Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Mini-Review Article

Biomimicry: Recent Updates on Nanotechnology Innovations Inspired by Nature Creations

Author(s): Sinchana Raj and Manjunatha Channegowda*

Volume 17, Issue 5, 2021

Published on: 27 November, 2020

Page: [659 - 669] Pages: 11

DOI: 10.2174/1573413716999201127111149

Price: $65

Abstract

Nature mimicry rather, biomimicry is one such field being considered for the backbone of the most astounding inventions in recent science and technology. Biomimicry combined with nanotechnology developed many sustainable solutions to satisfy problems existing in daily life. In this article, we explore the individual concepts of biomimicry and nano-technology and then the combination of the both. The current review mainly focusses on nano innovations inspired by lotus leaf, gecko feet, butterfly wings, shark skin and peacock spider. We then look at the biological structures (more in nano-dimensions) from the entrenched interference patterns found on the butterfly wings inspiring in the development of display technologies to the self-cleaning properties of lotus that has resulted in the synthesis of nano materials having self-cleaning properties. In addition, insects like spiders which have inspired the most important inventions like optical devices, sensors, are also investigated. The challenges faced while implementing the biomimetic approach into technology are explained. We have also tried to shed light on the solutions which can tackle these challenges and issues.

Keywords: Nature mimicry, biomimicry, nanotechnology, bio-mineralisation, magnetotactic bacteria, nano innovations.

Next »
Graphical Abstract

[1]
Sarikaya, M.; Tamerler, C.; Jen, A.; Schulten, Y.; Baneyx, K. Molecular biomimetics: nanotechnology through biology. Nat. Mater., 2003, 2, 577.
[http://dx.doi.org/10.1038/nmat964] [PMID: 12951599]
[2]
Aziz, M.S. Biomimicry as an approach for bio-inspired structure with the aid of computation. Alexandria Eng. J., 2016, 55, 707-714.
[http://dx.doi.org/10.1016/j.aej.2015.10.015]
[3]
Cohen, Y.H.; Reich, Y. Biomimetic design method for innovation and sustainability; Springer, 2016.
[http://dx.doi.org/10.1007/978-3-319-33997-9]
[4]
Bar-Cohen, Y. Biomimetics: biologically inspired technologies; CRC Press, 2005.
[http://dx.doi.org/10.1201/9780849331633]
[5]
Bensaude-Vincent, B. Bio-informed emerging technologies and their relation to the sustainability aims of biomimicry. Environ. Values, 2019, 28, 551-571.
[http://dx.doi.org/10.3197/096327119X15579936382392]
[6]
Poppinga, S.; Correa, D.; Bruchmann, B.; Menges, A.; Speck, T. Plant movements as concept generators for the development of biomimetic compliant mechanisms. Integr. Comp. Biol., 2020, 60(4), 886-895.
[http://dx.doi.org/10.1093/icb/icaa028] [PMID: 32396604]
[7]
Yao, J.; Fang, W.; Guo, J.; Jiao, D.; Chen, S.; Ifuku, S.; Wang, H.; Walther, A. Highly mineralized biomimetic polysaccharide nanofiber materials using enzymatic mineralization. Biomacromolecules, 2020, 21(6), 2176-2186.
[http://dx.doi.org/10.1021/acs.biomac.0c00160] [PMID: 32286801]
[8]
Wilkinson, C.; Riehle, M.; Wood, M.; Gallagher, J.; Curtis, A. The use of materials patterned on a nano-and micro-metric scale in cellular engineering. Mater. Sci. Eng. C, 2002, 19, 263-269.
[http://dx.doi.org/10.1016/S0928-4931(01)00396-4]
[9]
Albanesea, T.; Chanw, C. The effect of nanoparticlesize, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng., 2012, 14, 1-16.
[10]
Bhushan, B. Biomimetics: lessons from nature- an overview; The Royal Society London, 2009.
[11]
Johnson-Laird, P.N. Flying bicycles: How the Wright brothers invented the airplane. Mind Soc., 2005, 4, 27-48.
[http://dx.doi.org/10.1007/s11299-005-0005-8]
[12]
Shang, L.; Zhang, W.; Xu, K.; Zhao, Y. Bio-inspired intelligent structural color materials. Mater. Horiz., 2019, 6, 945-958.
[http://dx.doi.org/10.1039/C9MH00101H]
[13]
Wu, P.; Wang, J.; Jiang, L. Bio-inspired photonic crystal patterns. Mater. Horiz., 2020, 7, 338-365.
[http://dx.doi.org/10.1039/C9MH01389J]
[14]
Biok, V.; Gremmea, B. Ecological innovation: Biomimicry as a new way of thinking and acting. J. Agric. Environ. Ethics, 2016, 29(2), 203-217.
[15]
Nasrollahzadeh, M.; Sajadi, S.M.; Sajjadi, M.; Issaabadi, Z. Applications of nanotechnology in daily life. Interface Science and Technology; Elsevier, 2019, pp. 113-143.
[16]
Kumar, P.; Mahajan, P.; Kaur, R.; Gautam, S. Nanotechnology and its challenges in the food sector: a review. Mater Today Chem., 2020, 17, 100332.
[http://dx.doi.org/10.1016/j.mtchem.2020.100332] [PMID: 32835156]
[17]
Jayasinghe, C.; Amstutz, T.; Schulz, M.J.; Shanov, V. Improved processing of carbon nanotube yarn. J. Nanomater., 2013, 2013
[http://dx.doi.org/10.1155/2013/309617]
[18]
Hirn, S.; Semmler-Behnke, M.; Schleh, C.; Wenk, A.; Lipka, J.; Schaffler, M.; Takenaka, S.; Moller, W.; Schmid, G.; Simon, U.; Kreyling, W.G. Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. Eur. J. Pharm. Biopharm., 2011, 77(3), 407-416.
[http://dx.doi.org/10.1016/j.ejpb.2010.12.029] [PMID: 21195759]
[19]
Subramani, K.; Ahmed, W. Self-assembly of proteins and peptides and their applications in bionanotechnology and dentistry. Emerging Nanotechnologies in Dentistry; Elsevier, 2012, pp. 209-224.
[http://dx.doi.org/10.1016/B978-1-4557-7862-1.00013-4]
[20]
Prianka, T.R.; Subhan, N.; Reza, H.M.; Hosain, M.K.; Rahman, M.A.; Lee, H.; Sharker, S.M. Recent exploration of bio-mimetic nanomaterial for potential biomedical applications. Mater. Sci. Eng. C, 2018, 93, 1104-1115.
[http://dx.doi.org/10.1016/j.msec.2018.09.012] [PMID: 30274041]
[21]
Naik, R.R.; Stone, M.O. Integrating biomimetics. Mater. Today, 2005, 8, 18-26.
[http://dx.doi.org/10.1016/S1369-7021(05)71077-4]
[22]
Su, B.; Tian, Y.; Jiang, L. Bioinspired interfaces with superwettability: from materials to chemistry. J. Am. Chem. Soc., 2016, 138(6), 1727-1748.
[http://dx.doi.org/10.1021/jacs.5b12728] [PMID: 26652501]
[23]
Liu, K.; Yao, X.; Jiang, L. Recent developments in bio-inspired special wettability. Chem. Soc. Rev., 2010, 39(8), 3240-3255.
[http://dx.doi.org/10.1039/b917112f] [PMID: 20589267]
[24]
Liu, K.; Jiang, L. Bio-inspired design of multiscale structures for function integration. Nano Today, 2011, 6, 155-175.
[http://dx.doi.org/10.1016/j.nantod.2011.02.002]
[25]
Feng, L.; Li, S.; Li, Y.; Li, H.; Zhang, L.; Zhai, J.; Song, Y.; Liu, B.; Jiang, L.; Zhu, D. Super‐hydrophobic surfaces: from natural to artificial. Adv. Mater., 2002, 14, 1857-1860.
[http://dx.doi.org/10.1002/adma.200290020]
[26]
Yu, C.; Sasic, S.; Liu, K.; Salameh, S.; Ras, R.H.; van Ommen, J.R. Nature-inspired self-cleaning surfaces: Mechanisms, modelling, and manufacturing. Chem. Eng. Res. Des., 2020, 155, 48-65.
[http://dx.doi.org/10.1016/j.cherd.2019.11.038]
[27]
Wang, T.; Huang, L.; Liu, Y.; Li, X.; Liu, C.; Handschuh-Wang, S.; Xu, Y.; Zhao, Y.; Tang, Y. Robust biomimetic hierarchical diamond architecture with a self-cleaning, antibacterial, and antibiofouling surface. ACS Appl. Mater. Interfaces, 2020, 12(21), 24432-24441.
[http://dx.doi.org/10.1021/acsami.0c02460] [PMID: 32342682]
[28]
Barthlott, W.; Mail, M.; Neinhuis, C. Superhydrophobic hierarchically structured surfaces in biology: evolution, structural principles and biomimetic applications. Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci., 2016, 374(2073), 20160191.
[http://dx.doi.org/10.1098/rsta.2016.0191] [PMID: 27354736]
[29]
Latthe, S.S.; Terashima, C.; Nakata, K.; Fujishima, A. Superhydrophobic surfaces developed by mimicking hierarchical surface morphology of lotus leaf. Molecules, 2014, 19(4), 4256-4283.
[http://dx.doi.org/10.3390/molecules19044256] [PMID: 24714190]
[30]
Nguyen-Tri, P.; Tran, H.N.; Plamondon, C.O.; Tuduri, L.; Vo, D-V.N.; Nanda, S.; Mishra, A.; Chao, H-P.; Bajpai, A. Recent progress in the preparation, properties and applications of superhydrophobic nano-based coatings and surfaces: A review. Prog. Org. Coat., 2019, 132, 235-256.
[http://dx.doi.org/10.1016/j.porgcoat.2019.03.042]
[31]
Lin, Y.; Chen, H.; Wang, G.; Liu, A. Recent progress in preparation and anti-icing applications of superhydrophobic coatings. Coatings, 2018, 8, 208.
[http://dx.doi.org/10.3390/coatings8060208]
[32]
Ensikat, H.J.; Ditsche-Kuru, P.; Neinhuis, C.; Barthlott, W. Superhydrophobicity in perfection: the outstanding properties of the lotus leaf. Beilstein J. Nanotechnol., 2011, 2, 152-161.
[http://dx.doi.org/10.3762/bjnano.2.19] [PMID: 21977427]
[33]
Chen, L.; Guo, Z.; Liu, W. Biomimetic multi-functional superamphiphobic FOTS-TiO2 particles beyond lotus leaf. ACS Appl. Mater. Interfaces, 2016, 8(40), 27188-27198.
[http://dx.doi.org/10.1021/acsami.6b06772] [PMID: 27652905]
[34]
Lee, J.; Yong, K. Combining the lotus leaf effect with artificial photosynthesis: regeneration of underwater superhydrophobicity of hierarchical ZnO/Si surfaces by solar water splitting. NPG Asia Mater., 2015, 7, e201-e201.
[http://dx.doi.org/10.1038/am.2015.74]
[35]
Tak, Y.; Yong, K. Controlled growth of well-aligned ZnO nanorod array using a novel solution method. J. Phys. Chem. B, 2005, 109(41), 19263-19269.
[http://dx.doi.org/10.1021/jp0538767] [PMID: 16853488]
[36]
Choudhury, P. SPIE: Bellingham, WA, 1997; (b) Xia, YN; Whitesides, GM. Annu. Rev. Mater. Sci., 1998, 28, 153-184.
[37]
Zhang, Z.; Chen, H.; Zhong, J.; Saraf, G.; Lu, Y. Fast and reversible wettability transitions on ZnO nanostructures. J. Electron. Mater., 2007, 36, 895-899.
[http://dx.doi.org/10.1007/s11664-007-0126-4]
[38]
Im, M. Im, H.; Lee, J-H.; Yoon, J-B.; Choi, Y-K. A robust superhydrophobic and superoleophobic surface with inverse-trapezoidal microstructures on a large transparent flexible substrate. Soft Matter, 2010, 6, 1401-1404.
[http://dx.doi.org/10.1039/b925970h]
[39]
Lu, S.; Zhao, Y.; Hu, X.; Lin, Y.; Ke, Y. Biomimetic fabrication of micron/nano-meter assembled superhydrophobic polymer fiber fabrics for oil/water separation. Mater. Lett., 2020, 262, 127152.
[http://dx.doi.org/10.1016/j.matlet.2019.127152]
[40]
Chen, R.; Wan, Y.; Wu, W.; Yang, C.; He, J-H.; Cheng, J.; Jetter, R.; Ko, F.K.; Chen, Y. A lotus effect-inspired flexible and breathable membrane with hierarchical electrospinning micro/nanofibers and ZnO nanowires. Mater. Des., 2019, 162, 246-248.
[http://dx.doi.org/10.1016/j.matdes.2018.11.041]
[41]
Autumn, K. How gecko toes stick: the powerful fantastic adhesive used by geckos is made of nanoscale hairs that engage tiny forces, inspiring envy among human imitators. Am. Sci., 2006, 94, 124-133.
[http://dx.doi.org/10.1511/2006.58.124]
[42]
Wang, Y.; Lai, H.; Cheng, Z.; Zhang, H.; Zhang, E.; Lv, T.; Liu, Y.; Jiang, L. Gecko toe pads inspired in situ switchable superhydrophobic shape memory adhesive film. Nanoscale, 2019, 11(18), 8984-8993.
[http://dx.doi.org/10.1039/C9NR00154A] [PMID: 31017157]
[43]
Autumn, K.; Sitti, M.; Liang, Y.A.; Peattie, A.M.; Hansen, W.R.; Sponberg, S.; Kenny, T.W.; Fearing, R.; Israelachvili, J.N.; Full, R.J. Evidence for van der Waals adhesion in gecko setae. Proc. Natl. Acad. Sci. USA, 2002, 99(19), 12252-12256.
[http://dx.doi.org/10.1073/pnas.192252799] [PMID: 12198184]
[44]
Geim, A.; Dubonos, S.; Grigorieva, I.V.; Novoselov, K.S.; Zhukov, A.A.; Shapoval, S.Y. Microfabricated adhesive mimicking gecko foot-hair. Nat. Mater., 2003, 2, 461-463.
[http://dx.doi.org/10.1038/nmat917] [PMID: 12776092]
[45]
Badge, I.; Stark, A.Y.; Paoloni, E.L.; Niewiarowski, P.H.; Dhinojwala, A. The role of surface chemistry in adhesion and wetting of gecko toe pads. Sci. Rep., 2014, 4, 6643.
[http://dx.doi.org/10.1038/srep06643] [PMID: 25323067]
[46]
Ho, A.Y.Y.; Yeo, L.P.; Lam, Y.C.; Rodríguez, I. Fabrication and analysis of gecko-inspired hierarchical polymer nanosetae. ACS Nano, 2011, 5(3), 1897-1906.
[http://dx.doi.org/10.1021/nn103191q] [PMID: 21355603]
[47]
Ho, A.Y.Y.; Gao, H.; Lam, Y.C.; Rodriguez, I. Controlled fabrication of multitiered three‐dimensional nanostructures in porous alumina. Adv. Funct. Mater., 2008, 18, 2057-2063.
[http://dx.doi.org/10.1002/adfm.200800061]
[48]
Blaszczyk-Lezak, I.; Juanes, D.; Martín, J.; Mijangos, C. Gecko-like branched polymeric nanostructures from nanoporous templates. Langmuir, 2018, 34(38), 11449-11453.
[http://dx.doi.org/10.1021/acs.langmuir.8b01923] [PMID: 30157645]
[49]
Li, S.; Tian, H.; Shao, J.; Liu, H.; Wang, D.; Zhang, W. Switchable adhesion for nonflat surfaces mimicking geckos’ adhesive structures and toe muscles. ACS Appl. Mater. Interfaces, 2020, 12(35), 39745-39755.
[http://dx.doi.org/10.1021/acsami.0c08686] [PMID: 32666785]
[50]
Dong, X.; Zhang, R.; Tian, Y.; Ramos, M.A.; Hu, T.S.; Wang, Z.; Zhao, H.; Zhang, L.; Wan, Y.; Xia, Z. Functionally graded gecko setae and the biomimics with robust adhesion and durability. ACS App. Polymer Mat., 2020, 2(7), 2658-2666.
[http://dx.doi.org/10.1021/acsapm.0c00282]
[51]
Lou, S.; Guo, X.; Fan, T.; Zhang, D. Butterflies: inspiration for solar cells and sunlight water-splitting catalysts. Energy Environ. Sci., 2012, 5, 9195-9216.
[http://dx.doi.org/10.1039/c2ee03595b]
[52]
Holland, W.J. The butterfly book; BoD-Books on Demand, 2020.
[53]
Schroeder, T.B.H.; Houghtaling, J.; Wilts, B.D.; Mayer, M. It’s not a bug, it’s a feature: functional materials in insects. Adv. Mater., 2018, 30(19), e1705322.
[http://dx.doi.org/10.1002/adma.201705322] [PMID: 29517829]
[54]
Ren, J.; Wang, Y.; Yao, Y.; Wang, Y.; Fei, X.; Qi, P.; Lin, S.; Kaplan, D.L.; Buehler, M.J.; Ling, S. Biological material interfaces as inspiration for mechanical and optical material designs. Chem. Rev., 2019, 119(24), 12279-12336.
[http://dx.doi.org/10.1021/acs.chemrev.9b00416] [PMID: 31793285]
[55]
Niu, H.; Zhou, R.; Cheng, C.; Zhang, G.; Hu, Y.; Huang, B.; Zhang, S.; Shang, X.; Xia, M.; Xu, J. Magnetron sputtering in the creation of photonic nanostructures derived from Sasakia Charonda Formosana-butterfly wings for applied in dye-sensitized solar cells. J. Power Sources, 2016, 325, 598-608.
[http://dx.doi.org/10.1016/j.jpowsour.2016.06.060]
[56]
Tsai, C-C.; Childers, R.A.; Nan Shi, N. Ren, C.; Pelaez, J.N.; Bernard, G.D.; Pierce, N.E.; Yu, N. Physical and behavioral adaptations to prevent overheating of the living wings of butterflies. Nat. Commun., 2020, 11(1), 551.
[http://dx.doi.org/10.1038/s41467-020-14408-8] [PMID: 31992708]
[57]
Didari, A.; Mengüç, M.P. A biomimicry design for nanoscale radiative cooling applications inspired by Morpho didius butterfly. Sci. Rep., 2018, 8(1), 16891.
[http://dx.doi.org/10.1038/s41598-018-35082-3] [PMID: 30442974]
[58]
Wang, W.; Wang, G.P.; Zhang, W.; Zhang, D. Reversible thermochromic response based on photonic crystal structure in butterfly wing. Nanophotonics, 2018, 7, 217-227.
[http://dx.doi.org/10.1515/nanoph-2017-0025]
[59]
Quiroz, H.P.; Barrera-Patiño, C.P.; Rey-González, R.R.; Dussan, A. Optical properties of Greta oto butterfly wings: Relation of iridescence with photonic properties. J. Nanosci. Nanotechnol., 2019, 19(5), 2833-2838.
[http://dx.doi.org/10.1166/jnn.2019.16028] [PMID: 30501787]
[60]
Gu, Z.; Yan, M.; Hu, B.; Joo, K-I.; Biswas, A.; Huang, Y.; Lu, Y.; Wang, P.; Tang, Y. Protein nanocapsule weaved with enzymatically degradable polymeric network. Nano Lett., 2009, 9(12), 4533-4538.
[http://dx.doi.org/10.1021/nl902935b] [PMID: 19995089]
[61]
Miyako, E.; Sugino, T.; Okazaki, T.; Bianco, A.; Yudasaka, M.; Iijima, S. Self-assembled carbon nanotube honeycomb networks using a butterfly wing template as a multifunctional nanobiohybrid. ACS Nano, 2013, 7(10), 8736-8742.
[http://dx.doi.org/10.1021/nn403083v] [PMID: 23952240]
[62]
Rodríguez, R.E.; Agarwal, S.P.; An, S.; Kazyak, E.; Das, D.; Shang, W.; Skye, R.; Deng, T.; Dasgupta, N.P. Biotemplated morpho butterfly wings for tunable structurally colored photocatalysts. ACS Appl. Mater. Interfaces, 2018, 10(5), 4614-4621.
[http://dx.doi.org/10.1021/acsami.7b14383] [PMID: 29337532]
[63]
Siddique, R.H.; Donie, Y.J.; Gomard, G.; Yalamanchili, S.; Merdzhanova, T.; Lemmer, U.; Hölscher, H. Bioinspired phase-separated disordered nanostructures for thin photovoltaic absorbers. Sci. Adv., 2017, 3(10), e1700232.
[http://dx.doi.org/10.1126/sciadv.1700232] [PMID: 29057320]
[64]
Elbaz, A.; Gao, B.; He, Z.; Gu, Z. Hepatocyte aggregate formation on chitin-based anisotropic microstructures of butterfly wings. Biomimetics (Basel), 2018, 3(1), 2.
[http://dx.doi.org/10.3390/biomimetics3010002] [PMID: 31105224]
[65]
Feld, K.; Kolborg, A.N.; Nyborg, C.M.; Salewski, M.; Steffensen, J.F.; Berg-Sørensen, K. Dermal denticles of three slowly swimming shark species: microscopy and flow visualization. Biomimetics (Basel), 2019, 4(2), 38.
[http://dx.doi.org/10.3390/biomimetics4020038] [PMID: 31137624]
[66]
Oeffner, J.; Lauder, G.V. The hydrodynamic function of shark skin and two biomimetic applications. J. Exp. Biol., 2012, 215(Pt 5), 785-795.
[http://dx.doi.org/10.1242/jeb.063040] [PMID: 22323201]
[67]
Bechert, D.; Bruse, M.; Hage, W. Experiments with three-dimensional riblets as an idealized model of shark skin. Exp. Fluids, 2000, 28, 403-412.
[http://dx.doi.org/10.1007/s003480050400]
[68]
Han, X.; Zhang, D.; Li, X.; Li, Y. Bio-replicated forming of the biomimetic drag-reducing surfaces in large area based on shark skin. Chin. Sci. Bull., 2008, 53, 1587.
[69]
Dundar Arisoy, F.; Kolewe, K.W.; Homyak, B.; Kurtz, I.S.; Schiffman, J.D.; Watkins, J.J. Bioinspired photocatalytic shark-skin surfaces with antibacterial and antifouling activity via nanoimprint lithography. ACS Appl. Mater. Interfaces, 2018, 10(23), 20055-20063.
[http://dx.doi.org/10.1021/acsami.8b05066] [PMID: 29790348]
[70]
Hsiung, B-K.; Siddique, R.H.; Stavenga, D.G.; Otto, J.C.; Allen, M.C.; Liu, Y.; Lu, Y-F.; Deheyn, D.D.; Shawkey, M.D.; Blackledge, T.A. Rainbow peacock spiders inspire miniature super-iridescent optics. Nat. Commun., 2017, 8(1), 2278.
[http://dx.doi.org/10.1038/s41467-017-02451-x] [PMID: 29273708]
[71]
Girard, M.B.; Kasumovic, M.M.; Elias, D.O. Multi-modal courtship in the peacock spider, Maratus volans (O.P.-Cambridge, 1874). PLoS One, 2011, 6(9), e25390.
[http://dx.doi.org/10.1371/journal.pone.0025390] [PMID: 21980440]
[72]
Girard, M.B.; Endler, J.A. Peacock spiders. Curr. Biol., 2014, 24(13), R588-R590.
[http://dx.doi.org/10.1016/j.cub.2014.05.026] [PMID: 25004358]
[73]
Girard, M.B.; Elias, D.O.; Kasumovic, M.M. Female preference for multi-modal courtship: multiple signals are important for male mating success in peacock spiders. Proc. Biol. Sci., 2015, 282(1820), 20152222.
[http://dx.doi.org/10.1098/rspb.2015.2222] [PMID: 26631566]
[74]
Yue, Y.; Gong, J.P. Tunable one-dimensional photonic crystals from soft materials. J. Photochem. Photobiol. Photochem. Rev., 2015, 23, 45-67.
[http://dx.doi.org/10.1016/j.jphotochemrev.2015.05.001]
[75]
Kohri, M.; Nannichi, Y.; Taniguchi, T.; Kishikawa, K. Biomimetic non-iridescent structural color materials from polydopamine black particles that mimic melanin granules. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2015, 3, 720-724.
[http://dx.doi.org/10.1039/C4TC02383H]
[76]
McCoy, D.E.; McCoy, V.E.; Mandsberg, N.K.; Shneidman, A.V.; Aizenberg, J.; Prum, R.O.; Haig, D. Structurally assisted super black in colourful peacock spiders. Proc. Biol. Sci., 2019, 286(1902), 20190589.
[http://dx.doi.org/10.1098/rspb.2019.0589] [PMID: 31088270]
[77]
Stavenga, D.G.; Otto, J.C.; Wilts, B.D. Splendid coloration of the peacock spider Maratus splendens. J. R. Soc. Interface, 2016, 13(121), 20160437.
[http://dx.doi.org/10.1098/rsif.2016.0437] [PMID: 27512139]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy