Abstract
Objective: Several denoising methods for medical images have been applied, such as Wavelet Transform, CNN, linear and Non-linear methods.
Methods: In this paper, A median filter algorithm will be modified and the image denoising method to wavelet transform and Non-local means (NLM), deep convolutional neural network (Dn- CNN), Gaussian noise, and Salt and pepper noise used in the medical image is explained.
Results: PSNR values of the CNN method are higher and showed better results than different filters (Adaptive Wiener filter, Median filter, and Adaptive Median filter, Wiener filter).
Conclusion: Denoising methods performance with indices SSIM, PSNR, and MSE have been tested, and the results of simulation image denoising are also presented in this article.
Keywords: Medical denoising, NLM, PSNR, image processing, CNN, adaptive wiener filter.
Graphical Abstract
[http://dx.doi.org/10.22323/1.259.0033]
[http://dx.doi.org/10.1109/TIP.2002.1014998] [PMID: 18244665]
[http://dx.doi.org/10.1155/2012/232685] [PMID: 22545063]
[http://dx.doi.org/10.1109/SCOReD.2011.6148776]
[http://dx.doi.org/10.1007/s00521-012-1102-3]
[http://dx.doi.org/10.5772/intechopen.72427]
[http://dx.doi.org/10.2478/msr-2013-0027]
[http://dx.doi.org/10.1109/TBME.2013.2239293] [PMID: 23322757]
[http://dx.doi.org/10.1109/ICMIPE.2013.6864519]
[http://dx.doi.org/10.3923/tasr.2012.445.455]
[http://dx.doi.org/10.2316/Journal.206.2013.2.206-3746]
[http://dx.doi.org/10.1109/ICSPCom.2013.6719806]
[http://dx.doi.org/10.1137/040616024]
[http://dx.doi.org/10.1109/LSP.2005.859509]
[http://dx.doi.org/10.1016/j.neunet.2014.09.003] [PMID: 25462637]
[http://dx.doi.org/10.1504/IJBDI.2016.10000790]
[http://dx.doi.org/10.1109/ICDMW.2016.0041]
[http://dx.doi.org/10.1109/CVPR.2014.81]
[http://dx.doi.org/10.1504/IJBDI.2016.073903]
[http://dx.doi.org/10.1109/MCOM.2018.1700817]
[http://dx.doi.org/10.1504/IJHPCN.2019.097508]
[http://dx.doi.org/10.4018/IJCAC.2018010108]
[http://dx.doi.org/10.4018/IJSSCI.2018040103]
[http://dx.doi.org/10.1007/s11042-017-5277-6]
[http://dx.doi.org/10.2174/1573405613666170428154156] [PMID: 30532667]
[http://dx.doi.org/10.26483/ijarcs.v8i8.4621]
[http://dx.doi.org/10.1007/s10462-015-9453-7]
[http://dx.doi.org/10.1016/j.media.2017.07.005] [PMID: 28778026]
[http://dx.doi.org/10.1007/s11227-017-2080-0]
[http://dx.doi.org/10.1109/IPAS.2014.7043298]
[http://dx.doi.org/10.1109/83.136597] [PMID: 18296155]
[http://dx.doi.org/10.1007/s00500-014-1552-x]
[http://dx.doi.org/10.1016/j.cmpb.2014.01.014] [PMID: 24513228]
[http://dx.doi.org/10.14257/ijsip.2015.8.2.04]
[http://dx.doi.org/10.1016/j.ultrasmedbio.2015.11.016] [PMID: 26806441]
[http://dx.doi.org/10.1016/j.media.2016.06.032] [PMID: 27481324]
[http://dx.doi.org/10.1109/ISBI.2016.7493382]