Review Article

南美锥虫病治疗新方法

卷 22, 期 7, 2021

发表于: 24 November, 2020

页: [835 - 841] 页: 7

弟呕挨: 10.2174/1389450121999201124122643

价格: $65

摘要

由原生动物克氏锥虫引起的查加斯病是一种被忽视的热带病,流行率高(拉丁美洲有570万人,世卫组织,2015年),负担沉重,死亡率高,主要是由于慢性感染阶段的严重心脏病。恰加斯病是拉丁美洲的地方病,巴西全民医疗保健系统(Sistema Unico de Saude (SUS))的主要开支是治疗该疾病。现有药物苄硝唑和硝呋替莫对查加斯病的慢性阶段的疗效很低,大多数患者在这一阶段被诊断,而且经常出现副作用和耐药性。与目前可用的治疗方法相比,快速部署对慢性阶段治疗有效的新药方案成本低、毒性小,这是全球优先事项。将临床已经使用的药物与其他组合重新利用将是治疗查加斯病患者的最快和最安全的策略。我们推测,使用新用途药物与苄硝唑联合治疗将比单独使用苄硝唑更有效。在进行人体临床试验之前,这需要在体外和动物模型中进行进一步的测试,以了解治疗的有效性。我们进一步假设,生产纳米制剂的药物可以降低其毒性和提高治疗使用。

关键词: 南美锥虫病,克氏锥虫病,心脏疾病,药物再利用,纳米颗粒配方,苄硝唑

« Previous
图形摘要

[1]
Nascimento MS, Stolf AMS, Andrade Junior HF, Pandey RP, Umezawa ES. Vimentin and anti vimentin antibodies in chagas’ disease. Arq Bras Cardiol 2018; 110(4): 348-53.
[http://dx.doi.org/10.5935/abc.20180038] [PMID: 29538505]
[2]
Chevillard C, Nunes JPS, Frade AF, et al. Disease tolerance and pathogen resistance genes may underlie Trypanosoma cruzi persistence and differential progression to chagas disease cardiomyopathy. Front Immunol 2018; 9: 2791.
[http://dx.doi.org/10.3389/fimmu.2018.02791] [PMID: 30559742]
[3]
Ferreira LRP, Ferreira FM, Laugier L, et al. Integration of miRNA and gene expression profiles suggest a role for miRNAs in the pathobiological processes of acute Trypanosoma cruzi infection. Sci Rep 2017; 7(1): 17990.
[http://dx.doi.org/10.1038/s41598-017-18080-9] [PMID: 29269773]
[4]
Chatelain E. Chagas disease research and development: Is there light at the end of the tunnel? Comput Struct Biotechnol J 2016; 15: 98-103.
[http://dx.doi.org/10.1016/j.csbj.2016.12.002] [PMID: 28066534]
[6]
Bellera CL, Sbaraglini ML, Balcazar DE, et al. High-throughput drug repositioning for the discovery of new treatments for Chagas disease. Mini Rev Med Chem 2015; 15(3): 182-93.
[http://dx.doi.org/10.2174/138955751503150312120208] [PMID: 25769967]
[7]
Kirchhoff LV, Paredes P, Lomelí-Guerrero A, et al. Transfusion-associated Chagas disease (American trypanosomiasis) in Mexico: implications for transfusion medicine in the United States. Transfusion 2006; 46(2): 298-304.
[http://dx.doi.org/10.1111/j.1537-2995.2006.00715.x] [PMID: 16441610]
[8]
[9]
Cançado JR. Criteria of Chagas disease cure. Mem Inst Oswaldo Cruz 1999; 94(Suppl. 1): 331-5.
[http://dx.doi.org/10.1590/S0074-02761999000700064] [PMID: 10677750]
[10]
Morillo CA, Marin-Neto JA, Avezum A, et al. Randomized Trial of Benznidazole for Chronic Chagas’ Cardiomyopathy. N Engl J Med 2015; 373(14): 1295-306.
[http://dx.doi.org/10.1056/NEJMoa1507574] [PMID: 26323937]
[11]
Martín UO, Afchain D, de Marteleur A, Ledesma O, Caprón A. [Circulating immune complexes in different developmental stages of Chagas’ disease]. Medicina (B Aires) 1987; 47(2): 159-62. [Circulating immune complexes in different developmental stages of Chagas' disease].
[PMID: 3121979]
[12]
Barbosa AP, Cardinalli Neto A, Otaviano AP, Rocha BF, Bestetti RB. Comparison of outcome between Chagas cardiomyopathy and idiopathic dilated cardiomyopathy. Arq Bras Cardiol 2011; 97(6): 517-25.
[http://dx.doi.org/10.1590/S0066-782X2011005000112] [PMID: 22030565]
[13]
Bestetti RB, Muccillo G. Clinical course of Chagas’ heart disease: a comparison with dilated cardiomyopathy. Int J Cardiol 1997; 60(2): 187-93.
[http://dx.doi.org/10.1016/S0167-5273(97)00083-1] [PMID: 9226290]
[14]
Higuchi ML, De Morais CF, Pereira Barreto AC, et al. The role of active myocarditis in the development of heart failure in chronic Chagas’ disease: a study based on endomyocardial biopsies. Clin Cardiol 1987; 10(11): 665-70.
[http://dx.doi.org/10.1002/clc.4960101113] [PMID: 3677499]
[15]
Cunha-Neto E, Nogueira LG, Teixeira PC, et al. Immunological and non-immunological effects of cytokines and chemokines in the pathogenesis of chronic Chagas disease cardiomyopathy. Mem Inst Oswaldo Cruz 2009; 104(Suppl. 1): 252-8.
[http://dx.doi.org/10.1590/S0074-02762009000900032] [PMID: 19753481]
[16]
Milei J, Storino R, Fernandez Alonso G, Beigelman R, Vanzulli S, Ferrans VJ. Endomyocardial biopsies in chronic chagasic cardiomyopathy. Immunohistochemical and ultrastructural findings. Cardiology 1992; 80(5-6): 424-37.
[http://dx.doi.org/10.1159/000175035] [PMID: 1451131]
[17]
Higuchi MdeL, Gutierrez PS, Aiello VD, et al. Immunohistochemical characterization of infiltrating cells in human chronic chagasic myocarditis: comparison with myocardial rejection process. Virchows Arch A Pathol Anat Histopathol 1993; 423(3): 157-60.
[http://dx.doi.org/10.1007/BF01614765] [PMID: 7901937]
[18]
Reis DD, Jones EM, Tostes S Jr, et al. Characterization of inflammatory infiltrates in chronic chagasic myocardial lesions: presence of tumor necrosis factor-alpha+ cells and dominance of granzyme A+, CD8+ lymphocytes. Am J Trop Med Hyg 1993; 48(5): 637-44.
[http://dx.doi.org/10.4269/ajtmh.1993.48.637] [PMID: 8517482]
[19]
Abel LC, Rizzo LV, Ianni B, et al. Chronic Chagas’ disease cardiomyopathy patients display an increased IFN-gamma response to Trypanosoma cruzi infection. J Autoimmun 2001; 17(1): 99-107.
[http://dx.doi.org/10.1006/jaut.2001.0523] [PMID: 11488642]
[20]
Rocha Rodrigues DB, dos Reis MA, Romano A, et al. In situ expression of regulatory cytokines by heart inflammatory cells in Chagas’ disease patients with heart failure. Clin Dev Immunol 2012; 2012: 361730.
[PMID: 22811738]
[21]
Nogueira LG, Santos RH, Fiorelli AI, et al. Myocardial gene expression of T-bet, GATA-3, Ror-γt, FoxP3, and hallmark cytokines in chronic Chagas disease cardiomyopathy: an essentially unopposed TH1-type response. Mediators Inflamm 2014; 2014: 914326.
[http://dx.doi.org/10.1155/2014/914326] [PMID: 25152568]
[22]
Cunha-Neto E, Dzau VJ, Allen PD, et al. Cardiac gene expression profiling provides evidence for cytokinopathy as a molecular mechanism in Chagas’ disease cardiomyopathy. Am J Pathol 2005; 167(2): 305-13.
[http://dx.doi.org/10.1016/S0002-9440(10)62976-8] [PMID: 16049318]
[23]
Cunha-Neto E, Coelho V, Guilherme L, Fiorelli A, Stolf N, Kalil J. Autoimmunity in Chagas’ disease. Identification of cardiac myosin-B13 Trypanosoma cruzi protein crossreactive T cell clones in heart lesions of a chronic Chagas’ cardiomyopathy patient. J Clin Invest 1996; 98(8): 1709-12.
[http://dx.doi.org/10.1172/JCI118969] [PMID: 8878420]
[24]
Fonseca SG, Moins-Teisserenc H, Clave E, et al. Identification of multiple HLA-A*0201-restricted cruzipain and FL-160 CD8+ epitopes recognized by T cells from chronically Trypanosoma cruzi-infected patients. Microbes Infect 2005; 7(4): 688-97.
[http://dx.doi.org/10.1016/j.micinf.2005.01.001] [PMID: 15848276]
[25]
Docampo R, Moreno SN. Free radical metabolism of antiparasitic agents. Fed Proc 1986; 45(10): 2471-6.
[PMID: 3017765]
[26]
Docampo R. Sensitivity of parasites to free radical damage by antiparasitic drugs. Chem Biol Interact 1990; 73(1): 1-27.
[http://dx.doi.org/10.1016/0009-2797(90)90106-W] [PMID: 2406032]
[27]
Trochine A, Creek DJ, Faral-Tello P, Barrett MP, Robello C. Benznidazole biotransformation and multiple targets in Trypanosoma cruzi revealed by metabolomics. PLoS Negl Trop Dis 2014; 8(5): e2844.
[http://dx.doi.org/10.1371/journal.pntd.0002844] [PMID: 24853684]
[28]
Rajão MA, Furtado C, Alves CL, et al. Unveiling benznidazole’s mechanism of action through overexpression of DNA repair proteins in Trypanosoma cruzi. Environ Mol Mutagen 2014; 55(4): 309-21.
[http://dx.doi.org/10.1002/em.21839] [PMID: 24347026]
[29]
Rodriques Coura J, de Castro SL. A critical review on Chagas disease chemotherapy. Mem Inst Oswaldo Cruz 2002; 97(1): 3-24.
[http://dx.doi.org/10.1590/S0074-02762002000100001] [PMID: 11992141]
[30]
Miller DA, Hernandez S, Rodriguez De Armas L, et al. Tolerance of benznidazole in a United States Chagas Disease clinic. Clin Infect Dis 2015; 60(8): 1237-40.
[http://dx.doi.org/10.1093/cid/civ005] [PMID: 25601454]
[31]
Filardi LS, Brener Z. Susceptibility and natural resistance of Trypanosoma cruzi strains to drugs used clinically in Chagas disease. Trans R Soc Trop Med Hyg 1987; 81(5): 755-9.
[http://dx.doi.org/10.1016/0035-9203(87)90020-4] [PMID: 3130683]
[32]
Murta SM, Gazzinelli RT, Brener Z, Romanha AJ. Molecular characterization of susceptible and naturally resistant strains of Trypanosoma cruzi to benznidazole and nifurtimox. Mol Biochem Parasitol 1998; 93(2): 203-14.
[http://dx.doi.org/10.1016/S0166-6851(98)00037-1] [PMID: 9662705]
[33]
Zingales B, Miles MA, Moraes CB, et al. Drug discovery for Chagas disease should consider Trypanosoma cruzi strain diversity. Mem Inst Oswaldo Cruz 2014; 109(6): 828-33.
[http://dx.doi.org/10.1590/0074-0276140156] [PMID: 25317712]
[34]
Garcia S, Ramos CO, Senra JF, et al. Treatment with benznidazole during the chronic phase of experimental Chagas’ disease decreases cardiac alterations. Antimicrob Agents Chemother 2005; 49(4): 1521-8.
[http://dx.doi.org/10.1128/AAC.49.4.1521-1528.2005] [PMID: 15793134]
[35]
Urbina JA. Parasitological cure of Chagas disease: is it possible? Is it relevant? Mem Inst Oswaldo Cruz 1999; 94(Suppl. 1): 349-55.
[http://dx.doi.org/10.1590/S0074-02761999000700068] [PMID: 10677754]
[36]
Urbina JA, Concepcion JL, Montalvetti A, Rodriguez JB, Docampo R. Mechanism of action of 4-phenoxyphenoxyethyl thiocyanate (WC-9) against Trypanosoma cruzi, the causative agent of Chagas’ disease. Antimicrob Agents Chemother 2003; 47(6): 2047-50.
[http://dx.doi.org/10.1128/AAC.47.6.2047-2050.2003] [PMID: 12760897]
[37]
Michailowsky V, Murta SM, Carvalho-Oliveira L, et al. Interleukin-12 enhances in vivo parasiticidal effect of benznidazole during acute experimental infection with a naturally drug-resistant strain of Trypanosoma cruzi. Antimicrob Agents Chemother 1998; 42(10): 2549-56.
[http://dx.doi.org/10.1128/AAC.42.10.2549] [PMID: 9756754]
[39]
Buckner FS, Urbina JA. Recent Developments in Sterol 14-demethylase Inhibitors for Chagas Disease. Int J Parasitol Drugs Drug Resist 2012; 2: 236-42.
[http://dx.doi.org/10.1016/j.ijpddr.2011.12.002] [PMID: 23277882]
[40]
Olivieri BP, Molina JT, de Castro SL, et al. A comparative study of posaconazole and benznidazole in the prevention of heart damage and promotion of trypanocidal immune response in a murine model of Chagas disease. Int J Antimicrob Agents 2010; 36(1): 79-83.
[http://dx.doi.org/10.1016/j.ijantimicag.2010.03.006] [PMID: 20452188]
[41]
Urbina JA, de Andrade IM, Mazzeti AL, Martins TA, Caldas IS, Talvani A, Ribeiro I and Bahia MT. Benznidazole and posaconazole in experimental Chagas disease: positive interaction in concomitant and sequential treatments. PLoS Negl Trop Dis 2013; 7: e2367.
[http://dx.doi.org/10.1371/journal.pntd.0002367]
[42]
Planer JD, Hulverson MA, Arif JA, Ranade RM, Don R, Buckner FS. Synergy testing of FDA-approved drugs identifies potent drug combinations against Trypanosoma cruzi. PLoS Negl Trop Dis 2014; 8(7): e2977.
[http://dx.doi.org/10.1371/journal.pntd.0002977] [PMID: 25033456]
[43]
Schwegmann A, Brombacher F. Host-directed drug targeting of factors hijacked by pathogens. Sci Signal 2008; 1(29): re8.
[http://dx.doi.org/10.1126/scisignal.129re8] [PMID: 18648074]
[44]
Parihar SP, Guler R, Khutlang R, et al. Statin therapy reduces the mycobacterium tuberculosis burden in human macrophages and in mice by enhancing autophagy and phagosome maturation. J Infect Dis 2014; 209(5): 754-63.
[http://dx.doi.org/10.1093/infdis/jit550] [PMID: 24133190]
[45]
Chatelain E, Konar N. Translational challenges of animal models in Chagas disease drug development: a review. Drug Des Devel Ther 2015; 9: 4807-23.
[http://dx.doi.org/10.2147/DDDT.S90208] [PMID: 26316715]
[46]
Bilate AM, Salemi VM, Ramires FJ, et al. The Syrian hamster as a model for the dilated cardiomyopathy of Chagas’ disease: a quantitative echocardiographical and histopathological analysis. Microbes Infect 2003; 5(12): 1116-24.
[http://dx.doi.org/10.1016/j.micinf.2003.07.001] [PMID: 14554253]
[47]
Ramírez LE, Lages-Silva E, Soares Júnior JM, Chapadeiro E. The hamster (Mesocricetus auratus) as experimental model in Chagas’ disease: parasitological and histopathological studies in acute and chronic phases of Trypanosoma cruzi infection. Rev Soc Bras Med Trop 1994; 27(3): 163-9.
[http://dx.doi.org/10.1590/S0037-86821994000300007] [PMID: 7972946]
[48]
Bilate AM, Salemi VM, Ramires FJ, et al. TNF blockade aggravates experimental chronic Chagas disease cardiomyopathy. Microbes Infect 2007; 9(9): 1104-13.
[http://dx.doi.org/10.1016/j.micinf.2007.05.014] [PMID: 17644389]
[49]
Bilate AM, Teixeira PC, Ribeiro SP, et al. Distinct outcomes of Trypanosoma cruzi infection in hamsters are related to myocardial parasitism, cytokine/chemokine gene expression, and protein expression profile. J Infect Dis 2008; 198(4): 614-23.
[http://dx.doi.org/10.1086/590347] [PMID: 18598198]
[50]
Ramires FJ, Lanni BM, Salemi VM, Bilate AM, Cunha-Neto E, Oliveira AM, Fernandes F and Mady C. The effect of beta-blockade on myocardial remodelling in Chagas’ cardiomyopathy. Clinics (São Paulo) 2012; 67: 1063-9.
[51]
Fernandes F, Ramires FJ, Ianni BM, et al. Effect of colchicine on myocardial injury induced by Trypanosoma cruzi in experimental Chagas disease. J Card Fail 2012; 18(8): 654-9.
[http://dx.doi.org/10.1016/j.cardfail.2012.06.419] [PMID: 22858082]
[52]
Tanaka DM. Estudo do efeito do agente vasodilatador da microcirculação coronariana sobre os distúrbios de perfusão miocárdica e disfunção ventricular esquerda em modelo de cardiomatia chagásica crônica em hamsters. Tese de Mestrado: Programa de Pós-Graduação em clínica médica da Faculdade de Medicina de Ribeirão PretoUniversidade de São Paulo, Ribeirão Preto, SP 2016.
[53]
Sánchez G, Cuellar D, Zulantay I, Gajardo M, González-Martin G. Cytotoxicity and trypanocidal activity of nifurtimox encapsulated in ethylcyanoacrylate nanoparticles. Biol Res 2002; 35(1): 39-45.
[http://dx.doi.org/10.4067/S0716-97602002000100007] [PMID: 12125203]
[54]
Scalise ML, Arrúa EC, Rial MS, Esteva MI, Salomon CJ, Fichera LE. Promising Efficacy of Benznidazole Nanoparticles in Acute Trypanosoma cruzi Murine Model: In-Vitro and In-Vivo Studies. Am J Trop Med Hyg 2016; 95(2): 388-93.
[http://dx.doi.org/10.4269/ajtmh.15-0889] [PMID: 27246447]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy