx.doi.org/10.1073/pnas.90.22.10573] [PMID: 7504270]
[17]
Arispe N, Pollard HB, Rojas E. The ability of amyloid beta-protein [A beta P (1-40)] to form Ca2+ channels provides a mechanism for neuronal death in Alzheimer’s disease. Ann N Y Acad Sci 1994; 747: 256-66.
[http://dx.doi.org/10.1111/j.1749-6632.1994.tb44414.x ] [PMID: 7847675]
[18]
Arispe N, Pollard HB, Rojas E. beta-Amyloid Ca(2+)-channel hypothesis for neuronal death in Alzheimer disease. Mol Cell Biochem 1994; 140(2): 119-25.
[http://dx.doi.org/10.1007/BF00926750 ] [PMID: 7898484]
[19]
Arispe N, Rojas E, Pollard HB. Alzheimer disease amyloid beta protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminum. Proc Natl Acad Sci USA 1993; 90(2): 567-71.
[http://dx.doi.org/10.1073/pnas.90.2.567] [PMID: 8380642]
[20]
Galdzicki Z, Fukuyama R, Wadhwani KC, Rapoport SI, Ehrenstein G. Beta-Amyloid increases choline conductance of PC12 cells: possible mechanism of toxicity in Alzheimer’s disease. Brain Res 1994; 646(2): 332-6.
[http://dx.doi.org/10.1016/0006-8993(94)90101-5] [PMID: 8069685]
[21]
Lin H, Zhu YJ, Lal R. Amyloid beta protein (1-40) forms calcium-permeable, Zn2+-sensitive channel in reconstituted lipid vesicles. Biochemistry 1999; 38(34): 11189-96.
[http://dx.doi.org/10.1021/bi982997c] [PMID: 10460176]
[22]
Mirzabekov T, Lin MC, Yuan WL, et al. Channel formation in planar lipid bilayers by a neurotoxic fragment of the beta-amyloid peptide. Biochem Biophys Res Commun 1994; 202(2): 1142-8.
[http://dx.doi.org/10.1006/bbrc.1994.2047 ] [PMID: 7519420]
[23]
Pollard HB, Rojas E, Arispe N. A new hypothesis for the mechanism of amyloid toxicity, based on the calcium channel activity of amyloid beta protein (A beta P) in phospholipid bilayer membranes. Ann N Y Acad Sci 1993; 695: 165-8.
[http://dx.doi.org/10.1111/j.1749-6632.1993.tb23046.x ] [PMID: 8239277]
[24]
Lasagna-Reeves CA, Glabe CG, Kayed R. Amyloid-β annular protofibrils evade fibrillar fate in Alzheimer disease brain. J Biol Chem 2011; 286(25): 22122-30.
[http://dx.doi.org/10.1074/jbc.M111.236257 ] [PMID: 21507938]
[25]
Parodi J, Sepúlveda FJ, Roa J, Opazo C, Inestrosa NC, Aguayo LG. Beta-amyloid causes depletion of synaptic vesicles leading to neurotransmission failure. J Biol Chem 2010; 285(4): 2506-14.
[http://dx.doi.org/10.1074/jbc.M109.030023 ] [PMID: 19915004]
[26]
Ahmed M, Davis J, Aucoin D, et al. Structural conversion of neurotoxic amyloid-beta(1-42) oligomers to fibrils. Nat Struct Mol Biol 2010; 17(5): 561-7.
[http://dx.doi.org/10.1038/nsmb.1799] [PMID: 20383142]
[27]
Alarcón JM, Brito JA, Hermosilla T, Atwater I, Mears D, Rojas E. Ion channel formation by Alzheimer’s disease amyloid beta-peptide (Abeta40) in unilamellar liposomes is determined by anionic phospholipids. Peptides 2006; 27(1): 95-104.
[http://dx.doi.org/10.1016/j.peptides.2005.07.004] [PMID: 16139931]
[28]
Pollard HB, Arispe N, Rojas E. Ion channel hypothesis for Alzheimer amyloid peptide neurotoxicity. Cell Mol Neurobiol 1995; 15(5): 513-26.
[http://dx.doi.org/10.1007/BF02071314 ] [PMID: 8719038]
[29]
Sokolov Y, Kozak JA, Kayed R, Chanturiya A, Glabe C, Hall JE. Soluble amyloid oligomers increase bilayer conductance by altering dielectric structure. J Gen Physiol 2006; 128(6): 637-47.
[http://dx.doi.org/10.1085/jgp.200609533] [PMID: 17101816]
[30]
Bevers EM, Williamson PL. Getting to the Outer Leaflet: physiology of phosphatidylserine exposure at the plasma membrane. Physiol Rev 2016; 96(2): 605-45.
[http://dx.doi.org/10.1152/physrev.00020.2015] [PMID: 26936867]
[31]
Kanekiyo T, Cirrito JR, Liu C-C, Shinohara M, Li J, Schuler DR, et al. neuronal clearance of amyloid-β by endocytic receptor LRP1 2013; 33(49): 19276-83.
[http://dx.doi.org/10.1523/JNEUROSCI.3487-13.2013]
[32]
Li J, Kanekiyo T, Shinohara M, Zhang Y, LaDu MJ, Xu H, et al. Differential regulation of amyloid-β endocytic trafficking and lysosomal degradation by apolipoprotein E isoforms. J Biol Chem 2012; 287(53): 44593-601.
[http://dx.doi.org/10.1074/jbc.M112.420224 ] [PMID: 23132858]
[33]
Kaneko I, Morimoto K, Kubo T. Drastic neuronal loss in vivo by beta-amyloid racemized at Ser(26) residue: conversion of non-toxic [D-Ser(26)]beta-amyloid 1-40 to toxic and proteinase-resistant fragments. Neuroscience 2001; 104(4): 1003-11.
[http://dx.doi.org/10.1016/S0306-4522(01)00155-5 ] [PMID: 11457586]
[34]
Itzhaki RF, Lathe R, Balin BJ, et al. Microbes and Alzheimer’s disease. J Alzheimers Dis 2016; 51(4): 979-84.
[http://dx.doi.org/10.3233/JAD-160152 ] [PMID: 26967229]
[35]
Sochocka M, Zwolińska K, Leszek J. The infectious etiology of alzheimer’s disease. Curr Neuropharmacol 2017; 15(7): 996-1009.
[http://dx.doi.org/10.2174/1570159X15666170313122937 ] [PMID: 28294067]
[36]
Cascella R, Evangelisti E, Bigi A, et al. Soluble oligomers require a ganglioside to trigger neuronal calcium overload. J Alzheimers Dis 2017; 60(3): 923-38.
[http://dx.doi.org/10.3233/JAD-170340] [PMID: 28922156]
[37]
Evangelisti E, Wright D, Zampagni M, et al. Lipid rafts mediate amyloid-induced calcium dyshomeostasis and oxidative stress in Alzheimer’s disease. Curr Alzheimer Res 2013; 10(2): 143-53.
[http://dx.doi.org/10.2174/1567205011310020004 ] [PMID: 22950913]
[38]
Vestergaard M, Hamada T, Morita M, Takagi M. Cholesterol, lipids, amyloid Beta, and Alzheimer’s. Curr Alzheimer Res 2010; 7(3): 262-70.
[http://dx.doi.org/10.2174/156720510791050821 ] [PMID: 19715550]
[39]
Pagani L, Eckert A. Amyloid-Beta interaction with mitochondria. Int J Alzheimers Dis 2011; 2011925050
[http://dx.doi.org/10.4061/2011/925050 ] [PMID: 21461357]
[40]
Nixon RA. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer’s disease: inseparable partners in a multifactorial disease. FASEB J 2017; 31(7): 2729-43.
[http://dx.doi.org/10.1096/fj.201700359 ] [PMID: 28663518]
[41]
Hirakura Y, Lin MC, Kagan BL. Alzheimer amyloid abeta1-42 channels: effects of solvent, pH, and Congo Red. J Neurosci Res 1999; 57(4): 458-66.
[PMID: 10440895]
[42]
Mindell JA. Lysosomal acidification mechanisms. Annu Rev Physiol 2012; 74(1): 69-86.
[43]
Lührs T, Ritter C, Adrian M, et al. 3D structure of Alzheimer’s amyloid-beta(1-42) fibrils. Proc Natl Acad Sci USA 2005; 102(48): 17342-7.
[http://dx.doi.org/10.1073/pnas.0506723102] [PMID: 16293696]
[44]
Jang H, Arce FT, Ramachandran S, et al. Truncated beta-amyloid peptide channels provide an alternative mechanism for Alzheimer’s Disease and Down syndrome. Proc Natl Acad Sci USA 2010; 107(14): 6538-43.
[http://dx.doi.org/10.1073/pnas.0914251107 ] [PMID: 20308552]
[45]
Jang H, Arce FT, Ramachandran S, Kagan BL, Lal R, Nussinov R. Disordered amyloidogenic peptides may insert into the membrane and assemble into common cyclic structural motifs. Chem Soc Rev 2014; 43(19): 6750-64.
[http://dx.doi.org/10.1039/C3CS60459D ] [PMID: 24566672]
[46]
Gennis RB. Biomembranes: Molecular structure and function. N.Y.: Springer-Verlag 1989.
[http://dx.doi.org/10.1007/978-1-4757-2065-5]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy