Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Mini-Review Article

Post-translational Modifications of bZIP Transcription Factors in Abscisic Acid Signaling and Drought Responses

Author(s): Hyunhee Joo, Woonhee Baek, Chae Woo Lim* and Sung Chul Lee*

Volume 22, Issue 1, 2021

Published on: 30 November, 2020

Page: [4 - 15] Pages: 12

DOI: 10.2174/1389202921999201130112116

Price: $65

Abstract

Under drought stress, plants have developed various mechanisms to survive in the reduced water supply, of which the regulation of stress-related gene expression is responsible for several transcription factors. The basic leucine zippers (bZIPs) are one of the largest and most diverse transcription factor families in plants. Among the 10 Arabidopsis bZIP groups, group A bZIP transcription factors function as a positive or negative regulator in ABA signal transduction and drought stress response. These bZIP transcription factors, which are involved in the drought response, have also been isolated in various plant species such as rice, pepper, potato, and maize. Recent studies have provided substantial evidence that many bZIP transcription factors undergo the post-translational modifications, through which the regulation of their activity or stability affects plant responses to various intracellular or extracellular stimuli. This review aims to address the modulation of the bZIP proteins in ABA signaling and drought responses through phosphorylation, ubiquitination and sumoylation.

Keywords: Abscisic acid, drought resistance, bZIP transcription factor, post-translational modification, drought stress, gene expression.

Graphical Abstract

[1]
Fujita, M.; Fujita, Y.; Noutoshi, Y.; Takahashi, F.; Narusaka, Y.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr. Opin. Plant Biol., 2006, 9(4), 436-442.
[http://dx.doi.org/10.1016/j.pbi.2006.05.014] [PMID: 16759898]
[2]
Yoo, C.Y.; Pence, H.E.; Hasegawa, P.M.; Mickelbart, M.V. Regulation of transpiration to improve crop water use. Crit. Rev. Plant Sci., 2009, 28, 410-431.
[http://dx.doi.org/10.1080/07352680903173175]
[3]
Ahuja, I.; de Vos, R.C.; Bones, A.M.; Hall, R.D. Plant molecular stress responses face climate change. Trends Plant Sci., 2010, 15(12), 664-674.
[http://dx.doi.org/10.1016/j.tplants.2010.08.002] [PMID: 20846898]
[4]
Hirayama, T.; Shinozaki, K. Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J., 2010, 61(6), 1041-1052.
[http://dx.doi.org/10.1111/j.1365-313X.2010.04124.x] [PMID: 20409277]
[5]
Hummel, I.; Pantin, F.; Sulpice, R.; Piques, M.; Rolland, G.; Dauzat, M.; Christophe, A.; Pervent, M.; Bouteillé, M.; Stitt, M.; Gibon, Y.; Muller, B. Arabidopsis plants acclimate to water deficit at low cost through changes of carbon usage: an integrated perspective using growth, metabolite, enzyme, and gene expression analysis. Plant Physiol., 2010, 154(1), 357-372.
[http://dx.doi.org/10.1104/pp.110.157008] [PMID: 20631317]
[6]
Lee, S.C.; Luan, S. ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant Cell Environ., 2012, 35(1), 53-60.
[http://dx.doi.org/10.1111/j.1365-3040.2011.02426.x] [PMID: 21923759]
[7]
Assmann, S.M. OPEN STOMATA1 opens the door to ABA signaling in Arabidopsis guard cells. Trends Plant Sci., 2003, 8(4), 151-153.
[http://dx.doi.org/10.1016/S1360-1385(03)00052-9] [PMID: 12711225]
[8]
Wasilewska, A.; Vlad, F.; Sirichandra, C.; Redko, Y.; Jammes, F.; Valon, C.; Frei dit Frey, N.; Leung, J. An update on abscisic acid signaling in plants and more. Mol. Plant, 2008, 1(2), 198-217.
[http://dx.doi.org/10.1093/mp/ssm022] [PMID: 19825533]
[9]
Hubbard, K.E.; Nishimura, N.; Hitomi, K.; Getzoff, E.D.; Schroeder, J.I. Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. Genes Dev., 2010, 24(16), 1695-1708.
[http://dx.doi.org/10.1101/gad.1953910] [PMID: 20713515]
[10]
Yamaguchi-Shinozaki, K.; Shinozaki, K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu. Rev. Plant Biol., 2006, 57, 781-803.
[http://dx.doi.org/10.1146/annurev.arplant.57.032905.105444] [PMID: 16669782]
[11]
Tuteja, N. Abscisic Acid and abiotic stress signaling. Plant Signal. Behav., 2007, 2(3), 135-138.
[http://dx.doi.org/10.4161/psb.2.3.4156] [PMID: 19516981]
[12]
Singh, K.; Foley, R.C.; Oñate-Sánchez, L. Transcription factors in plant defense and stress responses. Curr. Opin. Plant Biol., 2002, 5(5), 430-436.
[http://dx.doi.org/10.1016/S1369-5266(02)00289-3] [PMID: 12183182]
[13]
Ellenberger, T. Getting a Grip on DNA Recognition - Structures of the Basic Region Leucine-Zipper, and the Basic Region Helix-Loop-Helix DNA-Binding Domains. Curr. Opin. Struct. Biol., 1994, 4, 12-21.
[http://dx.doi.org/10.1016/S0959-440X(94)90054-X]
[14]
Hurst, H.C. Transcription factors. 1: bZIP proteins. Protein Profile, 1994, 1(2), 123-168.
[PMID: 8528902]
[15]
Guiltinan, M.J.; Marcotte, W.R., Jr; Quatrano, R.S. A plant leucine zipper protein that recognizes an abscisic acid response element. Science, 1990, 250(4978), 267-271.
[http://dx.doi.org/10.1126/science.2145628] [PMID: 2145628]
[16]
Jakoby, M.; Weisshaar, B.; Dröge-Laser, W.; Vicente-Carbajosa, J.; Tiedemann, J.; Kroj, T.; Parcy, F. bZIP Research Group. bZIP transcription factors in Arabidopsis. Trends Plant Sci., 2002, 7(3), 106-111.
[http://dx.doi.org/10.1016/S1360-1385(01)02223-3] [PMID: 11906833]
[17]
Corrêa, L.G.G.; Riaño-Pachón, D.M.; Schrago, C.G.; dos Santos, R.V.; Mueller-Roeber, B.; Vincentz, M. The role of bZIP transcription factors in green plant evolution: adaptive features emerging from four founder genes. PLoS One, 2008, 3(8), e2944.
[http://dx.doi.org/10.1371/journal.pone.0002944] [PMID: 18698409]
[18]
Choi, H.; Hong, J.; Ha, J.; Kang, J.; Kim, S.Y. ABFs, a family of ABA-responsive element binding factors. J. Biol. Chem., 2000, 275(3), 1723-1730.
[http://dx.doi.org/10.1074/jbc.275.3.1723] [PMID: 10636868]
[19]
Finkelstein, R.R.; Lynch, T.J. The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell, 2000, 12(4), 599-609.
[http://dx.doi.org/10.1105/tpc.12.4.599] [PMID: 10760247]
[20]
Lopez-Molina, L.; Mongrand, S.; Chua, N.H. A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc. Natl. Acad. Sci. USA, 2001, 98(8), 4782-4787.
[http://dx.doi.org/10.1073/pnas.081594298] [PMID: 11287670]
[21]
Uno, Y.; Furihata, T.; Abe, H.; Yoshida, R.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc. Natl. Acad. Sci. USA, 2000, 97(21), 11632-11637.
[http://dx.doi.org/10.1073/pnas.190309197] [PMID: 11005831]
[22]
Kim, S.Y. The role of ABF family bZIP class transcription factors in stress response. Physiol. Plant., 2006, 126, 519-527.
[23]
Joo, H.; Lim, C.W.; Lee, S.C. Roles of pepper bZIP transcription factor CaATBZ1 and its interacting partner RING-type E3 ligase CaASRF1 in modulation of ABA signalling and drought tolerance. Plant J., 2019, 100(2), 399-410.
[http://dx.doi.org/10.1111/tpj.14451] [PMID: 31278798]
[24]
Pan, Y.; Hu, X.; Li, C.; Xu, X.; Su, C.; Li, J.; Song, H.; Zhang, X.; Pan, Y. SlbZIP38, a tomato bZIP family gene downregulated by abscisic acid, is a negative regulator of drought and salt stress tolerance. Genes (Basel), 2017, 8(12), 8.
[25]
Llorca, C.M.; Potschin, M.; Zentgraf, U. bZIPs and WRKYs: two large transcription factor families executing two different functional strategies. Front. Plant Sci., 2014, 5, 165.
[26]
Leitner, J.; Petrášek, J.; Tomanov, K.; Retzer, K.; Pařezová, M.; Korbei, B.; Bachmair, A.; Zažímalová, E.; Luschnig, C. Lysine63-linked ubiquitylation of PIN2 auxin carrier protein governs hormonally controlled adaptation of Arabidopsis root growth. Proc. Natl. Acad. Sci. USA, 2012, 109(21), 8322-8327.
[http://dx.doi.org/10.1073/pnas.1200824109] [PMID: 22556266]
[27]
Ju, C.; Yoon, G.M.; Shemansky, J.M.; Lin, D.Y.; Ying, Z.I.; Chang, J.; Garrett, W.M.; Kessenbrock, M.; Groth, G.; Tucker, M.L.; Cooper, B.; Kieber, J.J.; Chang, C. CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proc. Natl. Acad. Sci. USA, 2012, 109(47), 19486-19491.
[http://dx.doi.org/10.1073/pnas.1214848109] [PMID: 23132950]
[28]
Oh, M.H. Wang, X.; Clouse, S.D.; Huber, S.C., Deactivation of the Arabidopsis BRASSINOSTEROID INSENSITIVE 1 (BRI1) receptor kinase by autophosphorylation within the glycine-rich loop. Proc. Natl. Acad. Sci. USA, 2012, 109, 327-332.
[http://dx.doi.org/10.1073/pnas.1108321109] [PMID: 22184234]
[29]
Fu, X.; Richards, D.E.; Ait-Ali, T.; Hynes, L.W.; Ougham, H.; Peng, J.; Harberd, N.P. Gibberellin-mediated proteasome-dependent degradation of the barley DELLA protein SLN1 repressor. Plant Cell, 2002, 14(12), 3191-3200.
[http://dx.doi.org/10.1105/tpc.006197] [PMID: 12468736]
[30]
Devoto, A.; Nieto-Rostro, M.; Xie, D.; Ellis, C.; Harmston, R.; Patrick, E.; Davis, J.; Sherratt, L.; Coleman, M.; Turner, J.G. COI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis. Plant J., 2002, 32(4), 457-466.
[http://dx.doi.org/10.1046/j.1365-313X.2002.01432.x] [PMID: 12445118]
[31]
Miura, K.; Okamoto, H.; Okuma, E.; Shiba, H.; Kamada, H.; Hasegawa, P.M.; Murata, Y. SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis. Plant J., 2013, 73(1), 91-104.
[http://dx.doi.org/10.1111/tpj.12014] [PMID: 22963672]
[32]
Nakashima, K.; Fujita, Y.; Kanamori, N.; Katagiri, T.; Umezawa, T.; Kidokoro, S.; Maruyama, K.; Yoshida, T.; Ishiyama, K.; Kobayashi, M.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol., 2009, 50(7), 1345-1363.
[http://dx.doi.org/10.1093/pcp/pcp083] [PMID: 19541597]
[33]
Lee, S.C.; Lim, C.W.; Lan, W.; He, K.; Luan, S. ABA signaling in guard cells entails a dynamic protein-protein interaction relay from the PYL-RCAR family receptors to ion channels. Mol. Plant, 2013, 6(2), 528-538.
[http://dx.doi.org/10.1093/mp/sss078] [PMID: 22935148]
[34]
Cutler, S.R.; Rodriguez, P.L.; Finkelstein, R.R.; Abrams, S.R. Abscisic acid: emergence of a core signaling network. Annu. Rev. Plant Biol., 2010, 61, 651-679.
[http://dx.doi.org/10.1146/annurev-arplant-042809-112122] [PMID: 20192755]
[35]
Yu, F.; Wu, Y.; Xie, Q. Ubiquitin-Proteasome System in ABA Signaling: From Perception to Action. Mol. Plant, 2016, 9(1), 21-33.
[http://dx.doi.org/10.1016/j.molp.2015.09.015] [PMID: 26455462]
[36]
Lee, J.H.; Yoon, H.J.; Terzaghi, W.; Martinez, C.; Dai, M.; Li, J.; Byun, M.O.; Deng, X.W. DWA1 and DWA2, two Arabidopsis DWD protein components of CUL4-based E3 ligases, act together as negative regulators in ABA signal transduction. Plant Cell, 2010, 22(6), 1716-1732.
[http://dx.doi.org/10.1105/tpc.109.073783] [PMID: 20525848]
[37]
Julian, J.; Coego, A.; Lozano-Juste, J.; Lechner, E.; Wu, Q.; Zhang, X.; Merilo, E.; Belda-Palazon, B.; Park, S.Y.; Cutler, S.R.; An, C.; Genschik, P.; Rodriguez, P.L. The MATH-BTB BPM3 and BPM5 subunits of Cullin3-RING E3 ubiquitin ligases target PP2CA and other clade A PP2Cs for degradation. Proc. Natl. Acad. Sci. USA, 2019, 116(31), 15725-15734.
[http://dx.doi.org/10.1073/pnas.1908677116] [PMID: 31308219]
[38]
Bueso, E.; Rodriguez, L.; Lorenzo-Orts, L.; Gonzalez-Guzman, M.; Sayas, E.; Muñoz-Bertomeu, J.; Ibañez, C.; Serrano, R.; Rodriguez, P.L. The single-subunit RING-type E3 ubiquitin ligase RSL1 targets PYL4 and PYR1 ABA receptors in plasma membrane to modulate abscisic acid signaling. Plant J., 2014, 80(6), 1057-1071.
[http://dx.doi.org/10.1111/tpj.12708] [PMID: 25330042]
[39]
Wu, Q.; Zhang, X.; Peirats-Llobet, M.; Belda-Palazon, B.; Wang, X.; Cui, S.; Yu, X.; Rodriguez, P.L.; An, C. Ubiquitin Ligases RGLG1 and RGLG5 Regulate Abscisic Acid Signaling by Controlling the Turnover of Phosphatase PP2CA. Plant Cell, 2016, 28(9), 2178-2196.
[http://dx.doi.org/10.1105/tpc.16.00364] [PMID: 27577789]
[40]
Benlloch, R.; Lois, L.M. Sumoylation in plants: mechanistic insights and its role in drought stress. J. Exp. Bot., 2018, 69(19), 4539-4554.
[http://dx.doi.org/10.1093/jxb/ery233] [PMID: 29931319]
[41]
Miura, K.; Lee, J.; Jin, J.B.; Yoo, C.Y.; Miura, T.; Hasegawa, P.M. Sumoylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling. Proc. Natl. Acad. Sci. USA, 2009, 106(13), 5418-5423.
[http://dx.doi.org/10.1073/pnas.0811088106] [PMID: 19276109]
[42]
Zheng, Y.; Schumaker, K.S.; Guo, Y. Sumoylation of transcription factor MYB30 by the small ubiquitin-like modifier E3 ligase SIZ1 mediates abscisic acid response in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA, 2012, 109(31), 12822-12827.
[http://dx.doi.org/10.1073/pnas.1202630109] [PMID: 22814374]
[43]
Schütze, K.; Harter, K.; Chaban, C. Post-translational regulation of plant bZIP factors. Trends Plant Sci., 2008, 13(5), 247-255.
[http://dx.doi.org/10.1016/j.tplants.2008.03.002] [PMID: 18424222]
[44]
Giraudat, J.; Parcy, F.; Bertauche, N.; Gosti, F.; Leung, J.; Morris, P.C.; Bouvier-Durand, M.; Vartanian, N. Current advances in abscisic acid action and signalling. Plant Mol. Biol., 1994, 26(5), 1557-1577.
[http://dx.doi.org/10.1007/BF00016490] [PMID: 7858204]
[45]
Busk, P.K.; Pagès, M. Regulation of abscisic acid-induced transcription. Plant Mol. Biol., 1998, 37(3), 425-435.
[http://dx.doi.org/10.1023/A:1006058700720] [PMID: 9617810]
[46]
Fujita, Y.; Fujita, M.; Satoh, R.; Maruyama, K.; Parvez, M.M.; Seki, M.; Hiratsu, K.; Ohme-Takagi, M.; Shinozaki, K.; Yamaguchi-Shinozaki, K. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell, 2005, 17(12), 3470-3488.
[http://dx.doi.org/10.1105/tpc.105.035659] [PMID: 16284313]
[47]
Shen, Q.; Zhang, P.; Ho, T.H. Modular nature of abscisic acid (ABA) response complexes: composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley. Plant Cell, 1996, 8(7), 1107-1119.
[PMID: 8768371]
[48]
Sibéril, Y.; Doireau, P.; Gantet, P. Plant bZIP G-box binding factors. Modular structure and activation mechanisms. Eur. J. Biochem., 2001, 268(22), 5655-5666.
[http://dx.doi.org/10.1046/j.0014-2956.2001.02552.x] [PMID: 11722549]
[49]
Izawa, T.; Foster, R.; Chua, N.H. Plant bZIP protein DNA binding specificity. J. Mol. Biol., 1993, 230(4), 1131-1144.
[http://dx.doi.org/10.1006/jmbi.1993.1230] [PMID: 8487298]
[50]
Foster, R.; Izawa, T.; Chua, N.H. Plant bZIP proteins gather at ACGT elements. FASEB J., 1994, 8(2), 192-200.
[http://dx.doi.org/10.1096/fasebj.8.2.8119490] [PMID: 8119490]
[51]
Wei, K.; Chen, J.; Wang, Y.; Chen, Y.; Chen, S.; Lin, Y.; Pan, S.; Zhong, X.; Xie, D. Genome-wide analysis of bZIP-encoding genes in maize. DNA Res., 2012, 19(6), 463-476.
[http://dx.doi.org/10.1093/dnares/dss026] [PMID: 23103471]
[52]
Hakoshima, T. Leucine zippers, e LS 2001.
[53]
Ellenberger, T.E.; Brandl, C.J.; Struhl, K.; Harrison, S.C. The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted alpha helices: crystal structure of the protein-DNA complex. Cell, 1992, 71(7), 1223-1237.
[http://dx.doi.org/10.1016/S0092-8674(05)80070-4] [PMID: 1473154]
[54]
Vinson, C.R.; Sigler, P.B.; McKnight, S.L. Scissors-grip model for DNA recognition by a family of leucine zipper proteins. Science, 1989, 246(4932), 911-916.
[http://dx.doi.org/10.1126/science.2683088] [PMID: 2683088]
[55]
Riechmann, J.L.; Heard, J.; Martin, G.; Reuber, L.; Jiang, C.; Keddie, J.; Adam, L.; Pineda, O.; Ratcliffe, O.J.; Samaha, R.R.; Creelman, R.; Pilgrim, M.; Broun, P.; Zhang, J.Z.; Ghandehari, D.; Sherman, B.K.; Yu, G. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science, 2000, 290(5499), 2105-2110.
[http://dx.doi.org/10.1126/science.290.5499.2105] [PMID: 11118137]
[56]
Nijhawan, A.; Jain, M.; Tyagi, A.K.; Khurana, J.P. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol., 2008, 146(2), 333-350.
[http://dx.doi.org/10.1104/pp.107.112821] [PMID: 18065552]
[57]
Wang, J.; Zhou, J.; Zhang, B.; Vanitha, J.; Ramachandran, S.; Jiang, S.Y. Genome-wide expansion and expression divergence of the basic leucine zipper transcription factors in higher plants with an emphasis on sorghum. J. Integr. Plant Biol., 2011, 53(3), 212-231.
[http://dx.doi.org/10.1111/j.1744-7909.2010.01017.x] [PMID: 21205183]
[58]
Liu, J.; Chen, N.; Chen, F.; Cai, B.; Dal Santo, S.; Tornielli, G.B.; Pezzotti, M.; Cheng, Z.M. Genome-wide analysis and expression profile of the bZIP transcription factor gene family in grapevine (Vitis vinifera). BMC Genomics, 2014, 15, 281.
[http://dx.doi.org/10.1186/1471-2164-15-281] [PMID: 24725365]
[59]
Li, D.; Fu, F.; Zhang, H.; Song, F. Genome-wide systematic characterization of the bZIP transcriptional factor family in tomato (Solanum lycopersicum L.). BMC Genomics, 2015, 16, 771.
[http://dx.doi.org/10.1186/s12864-015-1990-6] [PMID: 26459863]
[60]
Zhao, J.; Guo, R.; Guo, C.; Hou, H.; Wang, X.; Gao, H. Evolutionary and expression analyses of the apple basic leucine zipper transcription factor family. Front. Plant Sci., 2016, 7, 376.
[http://dx.doi.org/10.3389/fpls.2016.00376] [PMID: 27066030]
[61]
Baillo, E.H.; Kimotho, R.N.; Zhang, Z.; Xu, P. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes (Basel), 2019, 10(10), 771.
[http://dx.doi.org/10.3390/genes10100771] [PMID: 31575043]
[62]
Banerjee, A.; Roychoudhury, A. Abscisic-acid-dependent basic leucine zipper (bZIP) transcription factors in plant abiotic stress. Protoplasma, 2017, 254(1), 3-16.
[http://dx.doi.org/10.1007/s00709-015-0920-4] [PMID: 26669319]
[63]
Furihata, T.; Maruyama, K.; Fujita, Y.; Umezawa, T.; Yoshida, R.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc. Natl. Acad. Sci. USA, 2006, 103(6), 1988-1993.
[http://dx.doi.org/10.1073/pnas.0505667103] [PMID: 16446457]
[64]
Yoshida, T.; Fujita, Y.; Sayama, H.; Kidokoro, S.; Maruyama, K.; Mizoi, J.; Shinozaki, K.; Yamaguchi-Shinozaki, K. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J., 2010, 61(4), 672-685.
[http://dx.doi.org/10.1111/j.1365-313X.2009.04092.x] [PMID: 19947981]
[65]
Kim, S.; Kang, J.Y.; Cho, D.I.; Park, J.H.; Kim, S.Y. ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J., 2004, 40(1), 75-87.
[http://dx.doi.org/10.1111/j.1365-313X.2004.02192.x] [PMID: 15361142]
[66]
Yoshida, T.; Fujita, Y.; Maruyama, K.; Mogami, J.; Todaka, D.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Four Arabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signalling in response to osmotic stress. Plant Cell Environ., 2015, 38(1), 35-49.
[http://dx.doi.org/10.1111/pce.12351] [PMID: 24738645]
[67]
Tajima, H.; Iwata, Y.; Iwano, M.; Takayama, S.; Koizumi, N. Identification of an Arabidopsis transmembrane bZIP transcription factor involved in the endoplasmic reticulum stress response. Biochem. Biophys. Res. Commun., 2008, 374(2), 242-247.
[http://dx.doi.org/10.1016/j.bbrc.2008.07.021] [PMID: 18634751]
[68]
Hong, J.C. General aspects of plant transcription factor families. In: Plant Transcription Factors; Gonzalez, D.H., Ed.; Academic Press: Boston, 2016; pp. 35-56.
[http://dx.doi.org/10.1016/B978-0-12-800854-6.00003-8]
[69]
Ciceri, P.; Gianazza, E.; Lazzari, B.; Lippoli, G.; Genga, A.; Hoscheck, G.; Schmidt, R.J.; Viotti, A. Phosphorylation of Opaque2 changes diurnally and impacts its DNA binding activity. Plant Cell, 1997, 9(1), 97-108.
[PMID: 9014367]
[70]
Zhou, J.M.; Trifa, Y.; Silva, H.; Pontier, D.; Lam, E.; Shah, J.; Klessig, D.F. NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid. Mol. Plant Microbe Interact., 2000, 13(2), 191-202.
[http://dx.doi.org/10.1094/MPMI.2000.13.2.191] [PMID: 10659709]
[71]
Büttner, M.; Singh, K.B. Arabidopsis thaliana ethylene-responsive element binding protein (AtEBP), an ethylene-inducible, GCC box DNA-binding protein interacts with an ocs element binding protein. Proc. Natl. Acad. Sci. USA, 1997, 94(11), 5961-5966.
[http://dx.doi.org/10.1073/pnas.94.11.5961] [PMID: 9159183]
[72]
Chuang, C.F.; Running, M.P.; Williams, R.W.; Meyerowitz, E.M. The PERIANTHIA gene encodes a bZIP protein involved in the determination of floral organ number in Arabidopsis thaliana. Genes Dev., 1999, 13(3), 334-344.
[http://dx.doi.org/10.1101/gad.13.3.334] [PMID: 9990857]
[73]
Walsh, J.; Freeling, M. The liguleless2 gene of maize functions during the transition from the vegetative to the reproductive shoot apex. Plant J., 1999, 19(4), 489-495.
[http://dx.doi.org/10.1046/j.1365-313X.1999.00541.x] [PMID: 10504571]
[74]
Lim, C.W.; Baek, W.; Lee, S.C. Roles of pepper bZIP protein CaDILZ1 and its interacting partner RING-type E3 ligase CaDSR1 in modulation of drought tolerance. Plant J., 2018, 96(2), 452-467.
[http://dx.doi.org/10.1111/tpj.14046] [PMID: 30051516]
[75]
Joo, H.; Lim, C.W.; Lee, S.C. A pepper RING-type E3 ligase, CaASRF1, plays a positive role in drought tolerance via modulation of CaAIBZ1 stability. Plant J., 2019, 98(1), 5-18.
[http://dx.doi.org/10.1111/tpj.14191] [PMID: 30548716]
[76]
Weisshaar, B.; Armstrong, G.A.; Block, A.; da Costa e Silva, O.; Hahlbrock, K. Light-inducible and constitutively expressed DNA-binding proteins recognizing a plant promoter element with functional relevance in light responsiveness. EMBO J., 1991, 10(7), 1777-1786.
[http://dx.doi.org/10.1002/j.1460-2075.1991.tb07702.x] [PMID: 2050115]
[77]
Schindler, U.; Menkens, A.E.; Beckmann, H.; Ecker, J.R.; Cashmore, A.R. Heterodimerization between light-regulated and ubiquitously expressed Arabidopsis GBF bZIP proteins. EMBO J., 1992, 11(4), 1261-1273.
[http://dx.doi.org/10.1002/j.1460-2075.1992.tb05170.x] [PMID: 1373374]
[78]
Ang, L.H.; Chattopadhyay, S.; Wei, N.; Oyama, T.; Okada, K.; Batschauer, A.; Deng, X.W. Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Mol. Cell, 1998, 1(2), 213-222.
[http://dx.doi.org/10.1016/S1097-2765(00)80022-2] [PMID: 9659918]
[79]
Fukazawa, J.; Sakai, T.; Ishida, S.; Yamaguchi, I.; Kamiya, Y.; Takahashi, Y. Repression of shoot growth, a bZIP transcriptional activator, regulates cell elongation by controlling the level of gibberellins. Plant Cell, 2000, 12(6), 901-915.
[http://dx.doi.org/10.1105/tpc.12.6.901] [PMID: 10852936]
[80]
Rook, F.; Gerrits, N.; Kortstee, A.; van Kampen, M.; Borrias, M.; Weisbeek, P.; Smeekens, S. Sucrose-specific signalling represses translation of the Arabidopsis ATB2 bZIP transcription factor gene. Plant J., 1998, 15(2), 253-263.
[http://dx.doi.org/10.1046/j.1365-313X.1998.00205.x] [PMID: 9721683]
[81]
Xiang, Y.; Tang, N.; Du, H.; Ye, H.; Xiong, L. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol., 2008, 148(4), 1938-1952.
[http://dx.doi.org/10.1104/pp.108.128199] [PMID: 18931143]
[82]
Chen, H.; Chen, W.; Zhou, J.; He, H.; Chen, L.; Chen, H.; Deng, X.W. Basic leucine zipper transcription factor OsbZIP16 positively regulates drought resistance in rice. Plant Sci., 2012, 193-194, 8-17.
[http://dx.doi.org/10.1016/j.plantsci.2012.05.003] [PMID: 22794914]
[83]
Liu, C.; Mao, B.; Ou, S.; Wang, W.; Liu, L.; Wu, Y.; Chu, C.; Wang, X. OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice. Plant Mol. Biol., 2014, 84(1-2), 19-36.
[http://dx.doi.org/10.1007/s11103-013-0115-3] [PMID: 23918260]
[84]
Lu, G.; Gao, C.; Zheng, X.; Han, B. Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice. Planta, 2009, 229(3), 605-615.
[http://dx.doi.org/10.1007/s00425-008-0857-3] [PMID: 19048288]
[85]
Yoon, S. Lee, D.-K.; Yu, I.J.; Kim, Y.S.; Choi, Y.D.; Kim, J.-K., Overexpression of the OsbZIP66 transcription factor enhances drought tolerance of rice plants. Plant Biotechnol. Rep., 2017, 11, 53-62.
[http://dx.doi.org/10.1007/s11816-017-0430-2]
[86]
Joo, J.; Lee, Y.H.; Song, S.I. OsbZIP42 is a positive regulator of ABA signaling and confers drought tolerance to rice. Planta, 2019, 249(5), 1521-1533.
[http://dx.doi.org/10.1007/s00425-019-03104-7] [PMID: 30712129]
[87]
Tang, N.; Zhang, H.; Li, X.; Xiao, J.; Xiong, L. Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice. Plant Physiol., 2012, 158(4), 1755-1768.
[http://dx.doi.org/10.1104/pp.111.190389] [PMID: 22301130]
[88]
Liu, C.; Wu, Y.; Wang, X. bZIP transcription factor OsbZIP52/RISBZ5: a potential negative regulator of cold and drought stress response in rice. Planta, 2012, 235(6), 1157-1169.
[http://dx.doi.org/10.1007/s00425-011-1564-z] [PMID: 22189955]
[89]
Ying, S.; Zhang, D.F.; Fu, J.; Shi, Y.S.; Song, Y.C.; Wang, T.Y.; Li, Y. Cloning and characterization of a maize bZIP transcription factor, ZmbZIP72, confers drought and salt tolerance in transgenic Arabidopsis. Planta, 2012, 235(2), 253-266.
[http://dx.doi.org/10.1007/s00425-011-1496-7] [PMID: 21866346]
[90]
Wang, C.; Lu, G.; Hao, Y.; Guo, H.; Guo, Y.; Zhao, J.; Cheng, H. ABP9, a maize bZIP transcription factor, enhances tolerance to salt and drought in transgenic cotton. Planta, 2017, 246(3), 453-469.
[http://dx.doi.org/10.1007/s00425-017-2704-x] [PMID: 28474114]
[91]
Zhu, M.; Meng, X.; Cai, J.; Li, G.; Dong, T.; Li, Z. Basic leucine zipper transcription factor SlbZIP1 mediates salt and drought stress tolerance in tomato. BMC Plant Biol., 2018, 18(1), 83.
[http://dx.doi.org/10.1186/s12870-018-1299-0] [PMID: 29739325]
[92]
Zhang, L.; Zhang, L.; Xia, C.; Zhao, G.; Liu, J.; Jia, J.; Kong, X. A novel wheat bZIP transcription factor, TabZIP60, confers multiple abiotic stress tolerances in transgenic Arabidopsis. Physiol. Plant., 2015, 153(4), 538-554.
[http://dx.doi.org/10.1111/ppl.12261] [PMID: 25135325]
[93]
Wang, J.; Li, Q.; Mao, X.; Li, A.; Jing, R. Wheat transcription factor TaAREB3 participates in drought and freezing tolerances in Arabidopsis. Int. J. Biol. Sci., 2016, 12(2), 257-269.
[http://dx.doi.org/10.7150/ijbs.13538] [PMID: 26884722]
[94]
Liang, C.; Meng, Z.; Meng, Z.; Malik, W.; Yan, R.; Lwin, K.M.; Lin, F.; Wang, Y.; Sun, G.; Zhou, T.; Zhu, T.; Li, J.; Jin, S.; Guo, S.; Zhang, R. GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.). Sci. Rep., 2016, 6, 35040.
[http://dx.doi.org/10.1038/srep35040] [PMID: 27713524]
[95]
Li, Y.; Chen, Q.; Nan, H.; Li, X.; Lu, S.; Zhao, X.; Liu, B.; Guo, C.; Kong, F.; Cao, D. Overexpression of GmFDL19 enhances tolerance to drought and salt stresses in soybean. PLoS One, 2017, 12(6), e0179554.
[http://dx.doi.org/10.1371/journal.pone.0179554] [PMID: 28640834]
[96]
Tu, M.; Wang, X.; Feng, T.; Sun, X.; Wang, Y.; Huang, L.; Gao, M.; Wang, Y.; Wang, X. Expression of a grape (Vitis vinifera) bZIP transcription factor, VlbZIP36, in Arabidopsis thaliana confers tolerance of drought stress during seed germination and seedling establishment. Plant Sci., 2016, 252, 311-323.
[http://dx.doi.org/10.1016/j.plantsci.2016.08.011] [PMID: 27717468]
[97]
Zhao, B.Y.; Hu, Y.F.; Li, J.J.; Yao, X.; Liu, K.D. BnaABF2, a bZIP transcription factor from rapeseed (Brassica napus L.), enhances drought and salt tolerance in transgenic Arabidopsis. Bot. Stud. (Taipei, Taiwan), 2016, 57(1), 12.
[http://dx.doi.org/10.1186/s40529-016-0127-9] [PMID: 28597422]
[98]
Shah, J. The salicylic acid loop in plant defense. Curr. Opin. Plant Biol., 2003, 6(4), 365-371.
[http://dx.doi.org/10.1016/S1369-5266(03)00058-X] [PMID: 12873532]
[99]
Howe, G.A.; Jander, G. Plant immunity to insect herbivores. Annu. Rev. Plant Biol., 2008, 59, 41-66.
[http://dx.doi.org/10.1146/annurev.arplant.59.032607.092825] [PMID: 18031220]
[100]
Shearer, H.L.; Cheng, Y.T.; Wang, L.; Liu, J.; Boyle, P.; Després, C.; Zhang, Y.; Li, X.; Fobert, P.R. Arabidopsis clade I TGA transcription factors regulate plant defenses in an NPR1-independent fashion. Mol. Plant Microbe Interact., 2012, 25(11), 1459-1468.
[http://dx.doi.org/10.1094/MPMI-09-11-0256] [PMID: 22876961]
[101]
Wang, L.; Fobert, P.R. Arabidopsis clade I TGA factors regulate apoplastic defences against the bacterial pathogen Pseudomonas syringae through endoplasmic reticulum-based processes. PLoS One, 2013, 8(9), e77378.
[http://dx.doi.org/10.1371/journal.pone.0077378] [PMID: 24086773]
[102]
Zander, M.; La Camera, S.; Lamotte, O.; Métraux, J.P.; Gatz, C. Arabidopsis thaliana class-II TGA transcription factors are essential activators of jasmonic acid/ethylene-induced defense responses. Plant J., 2010, 61(2), 200-210.
[http://dx.doi.org/10.1111/j.1365-313X.2009.04044.x] [PMID: 19832945]
[103]
Kaminaka, H.; Näke, C.; Epple, P.; Dittgen, J.; Schütze, K.; Chaban, C.; Holt, B.F., III; Merkle, T.; Schäfer, E.; Harter, K.; Dangl, J.L. bZIP10-LSD1 antagonism modulates basal defense and cell death in Arabidopsis following infection. EMBO J., 2006, 25(18), 4400-4411.
[http://dx.doi.org/10.1038/sj.emboj.7601312] [PMID: 16957775]
[104]
Lee, S.C.; Choi, H.W.; Hwang, I.S.; Choi, D.S.; Hwang, B.K. Functional roles of the pepper pathogen-induced bZIP transcription factor, CAbZIP1, in enhanced resistance to pathogen infection and environmental stresses. Planta, 2006, 224(5), 1209-1225.
[http://dx.doi.org/10.1007/s00425-006-0302-4] [PMID: 16718483]
[105]
Ku, Y.S.; Sintaha, M.; Cheung, M.Y.; Lam, H.M. Plant hormone signaling crosstalks between biotic and abiotic stress responses. Int. J. Mol. Sci., 2018, 19(10), 19.
[http://dx.doi.org/10.3390/ijms19103206] [PMID: 30336563]
[106]
He, Q.; Cai, H.; Bai, M.; Zhang, M.; Chen, F.; Huang, Y.; Priyadarshani, S.; Chai, M.; Liu, L.; Chen, H.; Qin, Y. A soybean bZIP transcription factor GmbZIP19 confers multiple biotic and abiotic stress responses in plant. Int. J. Mol. Sci., 2020, 21(13), 4701.
[107]
Hsieh, T.H.; Li, C.W.; Su, R.C.; Cheng, C.P.; Sanjaya, ; Tsai, Y.C.; Chan, M.T. A tomato bZIP transcription factor, SlAREB, is involved in water deficit and salt stress response. Planta, 2010, 231(6), 1459-1473.
[http://dx.doi.org/10.1007/s00425-010-1147-4] [PMID: 20358223]
[108]
Tak, H.; Mhatre, M. Cloning and molecular characterization of a putative bZIP transcription factor VvbZIP23 from Vitis vinifera. Protoplasma, 2013, 250(1), 333-345.
[http://dx.doi.org/10.1007/s00709-012-0417-3] [PMID: 22610648]
[109]
Ciechanover, A. Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat. Rev. Mol. Cell Biol., 2005, 6(1), 79-87.
[http://dx.doi.org/10.1038/nrm1552] [PMID: 15688069]
[110]
Hunter, T. Tyrosine phosphorylation: thirty years and counting. Curr. Opin. Cell Biol., 2009, 21(2), 140-146.
[http://dx.doi.org/10.1016/j.ceb.2009.01.028] [PMID: 19269802]
[111]
Downes, B.; Vierstra, R.D. Post-translational regulation in plants employing a diverse set of polypeptide tags. Biochem. Soc. Trans., 2005, 33(Pt 2), 393-399.
[http://dx.doi.org/10.1042/BST0330393] [PMID: 15787614]
[112]
Deribe, Y.L.; Pawson, T.; Dikic, I. Post-translational modifications in signal integration. Nat. Struct. Mol. Biol., 2010, 17(6), 666-672.
[http://dx.doi.org/10.1038/nsmb.1842] [PMID: 20495563]
[113]
Fujita, Y.; Yoshida, T.; Yamaguchi-Shinozaki, K. Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants. Physiol. Plant., 2013, 147(1), 15-27.
[http://dx.doi.org/10.1111/j.1399-3054.2012.01635.x] [PMID: 22519646]
[114]
Kobayashi, Y.; Murata, M.; Minami, H.; Yamamoto, S.; Kagaya, Y.; Hobo, T.; Yamamoto, A.; Hattori, T. Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors. Plant J., 2005, 44(6), 939-949.
[http://dx.doi.org/10.1111/j.1365-313X.2005.02583.x] [PMID: 16359387]
[115]
Sirichandra, C.; Davanture, M.; Turk, B.E.; Zivy, M.; Valot, B.; Leung, J.; Merlot, S. The Arabidopsis ABA-activated kinase OST1 phosphorylates the bZIP transcription factor ABF3 and creates a 14-3-3 binding site involved in its turnover. PLoS One, 2010, 5(11), e13935.
[http://dx.doi.org/10.1371/journal.pone.0013935] [PMID: 21085673]
[116]
Chae, M.J.; Lee, J.S.; Nam, M.H.; Cho, K.; Hong, J.Y.; Yi, S.A.; Suh, S.C.; Yoon, I.S. A rice dehydration-inducible SNF1-related protein kinase 2 phosphorylates an abscisic acid responsive element-binding factor and associates with ABA signaling. Plant Mol. Biol., 2007, 63(2), 151-169.
[http://dx.doi.org/10.1007/s11103-006-9079-x] [PMID: 16977424]
[117]
Zong, W.; Tang, N.; Yang, J.; Peng, L.; Ma, S.; Xu, Y.; Li, G.; Xiong, L. Tang, N.; Yang, J.; Peng, L.; Ma, S.; Xu, Y.; Li, G.; Xiong, L., Feedback regulation of ABA signaling and biosynthesis by a bZIP transcription factor targets drought-resistance-related genes. Plant Physiol., 2016, 171(4), 2810-2825.
[http://dx.doi.org/10.1104/pp.16.00469] [PMID: 27325665]
[118]
Lynch, T.; Erickson, B.J.; Finkelstein, R.R. Direct interactions of ABA-insensitive(ABI)-clade protein phosphatase(PP)2Cs with calcium-dependent protein kinases and ABA response element-binding bZIPs may contribute to turning off ABA response. Plant Mol. Biol., 2012, 80(6), 647-658.
[http://dx.doi.org/10.1007/s11103-012-9973-3] [PMID: 23007729]
[119]
Fujii, H.; Verslues, P.E.; Zhu, J.K. Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell, 2007, 19(2), 485-494.
[http://dx.doi.org/10.1105/tpc.106.048538] [PMID: 17307925]
[120]
Choi, H.I.; Park, H.J.; Park, J.H.; Kim, S.; Im, M.Y.; Seo, H.H.; Kim, Y.W.; Hwang, I.; Kim, S.Y. Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiol., 2005, 139(4), 1750-1761.
[http://dx.doi.org/10.1104/pp.105.069757] [PMID: 16299177]
[121]
Grandellis, C.; Fantino, E.; Muñiz García, M.N.; Bialer, M.G.; Santin, F.; Capiati, D.A.; Ulloa, R.M. StCDPK3 phosphorylates in vitro two transcription factors involved in GA and ABA signaling in potato: StRSG1 and StABF1. PLoS One, 2016, 11(12), e0167389.
[http://dx.doi.org/10.1371/journal.pone.0167389] [PMID: 27907086]
[122]
Muñiz García, M.N.; Giammaria, V.; Grandellis, C.; Téllez-Iñón, M.T.; Ulloa, R.M.; Capiati, D.A. Characterization of StABF1, a stress-responsive bZIP transcription factor from Solanum tuberosum L. that is phosphorylated by StCDPK2 in vitro. Planta, 2012, 235(4), 761-778.
[http://dx.doi.org/10.1007/s00425-011-1540-7] [PMID: 22042328]
[123]
Nieva, C.; Busk, P.K.; Domínguez-Puigjaner, E.; Lumbreras, V.; Testillano, P.S.; Risueño, M.C.; Pagès, M. Isolation and functional characterisation of two new bZIP maize regulators of the ABA responsive gene rab28. Plant Mol. Biol., 2005, 58(6), 899-914.
[http://dx.doi.org/10.1007/s11103-005-8407-x] [PMID: 16240181]
[124]
Ciechanover, A.; Schwartz, A.L. The ubiquitin-proteasome pathway: the complexity and myriad functions of proteins death. Proc. Natl. Acad. Sci. USA, 1998, 95(6), 2727-2730.
[http://dx.doi.org/10.1073/pnas.95.6.2727] [PMID: 9501156]
[125]
Yu, F.; Wu, Y.; Xie, Q. Precise protein post-translational modifications modulate ABI5 activity. Trends Plant Sci., 2015, 20(9), 569-575.
[http://dx.doi.org/10.1016/j.tplants.2015.05.004] [PMID: 26044742]
[126]
Stone, S.L.; Williams, L.A.; Farmer, L.M.; Vierstra, R.D.; Callis, J. KEEP ON GOING, a RING E3 ligase essential for Arabidopsis growth and development, is involved in abscisic acid signaling. Plant Cell, 2006, 18(12), 3415-3428.
[http://dx.doi.org/10.1105/tpc.106.046532] [PMID: 17194765]
[127]
Liu, H.; Stone, S.L. Cytoplasmic degradation of the Arabidopsis transcription factor abscisic acid insensitive 5 is mediated by the RING-type E3 ligase KEEP ON GOING. J. Biol. Chem., 2013, 288(28), 20267-20279.
[http://dx.doi.org/10.1074/jbc.M113.465369] [PMID: 23720747]
[128]
Chen, Y.T.; Liu, H.; Stone, S.; Callis, J. ABA and the ubiquitin E3 ligase KEEP ON GOING affect proteolysis of the Arabidopsis thaliana transcription factors ABF1 and ABF3. Plant J., 2013, 75(6), 965-976.
[http://dx.doi.org/10.1111/tpj.12259] [PMID: 23742014]
[129]
Seo, K.I.; Lee, J.H.; Nezames, C.D.; Zhong, S.; Song, E.; Byun, M.O.; Deng, X.W. ABD1 is an Arabidopsis DCAF substrate receptor for CUL4-DDB1-based E3 ligases that acts as a negative regulator of abscisic acid signaling. Plant Cell, 2014, 26(2), 695-711.
[http://dx.doi.org/10.1105/tpc.113.119974] [PMID: 24563203]
[130]
Tang, N.; Ma, S.; Zong, W.; Yang, N.; Lv, Y.; Yan, C.; Guo, Z.; Li, J.; Li, X.; Xiang, Y.; Song, H.; Xiao, J.; Li, X.; Xiong, L. MODD mediates deactivation and degradation of OsbZIP46 to negatively regulate ABA signaling and drought resistance in rice. Plant Cell, 2016, 28(9), 2161-2177.
[http://dx.doi.org/10.1105/tpc.16.00171] [PMID: 27468891]
[131]
Joo, H. Lim, C.W.; Lee, S.C., The pepper RING-type E3 ligase, CaATIR1, positively regulates ABA signaling and drought response by modulating the stability of CaATBZ1. Plant Cell Environ., 2020, 43, 1911-1924.
[http://dx.doi.org/10.1111/pce.13789]
[132]
Orosa-Puente, B.; Leftley, N.; von Wangenheim, D.; Banda, J.; Srivastava, A.K.; Hill, K.; Truskina, J.; Bhosale, R.; Morris, E.; Srivastava, M.; Kümpers, B.; Goh, T.; Fukaki, H.; Vermeer, J.E.M.; Vernoux, T.; Dinneny, J.R.; French, A.P.; Bishopp, A.; Sadanandom, A.; Bennett, M.J. Root branching toward water involves posttranslational modification of transcription factor ARF7. Science, 2018, 362(6421), 1407-1410.
[http://dx.doi.org/10.1126/science.aau3956] [PMID: 30573626]
[133]
Kerscher, O.; Felberbaum, R.; Hochstrasser, M. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu. Rev. Cell Dev. Biol., 2006, 22, 159-180.
[http://dx.doi.org/10.1146/annurev.cellbio.22.010605.093503] [PMID: 16753028]
[134]
Jentsch, S.; Pyrowolakis, G. Ubiquitin and its kin: how close are the family ties? Trends Cell Biol., 2000, 10(8), 335-342.
[http://dx.doi.org/10.1016/S0962-8924(00)01785-2] [PMID: 10884686]
[135]
Verger, A.; Perdomo, J.; Crossley, M. Modification with SUMO. A role in transcriptional regulation. EMBO Rep., 2003, 4(2), 137-142.
[http://dx.doi.org/10.1038/sj.embor.embor738] [PMID: 12612601]
[136]
Hay, R.T. Protein modification by SUMO. Trends Biochem. Sci., 2001, 26(5), 332-333.
[http://dx.doi.org/10.1016/S0968-0004(01)01849-7] [PMID: 11343927]
[137]
Novatchkova, M.; Budhiraja, R.; Coupland, G.; Eisenhaber, F.; Bachmair, A. SUMO conjugation in plants. Planta, 2004, 220(1), 1-8.
[http://dx.doi.org/10.1007/s00425-004-1370-y] [PMID: 15449058]
[138]
Raorane, M.L.; Mutte, S.K.; Varadarajan, A.R.; Pabuayon, I.M.; Kohli, A. Protein SUMOylation and plant abiotic stress signaling: in silico case study of rice RLKs, heat-shock and Ca(2+)-binding proteins. Plant Cell Rep., 2013, 32(7), 1053-1065.
[http://dx.doi.org/10.1007/s00299-013-1452-z] [PMID: 23666184]
[139]
Orosa, B.; Yates, G.; Verma, V.; Srivastava, A.K.; Srivastava, M.; Campanaro, A.; De Vega, D.; Fernandes, A.; Zhang, C.; Lee, J.; Bennett, M.J.; Sadanandom, A. SUMO conjugation to the pattern recognition receptor FLS2 triggers intracellular signalling in plant innate immunity. Nat. Commun., 2018, 9(1), 5185.
[http://dx.doi.org/10.1038/s41467-018-07696-8] [PMID: 30518761]
[140]
Catala, R.; Ouyang, J.; Abreu, I.A.; Hu, Y.; Seo, H.; Zhang, X.; Chua, N.H. The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses. Plant Cell, 2007, 19(9), 2952-2966.
[http://dx.doi.org/10.1105/tpc.106.049981] [PMID: 17905899]
[141]
Zhang, S.; Qi, Y.; Liu, M.; Yang, C. SUMO E3 ligase AtMMS21 regulates drought tolerance in Arabidopsis thaliana(F). J. Integr. Plant Biol., 2013, 55(1), 83-95.
[http://dx.doi.org/10.1111/jipb.12024] [PMID: 23231763]
[142]
Srivastava, A.K.; Zhang, C.; Caine, R.S.; Gray, J.; Sadanandom, A. Rice SUMO protease Overly Tolerant to Salt 1 targets the transcription factor, OsbZIP23 to promote drought tolerance in rice. Plant J., 2017, 92(6), 1031-1043.
[http://dx.doi.org/10.1111/tpj.13739] [PMID: 29024118]
[143]
Park, H.J.; Yun, D.J. New insights into the role of the small ubiquitin-like modifier (SUMO) in plants. Int. Rev. Cell Mol. Biol., 2013, 300, 161-209.
[http://dx.doi.org/10.1016/B978-0-12-405210-9.00005-9] [PMID: 23273862]
[144]
Liu, H.; Stone, S.L. Regulation of ABI5 turnover by reversible post-translational modifications. Plant Signal. Behav., 2014, 9(1), e27577.
[http://dx.doi.org/10.4161/psb.27577] [PMID: 24398698]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy