Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Research Article

Potential of Betanin Natural Dye for Solar Cells Application

Author(s): Naoufel Ben Hamadi*

Volume 12, Issue 1, 2022

Published on: 13 November, 2020

Article ID: e160921187988 Pages: 6

DOI: 10.2174/2210315510999201113142832

Price: $65

Abstract

Background: A photovoltaic cell, or solar cell, is an electronic component which, exposed to light, produces electricity due to the photovoltaic effect. Organic photovoltaic cells are photovoltaic cells, of which at least the active layer consists of organic molecules. It has a yield of at least 15%. The future prospects of the research for solar cell application have been required for development in the field.

Objective: In this work, the study on the potential purified betanin dye on the DSSC applications was studied.

Methods: Extraction was elaborated under sonication conditions (25 kHz, 100 W) for 15 minutes. Various films of TiO2 with different thicknesses were prepared referring to the doctor blade method on an FTO glass substrate.

Results: The increase of the thickness value of dye_TiO2 films induces a hyperchromic shift of the emission intensity.

Conclusion: In this work, betanin dye was extracted from mature red fruits of Opuntia ficus indica and purified with fractional crystallization protocol using an 8:2 (v/v) ratio of ethyl acetate/ethanol. TiO2_films with different thickness values have been prepared by CV and US sensitization of TiO2_films using betanin dye proving an enhancement on the uniformity distribution of the dye on the film in case of the US method. Emission spectra of Dye_TiO2films have been measured and show a hyperchromic shift of the emission intensity with the increase of the thickness due to the augmentation of betanin content. A comparison between the photovoltaic properties of prepared betanin_ DSSC and N719 dye_DSSC reveals that betanin dye could be successfully proposed as a sensitizing dye in solar cell applications.

Keywords: Natural Dye, betanin, TiO2_films, dye_TiO2, solar cell, photovoltaic parameters.

Graphical Abstract

[1]
Paolo, Z.; Jeroen, C.J.M. Global competition dynamics of fossil fuels and renewable energy under climate policies and peak oil: A behavioural model. Energy Policy, 2020, 136, 110907.
[http://dx.doi.org/10.1016/j.enpol.2019.110907]
[2]
Aristeides, T.; Christos, T. Oil refinery sludge and renewable fuel blends as energy sources for the cement industry. Renew. Energy, 2020, 157, 55-70.
[http://dx.doi.org/10.1016/j.renene.2020.03.129]
[3]
Ashish, K.; Karmaker, M.; Mijanur, R.; Alamgir, H.; Raju, A. Exploration and corrective measures of greenhouse gas emission from fossil fuel power stations for Bangladesh. J. Clean. Prod., 2020, 24420, 118645.
[4]
Kewen, L.; Changwei, L.; Shanshan, J.; Youguang, C. Review on hybrid geothermal and solar power systems. J. Clean. Prod., 2020, 25020, 119481.
[5]
John, A.; Mathews, M.C.; Hu, C.Y.W. Are the land and other resources required for total substitution of fossil fuel power systems impossibly large? Evidence from concentrating solar power and China. Renew. Sustain. Energy Rev., 2015, 46, 275-281.
[http://dx.doi.org/10.1016/j.rser.2015.02.045]
[6]
Akhil, G.; Vanessa, A.; Wanchun, X.; Ante, B.; Richard, A.E. New organic sensitizers using 4-(cyanomethyl)benzoic acid as an acceptor group for dye-sensitized solar cell applications. Dyes Pigments, 2015, 113, 280-288.
[http://dx.doi.org/10.1016/j.dyepig.2014.08.023]
[7]
Meric, C.; Mert, C.E.; Sultan, T.; Aslan, Y.; Arslan, U.; Levent, T.; Ali, C. Narrow band gap benzodithiophene and quinoxaline bearing conjugated polymers for organic photovoltaic applications. Dyes Pigments, 2020, 180, 108479.
[http://dx.doi.org/10.1016/j.dyepig.2020.108479]
[8]
Brian, O.; Michael, G. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353, 737-740.
[http://dx.doi.org/10.1038/353737a0]
[9]
Abdel-Latif, M.; El-Agez, T.M.; Taya, S.; Saleh, H.; Batniji, A. Dyes extracted from Biota orientalis, Piper nigrum, and Glycyrrhiza glabra as photosensitizers for dye sensitized solar cells. Int. J. Renew. Energy Res., 2005, 5, 1034-1040.
[10]
Al-Alwani, M.A.M.; Ludin, N.A.; Mohamad, A.B.; Kadhum, A.A.H.; Mukhlus, A. Application of dyes extracted from alternanthera dentata leaves and Musa acuminata bracts as natural sensitizers for dye-sensitized solar cells. Spectrochim. Acta. Part A. Mol. Biomol. Spectrosc., 2018, 192, 487-498.
[http://dx.doi.org/10.1016/j.saa.2017.11.018]
[11]
Azimah, O.; Mohd, S.A.; Nasrudin, A.R. Electron transport properties analysis of titanium dioxide dye-sensitized solar cells (TiO2-DSSCs) based natural dyes using electrochemical impedance spectroscopy concept. Review, 2020, 37, 342-346.
[12]
Stintzing, F.C.; Schieber, A.; Carle, R. Evaluation of colour properties and chemical quality parameters of cactus juices. Eur. Food Res. Technol., 2003, 216, 303-313.
[http://dx.doi.org/10.1007/s00217-002-0657-0]
[13]
Guesmi, A. Ben hamadi, N.; Ladhari, N.; Saidi, F.; Maaref, H.; Sakli, F. Spectral characterization of wool fabric dyed with indicaxanthin natural dye: Study of the fluorescence property. Ind. Crops Prod., 2013, 46, 264-267.
[http://dx.doi.org/10.1016/j.indcrop.2013.01.029]
[14]
Guesmi, A.; Ladhari, N.; Ben Hamadi, N.; Sakli, F. Isolation, identification and dyeing studies of betanin on modified acrylic fabrics. Ind. Crops Prod., 2012, 373, 42-346.
[http://dx.doi.org/10.1016/j.indcrop.2011.12.034]
[15]
Frank, T.; Stintzing, F.; Carle, R.; Bitsch, I.; Quas, D.; Straß, G.; Bitsch, R.; Netzel, M. Urinary pharmacokinetics of betalains following consumption of red beet juice in healthy humans. Pharmacol. Res., 2005, 52, 290-297.
[http://dx.doi.org/10.1016/j.phrs.2005.04.005]
[16]
Xia, J.B.; Masaki, N.; Jiang, K.J.; Yanagida, S. Sputtered Nb2O5 as a novel blocking layer at conducting glass/TiO2 interfaces in dye-sensitized ionic liquid solar cells. J. Phys. Chem. C, 2007, 111, 8092-8097.
[http://dx.doi.org/10.1021/jp0707384]
[17]
Ito, S.; Chen, P.; Comte, P.; Nazeeruddin, M.K.; Liska, P.; Pechy, P.; Gratzel, M. Prog. Photovolt. Res. Appl., 2007, 15, 603.
[http://dx.doi.org/10.1002/pip.768]
[18]
Du, L.C.; Furube, A.; Hara, K.; Katoh, R.; Tachiya, M. Mechanism of particle size effect on electron injection efficiency in ruthenium dye-sensitized TiO2 Nanoparticle Films. J. Phys. Chem. C, 2010, 114, 8135-8143.
[http://dx.doi.org/10.1021/jp911418g]
[19]
Huang, Z.; Liu, X.H.; Li, K.X.; Li, D.M.; Luo, Y.H.; Li, H.W.B.; Chen, L.Q.; Meng, Q.B. Application of carbon materials as counter electrodes of dye-sensitized solar cells. Electrochem. Commun., 2007, 9, 596-598.
[http://dx.doi.org/10.1016/j.elecom.2006.10.028]
[20]
Dhas, V.; Muduli, S.; Agarkar, S.; Rana, A.; Hannoyer, B.; Banerjee, R.; Ogale, S. Enhanced DSSC performance with high surface area thin anatase TiO2 nanoleaves. Sol. Energy, 2011, 85, 1213.
[http://dx.doi.org/10.1016/j.solener.2011.02.029]
[21]
Guesmi, A.; Ben Hamadi, N. Study on optimizing dyeing of cotton using date pits extract as a combined source of coloring matter and bio-mordant. Nat. Prod. Res., 2018, 32, 810-814.
[http://dx.doi.org/10.1080/14786419.2017.1363751]
[22]
Guesmi, A.; Ladhari, N.; Ben Hamadi, N.; Msaddek, M.; Sakli, F. First application of chlorophyll-a as biomordant: sonicator dyeing of wool with betanin dye. J. Clean. Prod., 2013, 39, 97-104.
[http://dx.doi.org/10.1016/j.jclepro.2012.08.029]
[23]
Castellanos, S.E.; Yahia, E. Identification and quantification of Betalains from the fruits of 10 Mexican prickly pear cultivars by high-performance liquid chromatography and electrospray ionization mass spectrometry. J. Agric. Food Chem., 2008, 56, 5758-5764.
[http://dx.doi.org/10.1021/jf800362t]
[24]
Nazeeruddin, M.K.; Baranoff, E.; Gratzel, M. Dye sensitized solar cells: a brief overview. Sol. Energy, 2011, 85, 1172-1178.
[http://dx.doi.org/10.1016/j.solener.2011.01.018]
[25]
Adedokun, O.; Titilope, K.; Awodugba, A.O. Review on natural dye-sensitized solar cells (DSSCs). Int. J. Eng. Technol, 2016, 2, 34-41.
[http://dx.doi.org/10.19072/ijet.96456]
[26]
Lim, A.; Damit, D.K.F.; Ekanayake, P. Tailoring of extraction solvent of Ixoracoccinea flower to enhance charge transport properties in dye-sensitized solar cells. Ionics, 2015, 21, 2897-2904.
[http://dx.doi.org/10.1007/s11581-015-1489-9]
[27]
Guesmi, A.; Ben Hamadi, N.; Ladhari, N.; Sakli, F. Sonicator dyeing of modified acrylic fabrics with indicaxanthin natural dye. Ind. Crops Prod., 2013, 42, 63-69.
[http://dx.doi.org/10.1016/j.indcrop.2012.05.022]
[28]
Zhong, S.W.; Hiroshi, K.; Takeo, K.; Hironori, A. Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coord. Chem. Rev., 2004, 248, 1381-1389.
[http://dx.doi.org/10.1016/j.ccr.2004.03.006]
[29]
Guesmi, A.; Ladhari, N.; Sakli, F. Ultrasonic preparation of cationic cotton and its application in ultrasonic natural dyeing. Ultrason. Sonochem., 2013, 20, 571-579.
[http://dx.doi.org/10.1016/j.ultsonch.2012.04.012]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy