Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

General Review Article

Recent Applications of Supercritical Fluid Chromatography in Modern Analysis: Updates from 2017 to 2020

Author(s): Pankaj Soni, Gagandeep Pabla, Kritika Verma, Subrahmanya S. Ganti* and Rohit Bhatia*

Volume 17, Issue 6, 2021

Published on: 13 November, 2020

Page: [857 - 882] Pages: 26

DOI: 10.2174/1573411016999201113121322

Price: $65

Abstract

Background: Supercritical fluid chromatography (SFC) is one of the powerful analytical techniques of modern times. Recently, extensive analytical work has been reported and is in progress by utilizing the advanced features of SFC. Low solvent consumption, high sensitivity, and solvent recovery make it advantageous over the traditional liquid chromatographic techniques. It utilizes supercritical fluids having properties of both liquid and gases, making the applicability of this technique possible for a wider range of analytes.

Methods: Various research reports were collected from search engines like Sciencedirect, Pubmed, Researchgate, and Google Scholar. Further, upon a thorough study of these reports, significant findings/data was collected and compiled under suitable headings. Important parameters/ conditions utilized in methodologies are depicted with the help of tables in this study.

Results: It was found in various reports that SFC and its hyphenation with mass spectroscopy (MS), ultraviolet spectroscopy (UV), high-resolution mass spectrometry (HRMS), photodiode array detector (PDA), nuclear magnetic resonance (NMR), charged aerosol detector (CAD), etc., have made possible to quantify analytes even in ultra-small concentrations in complex matrices. These techniques have been successfully employed for the quantification of a wide variety of analytes with excellent accuracy, selectivity, and sensitivity.

Conclusion: The present review highlights the recent applications of SFC techniques in various analytical fields, such as pesticide analysis, vitamin analysis, enantioseparation, lipid analysis, drug metabolite estimation, polycyclic aromatic hydrocarbons, and steroid analysis. Reports from 2017 to 2020 have been included in this compilation.

Keywords: SFC, HRMS, enantioseparation, metabolite, polycyclic, steroids.

Graphical Abstract

[1]
Pauk, V.; Lemr, K. Forensic applications of supercritical fluid chromatography - mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1086, 184-196.
[http://dx.doi.org/10.1016/j.jchromb.2018.04.015] [PMID: 29684910]
[2]
Reverchon, E. Micro and nano-particles produced by supercritical fluid assisted techniques: present status and perspectives. Chem. Eng. Trans., 2002, 2, 1-10.
[3]
Cansell, A.L-S.F.; Aymonier, C. Review on materials science and supercritical fluids. Curr. Opin. Solid State Mater. Sci., 2003, 7, 331-340.
[http://dx.doi.org/10.1016/j.cossms.2004.01.003]
[4]
La Tour, C.C.D. Supercritical fluids. Ann. Chim. Phys., 1822, 21, 127-132.
[5]
Desfontaine, V.; Guillarme, D.; Francotte, E.; Nováková, L. Supercritical fluid chromatography in pharmaceutical analysis. J. Pharm. Biomed. Anal., 2015, 113, 56-71.
[http://dx.doi.org/10.1016/j.jpba.2015.03.007] [PMID: 25818887]
[6]
Knez Željko, H. Pantić Milica, Cör Darija, Novaka Zoran, M. Knez, Are supercritical fluids solvents for the future? Chem. Eng. Process. Process Intensif., 2019, 141, 107532.
[http://dx.doi.org/10.1016/j.cep.2019.107532]
[7]
Bernal, J.L.; Martín, M.T.; Toribio, L. Supercritical fluid chromatography in food analysis. J. Chromatogr. A, 2013, 1313, 24-36.
[8]
Klesper, D.A. E.; Corwin, A.H. and Turner, High Pressure Gas Chromatography above Critical Temperatures. J. Org. Chem., 1962, 27, 700-701.
[9]
Saito, M. History of supercritical fluid chromatography: instrumental development. J. Biosci. Bioeng., 2013, 115(6), 590-599.
[http://dx.doi.org/10.1016/j.jbiosc.2012.12.008] [PMID: 23318247]
[10]
Sie, G.W.A. S. T. and Rjinders, High-Pressure Gas chromatography and chromatography with supercritical Fluids. II. Permeability and efficiency of packed columns with high-pressure gases as mobile fluids under conditions of incipient turbulence. Sep. Sci., 1967, 2, 699-727.
[http://dx.doi.org/10.1080/01496396708049734]
[11]
Sie, G.W.A. S. T. and Rjinders, High-Pressure gas chromatography and chromatography with supercritical Fluids. III. Fluid-liquid chromatography. Sep. Sci., 1967, 2, 729-753.
[http://dx.doi.org/10.1080/01496396708049735]
[12]
Sie, G.W.A. S. T. and Rjinders, High-Pressure Gas chromatography and chromatography with supercritical fluids. IV. Fluid-Solid chromatography. Sep. Sci., 1967, 2, 755-777.
[http://dx.doi.org/10.1080/01496396708049736]
[13]
Sie, G.W.A. S. T. and Rjinders, High-Pressure Gas Chromatography and chromatography with supercritical fluids. I. The Effect of Pressure on Partition Coefficients in Gas-Liquid chromatography with carbon dioxide as a carrier gas. Sep. Sci., 1966, 1, 459-490.
[http://dx.doi.org/10.1080/01496396608049460]
[14]
Nováková, L.; Perrenoud, A.G.; Francois, I.; West, C.; Lesellier, E.; Guillarme, D. Modern analytical supercritical fluid chromatography using columns packed with sub-2 μm particles: a tutorial. Anal. Chim. Acta, 2014, 824, 18-35.
[http://dx.doi.org/10.1016/j.aca.2014.03.034] [PMID: 24759745]
[15]
Grand-Guillaume Perrenoud, A.; Veuthey, J.L.; Guillarme, D. The use of columns packed with sub-2 μm particles in supercritical fluid chromatography. TrAC Trends Analyt. Chem., 2014, 63, 44-54.
[http://dx.doi.org/10.1016/j.trac.2014.06.023]
[16]
Baker, D.R.; Kasprzyk-Hordern, B. Critical evaluation of methodology commonly used in sample collection, storage and preparation for the analysis of pharmaceuticals and illicit drugs in surface water and wastewater by solid phase extraction and liquid chromatography-mass spectrometry. J. Chromatogr. A, 2011, 1218(44), 8036-8059.
[http://dx.doi.org/10.1016/j.chroma.2011.09.012] [PMID: 21968350]
[17]
Pal, R.; Megharaj, M.; Kirkbride, K.P.; Naidu, R. Illicit drugs and the environment--a review. Sci. Total Environ., 2013, 463-464, 1079-1092.
[http://dx.doi.org/10.1016/j.scitotenv.2012.05.086] [PMID: 22726813]
[18]
Camacho-Muñoz, D.; Kasprzyk-Hordern, B.; Thomas, K.V. Enantioselective simultaneous analysis of selected pharmaceuticals in environmental samples by ultrahigh performance supercritical fluid based chromatography tandem mass spectrometry. Anal. Chim. Acta, 2016, 934, 239-251.
[http://dx.doi.org/10.1016/j.aca.2016.05.051] [PMID: 27506366]
[19]
Perera, F. Pollution from Fossil-Fuel Combustion is the Leading Environmental Threat to Global Pediatric Health and Equity: Solutions Exist. Int. J. Environ. Res. Public Health, 2017, 15(1), 16.
[http://dx.doi.org/10.3390/ijerph15010016] [PMID: 29295510]
[20]
West, C. Current trends in supercritical fluid chromatography. Anal. Bioanal. Chem., 2018, 410(25), 6441-6457.
[http://dx.doi.org/10.1007/s00216-018-1267-4] [PMID: 30051210]
[21]
Bosch, M.E.; Sánchez, A.J.; Rojas, F.S.; Ojeda, C.B. Applications of supercritical fluid chromatography-tandem mass spectrometry in pharmaceuticals. Curr. Drug Discov. Technol., 2009, 6(3), 214-229.
[http://dx.doi.org/10.2174/157016309789054942] [PMID: 19496749]
[22]
Perrut, M. Advances in supercritical fluid chromatographic processes. J. Chromatogr. A, 1994, 658, 293-313.
[http://dx.doi.org/10.1016/0021-9673(94)80022-7]
[23]
Majewski, W.; Valery, E.; Ludemann-Hombourger, O. Principle and applications of supercritical fluid chromatography. J. Liq. Chromatogr. Relat. Technol., 2005, 28, 1233-1252.
[http://dx.doi.org/10.1081/JLC-200053039]
[24]
Berger, T.A. Instrumentation for analytical scale supercritical fluid chromatography. J. Chromatogr. A, 2015, 1421, 171-183.
[http://dx.doi.org/10.1016/j.chroma.2015.07.062] [PMID: 26212805]
[25]
Turne, C.; King, J.W.; Mathiasson, L. Supercritical fluid extraction and chromatography for fat-soluble vitamin analysis. J. Chromatogr. A, 2001, 936(1-2), 215-237.
[http://dx.doi.org/10.1016/S0021-9673(01)01082-2] [PMID: 11761002]
[26]
Hsieh, Y.; Li, F.; Duncan, C.J.G. Supercritical fluid chromatography and high-performance liquid chromatography/tandem mass spectrometric methods for the determination of cytarabine in mouse plasma. Anal. Chem., 2007, 79(10), 3856-3861.
[http://dx.doi.org/10.1021/ac062441s] [PMID: 17441687]
[27]
Takahashi, K.; Takahashi, R.; Horikawa, Y.; Matsuyama, S. Optimization of experimental parameters for separation of nonionic surfactants by supercritical fluid chromatography. J. Supercrit. Fluids, 2013, 82, 256-262.
[http://dx.doi.org/10.1016/j.supflu.2013.08.007]
[28]
Zhang, X.; Scalf, M.; Westphall, M.S.; Smith, L.M. Membrane protein separation and analysis by supercritical fluid chromatography-mass spectrometry. Anal. Chem., 2008, 80(7), 2590-2598.
[http://dx.doi.org/10.1021/ac702319u] [PMID: 18303916]
[29]
Greibrokk, T. Instrumentation for supercritical fluid chromatography.Appl. Supercrit. Fluids Ind. Anal; Chapman & Hall, 1993, pp. 12-45.
[30]
Sethi, N.; Anand, A.; Jain, G.; Srinivas, K.S.; Chandrul, K.K. Supercritical Fluid Chromatography-A Hybrid of GC and LC. Chronicles Young Sci., 2010, 1, 12-22.www.opubs.com/cys
[31]
Palmieri, M.D. An introduction to supercritical fluid chromatography Part 1: Principles and instrumentation. J. Chem. Educ., 1988, 65, A254.
[http://dx.doi.org/10.1021/ed065pA254]
[32]
Weber, E.J.; Adams, R.L. Chemical- and sediment-mediated reduction of the azo dye disperse blue 79. Environ. Sci. Technol., 1995, 29(5), 1163-1170.
[http://dx.doi.org/10.1021/es00005a005] [PMID: 22192007]
[33]
Brown, D.; Hitz, H.R.; Schäfer, L. The assessment of the possible inhibitory effect of dyestuffs on aerobic waste-water bacteria experience with a screening test. Chemosphere, 1981, 10, 245-261.
[http://dx.doi.org/10.1016/0045-6535(81)90025-4]
[34]
Singh, K.; Arora, S. Removal of synthetic textile dyes from wastewaters: A critical review on present treatment technologies. Crit. Rev. Environ. Sci. Technol., 2011, 41, 807-878.
[http://dx.doi.org/10.1080/10643380903218376]
[35]
Lou, C.; Wu, C.; Zhang, K.; Guo, D.; Jiang, L.; Lu, Y.; Zhu, Y. Graphene-coated polystyrene-divinylbenzene dispersive solid-phase extraction coupled with supercritical fluid chromatography for the rapid determination of 10 allergenic disperse dyes in industrial wastewater samples. J. Chromatogr. A, 2018, 1550, 45-56.
[http://dx.doi.org/10.1016/j.chroma.2018.03.040] [PMID: 29615321]
[36]
González-Mariño, I.; Thomas, K.V.; Reid, M.J. Determination of cannabinoid and synthetic cannabinoid metabolites in wastewater by liquid-liquid extraction and ultra-high performance supercritical fluid chromatography-tandem mass spectrometry. Drug Test. Anal., 2018, 10(1), 222-228.
[http://dx.doi.org/10.1002/dta.2199] [PMID: 28371432]
[37]
Cutillas, V.; Galera, M.M.; Rajski, Ł.; Fernández-Alba, A.R. Evaluation of supercritical fluid chromatography coupled to tandem mass spectrometry for pesticide residues in food. J. Chromatogr. A, 2018, 1545, 67-74.
[http://dx.doi.org/10.1016/j.chroma.2018.02.048] [PMID: 29496188]
[38]
Cutillas, V.; Murcia-Morales, M.; Gómez-Ramos, M.D.M.; Taha, S.M.; Fernández-Alba, A.R. Supercritical fluid chromatography coupled to tandem mass spectrometry for the analysis of pesticide residues in dried spices. Benefits and drawbacks. Anal. Chim. Acta, 2019, 1059, 124-135.
[http://dx.doi.org/10.1016/j.aca.2019.01.010] [PMID: 30876626]
[39]
Wang, S.; Qi, P.; Di, S.; Wang, J.; Wu, S.; Wang, X.; Wang, Z.; Wang, Q.; Wang, X.; Zhao, C.; Li, Q. Significant role of supercritical fluid chromatography - mass spectrometry in improving the matrix effect and analytical efficiency during multi-pesticides residue analysis of complex chrysanthemum samples. Anal. Chim. Acta, 2019, 1074, 108-116.
[http://dx.doi.org/10.1016/j.aca.2019.04.063] [PMID: 31159930]
[40]
Shah, I.; James, R.; Barker, J.; Petroczi, A.; Naughton, D.P. Misleading measures in Vitamin D analysis: a novel LC-MS/MS assay to account for epimers and isobars. Nutr. J., 2011, 10, 46.
[http://dx.doi.org/10.1186/1475-2891-10-46] [PMID: 21569549]
[41]
Watkins, R.R.; Lemonovich, T.L.; Salata, R.A. An update on the association of vitamin D deficiency with common infectious diseases. Can. J. Physiol. Pharmacol., 2015, 93(5), 363-368.
[http://dx.doi.org/10.1139/cjpp-2014-0352] [PMID: 25741906]
[42]
Liu, T.T.; Cheong, L.Z.; Man, Q.Q.; Zheng, X.; Zhang, J.; Song, S. Simultaneous profiling of vitamin D metabolites in serum by supercritical fluid chromatography-tandem mass spectrometry (SFC-MS/MS). J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2019, 1120, 16-23.
[http://dx.doi.org/10.1016/j.jchromb.2019.04.050] [PMID: 31060022]
[43]
Tyśkiewicz, K.; Gieysztor, R.; Maziarczyk, I.; Hodurek, P.; Rój, E.; Skalicka-Woźniak, K. Supercritical fluid chromatography with photodiode array detection in the determination of fat-soluble vitamins in hemp seed oil and waste fish oil. Molecules, 2018, 23(5), 1131.
[http://dx.doi.org/10.3390/molecules23051131] [PMID: 29747473]
[44]
Gregory, J.F., III Accounting for differences in the bioactivity and bioavailability of vitamers. Food Nutr. Res., 2012, 56, 5809.
[http://dx.doi.org/10.3402/fnr.v56i0.5809] [PMID: 22489223]
[45]
Oberson, J.M.; Campos-Giménez, E.; Rivière, J.; Martin, F. Application of supercritical fluid chromatography coupled to mass spectrometry to the determination of fat-soluble vitamins in selected food products. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1086, 118-129.
[http://dx.doi.org/10.1016/j.jchromb.2018.04.017] [PMID: 29665470]
[46]
G.W. BURTON. Vitamin E: molecular and biological function. Proc. Nutr. Soc., 1994, 53, 251-262.
[47]
DellaPenna, D. A decade of progress in understanding vitamin E synthesis in plants. J. Plant Physiol., 2005, 162(7), 729-737.
[http://dx.doi.org/10.1016/j.jplph.2005.04.004] [PMID: 16008096]
[48]
Urvaka, E.; Mišina, I.; Soliven, A.; Górnaś, P. Rapid separation of all four tocopherol homologues in selected fruit seeds via supercritical fluid chromatography using a solid-core c18 column. J. Chem., 2019, 2019
[http://dx.doi.org/10.1155/2019/5307340]]
[49]
Tamblyn, J.A.; Susarla, R.; Jenkinson, C.; Jeffery, L.E.; Ohizua, O.; Chun, R.F.; Chan, S.Y.; Kilby, M.D.; Hewison, M. Dysregulation of maternal and placental vitamin D metabolism in preeclampsia. Placenta, 2017, 50, 70-77.
[http://dx.doi.org/10.1016/j.placenta.2016.12.019] [PMID: 28161064]
[50]
Strathmann, F.G.; Ka, M.M.; Rainey, P.M.; Baird, G.S. Use of the BD vacutainer rapid serum tube reduces false-positive results for selected beckman coulter Unicel DxI immunoassays. Am. J. Clin. Pathol., 2011, 136(2), 325-329.
[http://dx.doi.org/10.1309/AJCPZOFJ7KX5QMRW] [PMID: 21757607]
[51]
Mellios, N.; Sugihara, H.; Castro, J.; Banerjee, A.; Le, C.; Kumar, A.; Crawford, B.; Strathmann, J.; Tropea, D.; Levine, S.S.; Edbauer, D.; Sur, M. miR-132, an experience-dependent microRNA, is essential for visual cortex plasticity. Nat. Neurosci., 2011, 14(10), 1240-1242.
[http://dx.doi.org/10.1038/nn.2909] [PMID: 21892155]
[52]
Jenkinson, C.; Taylor, A.; Storbeck, K.H.; Hewison, M. Analysis of multiple vitamin D metabolites by ultra-performance supercritical fluid chromatography-tandem mass spectrometry (UPSFC-MS/MS). J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1087-1088, 43-48.
[http://dx.doi.org/10.1016/j.jchromb.2018.04.025] [PMID: 29709871]
[53]
Zhang, Y.; Ling, Y.; Zhang, Y.; Yao, G.; Yao, M.; Zhang, F. Simultaneous determination of 17 bisphenols in polycarbonate by ultra-high performance supercritical fluid chromatography with tandem mass spectrometry. J. Sep. Sci., 2019, 42(15), 2578-2586.
[http://dx.doi.org/10.1002/jssc.201900279] [PMID: 31144456]
[54]
Wang, W.; Li, P.; Wu, F.; Wang, Z.; Zhang, T. Development and optimization of a supercritical fluid chromatography tandem mass spectrometry method for the high-throughput determination of nimodipine in beagle plasma. J. Sep. Sci., 2019, 42(12), 2179-2186.
[http://dx.doi.org/10.1002/jssc.201900134] [PMID: 30993887]
[55]
Zhang, X.; Ding, X.; Wang, J.; Dean, B. Supercritical fluid chromatography-tandem mass spectrometry for high throughput bioanalysis of small molecules in drug discovery. J. Pharm. Biomed. Anal., 2019, 164, 62-69.
[http://dx.doi.org/10.1016/j.jpba.2018.10.021] [PMID: 30359840]
[56]
Tremeau-Cayel, L.; Carnes, S.; Schanfield, M.S.; Lurie, I.S. A comparison of single quadrupole mass detection and diode array ultraviolet detection interfaced to ultra-high performance supercritical chromatography for the quantitative analysis of synthetic cathinones. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1091, 96-100.
[http://dx.doi.org/10.1016/j.jchromb.2018.05.035] [PMID: 29860214]
[57]
Di, M.; Li, Z.; Jiang, Q.; Wang, T.; Zhang, W.; Sun, Z.; Sun, J.; Liu, X. A rapid and sensitive supercritical fluid chromatography/tandem mass spectrometry method for detection of ezetimibein dog plasma and its application in pharmacokinetic studies. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1073, 177-182.
[http://dx.doi.org/10.1016/j.jchromb.2017.10.053] [PMID: 29276982]
[58]
Mai, B.; Fan, J.; Jiang, Y.; He, R.; Lai, Y.; Zhang, W. Fast enantioselective determination of triadimefon in different matrices by supercritical fluid chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2019, 1126-1127, 121740.
[http://dx.doi.org/10.1016/j.jchromb.2019.121740] [PMID: 31400581]
[59]
Goel, M.; Larson, E.; Venkatramani, C.J.; Al-Sayah, M.A. Optimization of a two-dimensional liquid chromatography-supercritical fluid chromatography-mass spectrometry (2D-LC-SFS-MS) system to assess “in-vivo” inter-conversion of chiral drug molecules. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1084, 89-95.
[http://dx.doi.org/10.1016/j.jchromb.2018.03.029] [PMID: 29579733]
[60]
Dascalu, A.E.; Ghinet, A.; Billamboz, M.; Lipka, E. Performance comparison of chlorinated chiral stationary phases in supercritical fluid chromatography for separation of selected pyrrolidone derivatives. J. Pharm. Anal., 2019, 9(4), 248-253.
[http://dx.doi.org/10.1016/j.jpha.2019.03.002] [PMID: 31452962]
[61]
Olsen, G.W.; Burris, J.M.; Ehresman, D.J.; Froehlich, J.W.; Seacat, A.M.; Butenhoff, J.L.; Zobel, L.R. Half-life of serum elimination of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers. Environ. Health Perspect., 2007, 115(9), 1298-1305.
[http://dx.doi.org/10.1289/ehp.10009] [PMID: 17805419]
[62]
Zhao, L.; Chen, F.; Guo, F.; Liu, W.; Liu, K. Enantioseparation of chiral perfluorooctane sulfonate (PFOS) by supercritical fluid chromatography (SFC): Effects of the chromatographic conditions and separation mechanism. Chirality, 2019, 31(10), 870-878.
[http://dx.doi.org/10.1002/chir.23120] [PMID: 31407830]
[63]
Kozlov, O.; Kalíková, K.; Gondová, T.; Budovská, M.; Salayová, A.; Tesařová, E. Fast enantioseparation of indole phytoalexins in additive free supercritical fluid chromatography. J. Chromatogr. A, 2019, 1596, 209-216.
[http://dx.doi.org/10.1016/j.chroma.2019.03.028] [PMID: 30910386]
[64]
Zhang, X.; Qi, C.; Zhang, Y.; Wei, W.; Jin, Q.; Xu, Z.; Tao, G.; Wang, X. Identification and quantification of triacylglycerols in human milk fat using ultra-performance convergence chromatography and quadrupole time-of-flight mass spectrometery with supercritical carbon dioxide as a mobile phase. Food Chem., 2019, 275, 712-720.
[http://dx.doi.org/10.1016/j.foodchem.2018.09.150] [PMID: 30724254]
[65]
Gil-Ramirez, A.; Al-Hamimi, S.; Rosmark, O.; Hallgren, O.; Larsson-Callerfelt, A.K.; Rodríguez-Meizoso, I. Efficient methodology for the extraction and analysis of lipids from porcine pulmonary artery by supercritical fluid chromatography coupled to mass spectrometry. J. Chromatogr. A, 2019, 1592, 173-182.
[http://dx.doi.org/10.1016/j.chroma.2019.01.064] [PMID: 30709622]
[66]
Takeda, H.; Takahashi, M.; Hara, T.; Izumi, Y.; Bamba, T. Improved quantitation of lipid classes using supercritical fluid chromatography with a charged aerosol detector. J. Lipid Res., 2019, 60(8), 1465-1474.
[http://dx.doi.org/10.1194/jlr.D094516] [PMID: 31201290]
[67]
Lísa, M.; Cífková, E.; Khalikova, M.; Ovčačíková, M.; Holčapek, M. Lipidomic analysis of biological samples: Comparison of liquid chromatography, supercritical fluid chromatography and direct infusion mass spectrometry methods. J. Chromatogr. A, 2017, 1525, 96-108.
[http://dx.doi.org/10.1016/j.chroma.2017.10.022] [PMID: 29037587]
[68]
Pudel, F.; Benecke, P.; Fehling, P.; Freudenstein, A.; Mattha, B.; Schwaf, A. On the necessity of edible oil refining and possible sources of 3-MCPD and glycidyl esters. Eur. J. Lipid Sci. Technol., 2011, 113, 368-373.
[http://dx.doi.org/10.1002/ejlt.201000460]
[69]
Liu, M.; Gao, B.Y.; Qin, F.; Wu, P.P.; Shi, H.M.; Luo, W.; Ma, A.N.; Jiang, Y.R.; Xu, X.B.; Yu, L.L. Acute oral toxicity of 3-MCPD mono- and di-palmitic esters in Swiss mice and their cytotoxicity in NRK-52E rat kidney cells. Food Chem. Toxicol., 2012, 50(10), 3785-3791.
[http://dx.doi.org/10.1016/j.fct.2012.07.038] [PMID: 22847132]
[70]
Jumaah, F.; Jędrkiewicz, R.; Gromadzka, J.; Namieśnik, J.; Essén, S.; Turner, C.; Sandahl, M. Rapid and Green Separation of Mono- and Diesters of Monochloropropanediols by Ultrahigh Performance Supercritical Fluid Chromatography-Mass Spectrometry Using Neat Carbon Dioxide as a Mobile Phase. J. Agric. Food Chem., 2017, 65(37), 8220-8228.
[http://dx.doi.org/10.1021/acs.jafc.7b02857] [PMID: 28847148]
[71]
de Kock, N.; Acharya, S.R.; Ubhayasekera, S.J.K.A.; Bergquist, J. A Novel Targeted Analysis of Peripheral Steroids by Ultra-Performance Supercritical Fluid Chromatography Hyphenated to Tandem Mass Spectrometry. Sci. Rep., 2018, 8(1), 16993.
[http://dx.doi.org/10.1038/s41598-018-35007-0] [PMID: 30451874]
[72]
Yang, L.; Nie, H.; Zhao, F.; Song, S.; Meng, Y.; Bai, Y.; Liu, H. A novel online two-dimensional supercritical fluid chromatography/reversed phase liquid chromatography-mass spectrometry method for lipid profiling. Anal. Bioanal. Chem., 2020, 412(10), 2225-2235.
[http://dx.doi.org/10.1007/s00216-019-02242-x] [PMID: 31901960]
[73]
Zoccali, M.; Giuffrida, D.; Salafia, F.; Giofrè, S.V.; Mondello, L. Carotenoids and apocarotenoids determination in intact human blood samples by online supercritical fluid extraction-supercritical fluid chromatography-tandem mass spectrometry. Anal. Chim. Acta, 2018, 1032, 40-47.
[http://dx.doi.org/10.1016/j.aca.2018.06.022] [PMID: 30143220]
[74]
Santerre, C.; Vallet, N.; Touboul, D. Fingerprints of flower absolutes using supercritical fluid chromatography hyphenated with high resolution mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1092, 1-6.
[http://dx.doi.org/10.1016/j.jchromb.2018.05.016] [PMID: 29870924]
[75]
Wu, W.; Zhang, Y.; Zhang, F.; Liu, J.; Ren, Z.; Xu, Y.; Liu, T.; Zhou, W.; Li, H.; Zhang, C. An analytical strategy for accurate, rapid and sensitive quantitative analysis of isoflavones in traditional Chinese medicines using ultra-high performance supercritical fluid chromatography: Take Radix Puerariae as an example. J. Chromatogr. A, 2019, 1606, 460385.
[http://dx.doi.org/10.1016/j.chroma.2019.460385] [PMID: 31351592]
[76]
Virgin Olive Oil: Production, Composition, Uses and Benefitsfor Man, UK edition; Nova Science Publishers Inc: United states, 2014.
[77]
Abu Bakar, N.B.; Makahleh, A.; Saad, B.; Saad, B. In-vial liquid-liquid microextraction-capillary electrophoresis method for the determination of phenolic acids in vegetable oils. Anal. Chim. Acta, 2012, 742, 59-66.
[http://dx.doi.org/10.1016/j.aca.2012.02.045] [PMID: 22884208]
[78]
Alkan, D.; Tokatli, F.; Ozen, B. Phenolic Characterization and Geographical Classification of Commercial Extra Virgin Olive Oils Produced in Turkey. J. Am. Oil Chem. Soc., 2012, 89, 261-268.
[http://dx.doi.org/10.1007/s11746-011-1917-6]
[79]
Kesen, S.; Kelebek, H.; Selli, S. LC - ESI - MS Characterization of Phenolic Profiles Turkish Olive Oils as Influenced by Geographic Origin and Harvest Year. J. Am. Oil Chem. Soc., 2014, 91, 385-394.
[http://dx.doi.org/10.1007/s11746-013-2380-3]
[80]
Tang, G.; Huang, Y.; Zhang, T.; Wang, Q.; Crommen, J.; Fillet, M.; Jiang, Z. Determination of phenolic acids in extra virgin olive oil using supercritical fluid chromatography coupled with single quadrupole mass spectrometry. J. Pharm. Biomed. Anal., 2018, 157, 217-225.
[http://dx.doi.org/10.1016/j.jpba.2018.05.025] [PMID: 29843098]
[81]
Wu, W.; Zhang, Y.; Wu, H.; Zhou, W.; Cheng, Y.; Li, H.; Zhang, C.; Li, L.; Huang, Y.; Zhang, F. Simple, rapid, and environmentally friendly method for the separation of isoflavones using ultra-high performance supercritical fluid chromatography. J. Sep. Sci., 2017, 40(13), 2827-2837.
[http://dx.doi.org/10.1002/jssc.201601454] [PMID: 28556539]
[82]
Yang, Y.; Gao, H.; Hou, S.; Su, R.; Liu, H.; Sun, J. A sensitive, high-throughput, and ecofriendly method for the determination of lumefantrine, artemether, and its active metabolite dihydroartemisinin by supercritical fluid chromatography and tandem mass spectrometry. J. Sep. Sci., 2018, 41(12), 2688-2696.
[http://dx.doi.org/10.1002/jssc.201800025] [PMID: 29660250]
[83]
Hofstetter, R.; Fassauer, G.M.; Link, A. Supercritical fluid extraction (SFE) of ketamine metabolites from dried urine and on-line quantification by supercritical fluid chromatography and single mass detection (on-line SFE-SFC-MS). J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1076, 77-83.
[http://dx.doi.org/10.1016/j.jchromb.2018.01.024] [PMID: 29406031]
[84]
Friedel, H.A.; Fitton, A.F.H.A. Flupirtine. A review of its pharmacological properties, and therapeutic efficacy in pain states. Drugs, 1993, 45(4), 548-569.
[http://dx.doi.org/10.2165/00003495-199345040-00007] [PMID: 7684675]
[85]
Anderson, N.; Borlak, J. Correlation versus causation? Pharmacovigilance of the analgesic flupirtine exemplifies the need for refined spontaneous ADR reporting. PLoS One, 2011, 6(10), e25221.
[http://dx.doi.org/10.1371/journal.pone.0025221] [PMID: 22022383]
[86]
Hofstetter, R.K.; Hasan, M.; Fassauer, G.M.; Bock, C.; Surur, A.S.; Behnisch, S.; Grathwol, C.W.; Potlitz, F.; Oergel, T.; Siegmund, W.; Link, A. Simultaneous quantification of acidic and basic flupirtine metabolites by supercritical fluid chromatography according to European Medicines Agency validation. J. Chromatogr. A, 2019, 1603, 338-347.
[http://dx.doi.org/10.1016/j.chroma.2019.04.067] [PMID: 31056272]
[87]
Murrough, J.W.; Iosifescu, D.V.; Chang, L.C.; Al Jurdi, R.K.; Green, C.E.; Perez, A.M.; Iqbal, S.; Pillemer, S.; Foulkes, A.; Shah, A.; Charney, D.S.; Mathew, S.J.M.J.W. Antidepressant efficacy of ketamine in treatment-resistant major depression: a two-site randomized controlled trial. Am. J. Psychiatry, 2013, 170(10), 1134-1142.
[http://dx.doi.org/10.1176/appi.ajp.2013.13030392] [PMID: 23982301]
[88]
Yang, C.; Qu, Y.; Abe, M.; Nozawa, D.; Chaki, S.; Hashimoto, K. (R)-Ketamine Shows Greater Potency and Longer Lasting Antidepressant Effects Than Its Metabolite (2R,6R)-. Hydroxynorketamine. Biol. Psychiatry, 2017, 82(5), e43-e44.
[http://dx.doi.org/10.1016/j.biopsych.2016.12.020] [PMID: 28104224]
[89]
Zanos, P.; Moaddel, R.; Morris, P.J.; Georgiou, P.; Fischell, J.; Elmer, G.I.; Alkondon, M.; Yuan, P.; Pribut, H.J.; Singh, N.S.; Dossou, K.S.S.; Fang, Y.; Huang, X.P.; Mayo, C.L.; Wainer, I.W.; Albuquerque, E.X.; Thompson, S.M.; Thomas, C.J.; Zarate, C.A., Jr; Gould, T.D. NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature, 2016, 533(7604), 481-486.
[http://dx.doi.org/10.1038/nature17998] [PMID: 27144355]
[90]
Fassauer, G.M.; Hofstetter, R.; Hasan, M.; Oswald, S.; Modeß, C.; Siegmund, W.; Link, A. Ketamine metabolites with antidepressant effects: Fast, economical, and eco-friendly enantioselective separation based on supercritical-fluid chromatography (SFC) and single quadrupole MS detection. J. Pharm. Biomed. Anal., 2017, 146, 410-419.
[http://dx.doi.org/10.1016/j.jpba.2017.09.007] [PMID: 28926735]
[91]
Tao, Y.; Zheng, Z.; Yu, Y.; Xu, J.; Liu, X.; Wu, X.; Dong, F.; Zheng, Y. Supercritical fluid chromatography-tandem mass spectrometry-assisted methodology for rapid enantiomeric analysis of fenbuconazole and its chiral metabolites in fruits, vegetables, cereals, and soil. Food Chem., 2018, 241, 32-39.
[http://dx.doi.org/10.1016/j.foodchem.2017.08.038] [PMID: 28958535]
[92]
Noireau, A.; Lemasson, E.; Mauge, F.; Petit, A.M.; Bertin, S.; Hennig, P.; Lesellier, É.; West, C. Purification of drug degradation products supported by analytical and preparative supercritical fluid chromatography. J. Pharm. Biomed. Anal., 2019, 170, 40-47.
[http://dx.doi.org/10.1016/j.jpba.2019.03.033] [PMID: 30904738]
[93]
Schiavone, N.M.; Bennett, R.; Hicks, M.B.; Pirrone, G.F.; Regalado, E.L.; Mangion, I.; Makarov, A.A. Evaluation of global conformational changes in peptides and proteins following purification by supercritical fluid chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2019, 1110-1111, 94-100.
[http://dx.doi.org/10.1016/j.jchromb.2019.02.012] [PMID: 30785083]
[94]
Karila, L.; Megarbane, B.; Cottencin, O.; Lejoyeux, M. Synthetic cathinones: a new public health problem. Curr. Neuropharmacol., 2015, 13(1), 12-20.
[http://dx.doi.org/10.2174/1570159X13666141210224137] [PMID: 26074740]
[95]
Hohmann, N.; Mikus, G.; Czock, D. Effects and risks associated with novel psychoactive substances: mislabeling and sale as bath salts, spice, and research chemicals. Dtsch. Arztebl. Int., 2014, 111(9), 139-147.
[http://dx.doi.org/10.3238/arztebl.2014.0139] [PMID: 24661585]
[96]
Prosser, J.M.; Nelson, L.S. The toxicology of bath salts: a review of synthetic cathinones. J. Med. Toxicol., 2012, 8(1), 33-42.
[http://dx.doi.org/10.1007/s13181-011-0193-z] [PMID: 22108839]
[97]
Carnes, S.; O’Brien, S.; Szewczak, A.; Tremeau-Cayel, L.; Rowe, W.F.; McCord, B.; Lurie, I.S. Comparison of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography for the separation of synthetic cathinones. J. Sep. Sci., 2017, 40(17), 3545-3556.
[http://dx.doi.org/10.1002/jssc.201700349] [PMID: 28683184]
[98]
Ye, J.; Zhao, M.; Niu, L.; Liu, W. Enantioselective environmental toxicology of chiral pesticides. Chem. Res. Toxicol., 2015, 28(3), 325-338.
[http://dx.doi.org/10.1021/tx500481n] [PMID: 25643169]
[99]
Moore, A.; Waring, C.P. The effects of a synthetic pyrethroid pesticide on some aspects of reproduction in Atlantic salmon (Salmo salar L.). Aquat. Toxicol., 2001, 52(1), 1-12.
[http://dx.doi.org/10.1016/S0166-445X(00)00133-8] [PMID: 11163426]
[100]
Das, B.K.; Mukherjee, S.C. Toxicity of cypermethrin in Labeo rohita fingerlings: biochemical, enzymatic and haematological consequences. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2003, 134(1), 109-121.
[http://dx.doi.org/10.1016/S1532-0456(02)00219-3] [PMID: 12524023]
[101]
Yan, Y.; Fan, J.; Lai, Y.; He, J.; Guo, D.; Zhang, H.; Zhang, W. Efficient preparative separation of β-cypermethrin stereoisomers by supercritical fluid chromatography with a two-step combined strategy. J. Sep. Sci., 2018, 41(6), 1442-1449.
[http://dx.doi.org/10.1002/jssc.201701138] [PMID: 29266717]
[102]
Ng, M.H.; Kushairi, A. The Effect of Pressure and Solvent on the Supercritical Fluid Chromatography Separation of Tocol Analogs in Palm Oil. Molecules, 2017, 22, 1424.
[103]
Doué, M.; West, C.; Bichon, E.; Le Bizec, B.; Lesellier, E. Supercritical fluid chromatography applied to the highly selective isolation of urinary steroid hormones prior to GC/MS analysis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1086, 97-104.
[http://dx.doi.org/10.1016/j.jchromb.2018.04.024] [PMID: 29660668]
[104]
Lübeck, J.S.; Malmquist, L.M.V.; Christensen, J.H. Supercritical fluid chromatography for the analysis of oxygenated polycyclic aromatic compounds in unconventional oils. J. Chromatogr. A, 2019, 1589, 162-172.
[http://dx.doi.org/10.1016/j.chroma.2018.12.056] [PMID: 30635173]
[105]
Orecchio, S.; Papuzza, V. Levels, fingerprint and daily intake of polycyclic aromatic hydrocarbons (PAHs) in bread baked using wood as fuel. J. Hazard. Mater., 2009, 164(2-3), 876-883.
[http://dx.doi.org/10.1016/j.jhazmat.2008.08.083] [PMID: 18842340]
[106]
Yoshioka, T.; Nagatomi, Y.; Harayama, K.; Bamba, T. Development of an analytical method for polycyclic aromatic hydrocarbons in coffee beverages and dark beer using novel high-sensitivity technique of supercritical fluid chromatography/mass spectrometry. J. Biosci. Bioeng., 2018, 126(1), 126-130.
[http://dx.doi.org/10.1016/j.jbiosc.2018.01.014] [PMID: 29499993]
[107]
Chang, K.F.; Fang, G.C.; Chen, J.C.; Wu, Y.S. Atmospheric polycyclic aromatic hydrocarbons (PAHs) in Asia: a review from 1999 to 2004. Environ. Pollut., 2006, 142(3), 388-396.
[http://dx.doi.org/10.1016/j.envpol.2005.09.025] [PMID: 16343719]
[108]
Shimada, T.; Guengerich, F.P. Inhibition of human cytochrome P450 1A1-, 1A2-, and 1B1-mediated activation of procarcinogens to genotoxic metabolites by polycyclic aromatic hydrocarbons. Chem. Res. Toxicol., 2006, 19(2), 288-294.
[http://dx.doi.org/10.1021/tx050291v] [PMID: 16485905]
[109]
Pedersen, D.U.; Durant, J.L.; Taghizadeh, K.; Hemond, H.F.; Lafleur, A.L.; Cass, G.R. Human cell mutagens in respirable airborne particles from the northeastern United States. 2. Quantification of mutagens and other organic compounds. Environ. Sci. Technol., 2005, 39(24), 9547-9560.
[http://dx.doi.org/10.1021/es050886c] [PMID: 16475335]
[110]
Wicker, A.P.; Carlton, D.D., Jr; Tanaka, K.; Nishimura, M.; Chen, V.; Ogura, T.; Hedgepeth, W.; Schug, K.A. On-line supercritical fluid extraction-supercritical fluid chromatography-mass spectrometry of polycyclic aromatic hydrocarbons in soil. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1086, 82-88.
[http://dx.doi.org/10.1016/j.jchromb.2018.04.014] [PMID: 29660666]
[111]
Acir, I.H.; Guenther, K. Endocrine-disrupting metabolites of alkylphenol ethoxylates - A critical review of analytical methods, environmental occurrences, toxicity, and regulation. Sci. Total Environ., 2018, 635, 1530-1546.
[http://dx.doi.org/10.1016/j.scitotenv.2018.04.079] [PMID: 29874777]
[112]
Jardak, K.; Drogui, P.; Daghrir, R. Surfactants in aquatic and terrestrial environment: occurrence, behavior, and treatment processes. Environ. Sci. Pollut. Res. Int., 2016, 23(4), 3195-3216.
[http://dx.doi.org/10.1007/s11356-015-5803-x] [PMID: 26590059]
[113]
Ma, Q.; Zhang, Y.; Zhai, J.; Chen, X.; Du, Z.; Li, W.; Bai, H. Characterization and analysis of non-ionic surfactants by supercritical fluid chromatography combined with ion mobility spectrometry-mass spectrometry. Anal. Bioanal. Chem., 2019, 411(13), 2759-2765.
[http://dx.doi.org/10.1007/s00216-019-01777-3] [PMID: 30911797]
[114]
van Zelst, F.H.M.; van Meerten, S.G.J.; Kentgens, A.P.M. Characterising polar compounds using supercritical fluid chromatography-nuclear magnetic resonance spectroscopy (SFC-NMR). Faraday Discuss., 2019, 218(0), 219-232.
[http://dx.doi.org/10.1039/C8FD00237A] [PMID: 31120051]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy