Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Effect of MWCNTs on Improvement of Fracture Toughness of Spark Plasma Sintered SiC Nano-Composites

Author(s): Arunkumar Thirugnanasabandam*, Karthikeyan Ramachandran, Ram Subramani R, Anish Mariadas, J. Theerthagiri Jayaraman, Rajender Boddula and Madhavan Jagannathan

Volume 17, Issue 6, 2021

Published on: 02 January, 2020

Page: [849 - 856] Pages: 8

DOI: 10.2174/1573411016666200102120121

Price: $65

Abstract

Background: Silicon Carbide (SiC) ceramics are promising engineering material due to its phenomenal properties, such as strong corrosion resistance, high-temperature hardness, wear resistance, high thermal conductivity and high stability in an aggressive environment. The key problem of SiC is low fracture toughness due to its brittle nature and to circumvent this, herein high ductile material like MWCNT was used as reinforcement by different proportions.

Methods: Nanocrystalline powdered Silicon Carbide (SiC) of particle size of 40 nm and x % weight ratio of SiC (x = 95%, 90% and 85%) + y % weight ratio of multiwalled carbon nanotubes (MWCNTs) of particle size of 20 nm (y= 5%, 10% and 15%) composites were ball milled and fabricated using spark plasma sintering process with temperature rate of 100°C/min and external pressure of 50 MPa. The sintered samples were tested according to ASTM standards to verify the mechanical properties of the samples. Furthermore, lattice strain and crystalline size was determined by XRD and the crack bridging mechanism was studied by FESEM.

Results: It was observed that the uniform distributions of MWCNTs were achieved through ultrasonication and ball milling processes, which play a predominant role in increasing fracture toughness. The fracture toughness of the composite improves drastically from 3.71 MPa m1/2 (100% SiC) to 10.21 MPa m1/2 (85% SiC-15% MWCNT). The theoretical and relative densities of the materials were gradually reduced due to the increase in MWCNTs which is due to the lower density of the reinforcement material and an increase in porosity of the samples.

Conclusion: The MWCNTs act as a bridging aid in sintered samples, FESEM image signifies some pull-outs and crack branching mechanisms of MWCNTs which is the reason for an increase in the fracture toughness of SiC.

Keywords: Fracture toughness, multi-walled carbon nanotubes, silicon carbide, spark plasma sintering, nanotechnology, crack bridging mechanism.

Graphical Abstract

[1]
Iijima, S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348), 56-58.
[http://dx.doi.org/10.1038/354056a0]
[2]
Iijima, S.; Ajayan, P.M.; Ichihashi, T. Growth model for carbon nanotubes. Phys. Rev. Lett., 1992, 69(21), 3100-3103.
[http://dx.doi.org/10.1103/PhysRevLett.69.3100]
[3]
Popov, V. Carbon nanotubes: properties and application. Mater. Sci. Eng. Rep., 2004, 43(3), 61-102.
[http://dx.doi.org/10.1016/j.mser.2003.10.001]
[4]
Wang, Q.; Moriyam, H. Carbon Nanotube-Based Thin Films: Synthesis and Properties. Carbon Nanotubes - Synthesis, Characterization; Applications, 2011.
[5]
Andrews, R.; Jacques, D.; Qian, D.; Rantell, T. Multiwall carbon nanotubes: Synthesis and application. ChemInform, 2003, 34(8), 1-10.
[http://dx.doi.org/10.1002/chin.200308223]
[6]
Khan, Z.H., Ed.; Nanomaterials and Their Applications; ADV STRUCT MAT, 2018.
[http://dx.doi.org/10.1007/978-981-10-6214-8]
[7]
Dresselhaus, M.S.; Dresselhaus, G.; Eklund, P.C. Applications of Carbon Nanostructures. Science of Fullerenes and Carbon Nanotubes. Carbon Nanotubes, 1996, 34(8), 1-10.
[8]
Endo, M.; Strano, M.S.; Ajayan, P.M. Potential Applications of Carbon Nanotubes. Carbon Nanotubes, 2007, 2007, 13-62.
[9]
Geng, Y.; Liu, M.Y.; Li, J.; Shi, X.M.; Kim, J.K. Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites. Compos Part A-Appl S, 2008, 39(12), 1876-1883.
[http://dx.doi.org/10.1016/j.compositesa.2008.09.009]
[10]
Kingery, W.D. Introduction to Ceramics. J. Chem. Educ., 1961, 38(8), A548.
[http://dx.doi.org/10.1021/ed038pA548.1]
[11]
Yet-Ming, Chiang Key Eng. Mat., 2004.
[12]
Shur, M. Rumyantsev.; S.; Levinshtein, M, Sic Materials and Devices (2); Selected Topics in Electronics and Systems, 2007.
[http://dx.doi.org/10.1142/6311]
[13]
Konig, K. ovak, S; Ivekovic A; Rade K; Meng D; Boccaccini AR, Fabrication of CNT-SiC/SiC composites by electrophoretic deposition. J. Eur. Ceram. Soc., 2010, 30(5), 1131-1137.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2009.07.027]
[14]
Barmin, A.; Bortnikova, V.; Ivanov, A.; Kornev, V.; Lurie, S.; Solyaev, Y. Microstructure and mechanical properties of silicon carbide ceramics reinforced with multi-walled carbon nanotubes. IOP Conf. Series Mater. Sci. Eng., 2016, 124, 012142.
[http://dx.doi.org/10.1088/1757-899X/124/1/012142]
[15]
Morisada, Y.; Miyamoto, Y.; Takaura, Y.; Hirota, K.; Tamari, N. Mechanical properties of SiC composites incorporating SiC-coated multi-walled carbon nanotubes. Int. J. Refract. Met H, 2007, 25(4), 322-327.
[http://dx.doi.org/10.1016/j.ijrmhm.2006.08.005]
[16]
Lin, J.; Yang, Y.; Zhang, H.; Gong, J. Effects of CNTs content on the microstructure and mechanical properties of spark plasma sintered TiB 2 -SiC ceramics. Ceram. Int., 2017, 43(1), 1284-1289.
[http://dx.doi.org/10.1016/j.ceramint.2016.10.078]
[17]
Petrovic, J.J.; Milewski, J.V.; Rohr, D.L.; Gac, F.D. Tensile mechanical properties of SiC whiskers. J. Mater. Sci., 1985, 20(4), 1167-1177.
[http://dx.doi.org/10.1007/BF01026310]
[18]
She, J.; Ohji, T.; Deng, Z-Y. Thermal Shock Behavior of Porous Silicon Carbide Ceramics. J. Am. Ceram. Soc., 2002, 85(8), 2125-2127.
[http://dx.doi.org/10.1111/j.1151-2916.2002.tb00418.x]
[19]
Slack, G.A. Thermal conductivity of pure and impure silicon, silicon carbide, and diamond. J. Appl. Phys., 1964, 35(12), 3460-3466.
[http://dx.doi.org/10.1063/1.1713251]
[20]
Willander, M.; Friesel, M.; Wahab, Q.; Straumal, B. High-Temperature Electronic Materials: Silicon Carbide and Diamond.. Springer Handbook of Electronic and Photonic Materials, 2006., 537-563.
[21]
Saddow, S.E. Silicon Carbide Materials for Biomedical Applications. Silicon Carbide Biotechnology, 2012, 1-15.
[22]
Lenoe, E.M.; Katz, R.N.; Burke, J.J., Eds.; Ceramics for High-Performance Applications III; , 1983.
[http://dx.doi.org/10.1007/978-1-4684-3965-6]
[23]
Viswanathan, K.; Murugan, P.T. Analysis of multilayer and multifunctional circuit in processor. International Conference on Advanced Nanomaterials & Emerging Engineering Technologies, 2013.
[http://dx.doi.org/10.1109/ICANMEET.2013.6609316]
[24]
Dutta, D. Development and Evaluation of Silicon Carbide Particulate Reinforced Aluminium Composites. Key Eng. Mat., 1991.
[25]
Hasselman, D.P.H. Unified theory of thermal shock fracture initiation and crack propagation in brittle ceramics. J. Am. Ceram. Soc., 1969, 52(11), 600-604.
[http://dx.doi.org/10.1111/j.1151-2916.1969.tb15848.x]
[26]
Hu, D.; Wang, J.; Yin, L.; Chen, Z.; Yi, R.; Lu, C. Experimental Study on the Penetration Effect of Ceramics Composite Projectile on Ceramic/A3 Steel Compound Targets. 30th International Symposium on Ballistics, 2017.
[http://dx.doi.org/10.12783/ballistics2017/17012]
[27]
Arsecularatne, J.; Zhang, L. Carbon Nanotube Reinforced Ceramic Composites and their Performance. Recent Pat. Nanotech., 2007, 1(3), 176-185.
[http://dx.doi.org/10.2174/187221007782360411]
[28]
Chen, P.; Jing, S.; Chu, Y.; Rao, P. Improved fracture toughness of CNTs/SiC composites by HF treatment. J. Alloys Compd., 2018, 730, 42-46.
[http://dx.doi.org/10.1016/j.jallcom.2017.09.265]
[29]
Fu, Q.; Zhuang, L.; Ren, Q.; Feng, L.; Li, H.; Guo, Y. Carbon nanotube-toughened interlocking buffer layer to improve the adhesion strength and thermal shock resistance of SiC coating for C/C–ZrC–SiC composites. J Materiomics, 2015, 13, 245-252.
[30]
Zhao, P.; Li, Q.; Yi, R.; Wang, Z.; Lu, L.; Cheng, X. Fabrication and microstructure of liquid sintered porous SiC ceramics through spark plasma sintering. J. Alloys Compd., 2018, 748, 36-43.
[http://dx.doi.org/10.1016/j.jallcom.2018.03.122]
[31]
Saheb, N.; Hayat, U. Electrical conductivity and thermal properties of spark plasma sintered Al2O3-SiC-CNT hybrid nanocomposites. Ceram. Int., 2017, 43(7), 5715-5722.
[http://dx.doi.org/10.1016/j.ceramint.2017.01.112]
[32]
Dolati, S.; Azarniya, A.; Azarniya, A.; Eslami-shahed, H.; Hosseini, H.R.M.; Simchi, A. Toughening mechanisms of SiC-bonded CNT bulk nanocomposites prepared by spark plasma sintering. INT J. Refract. Met. H, 2018, 71, 61-69.
[http://dx.doi.org/10.1016/j.ijrmhm.2017.10.024]
[33]
Candelario, V.M.; Moreno, R.; Shen, Z.; Guiberteau, F.; Ortiz, A.L. Liquid-phase assisted spark-plasma sintering of SiC nanoceramics and their nanocomposites with carbon nanotubes. J. Eur. Ceram. Soc., 2017, 37(5), 1929-1936.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2016.12.050]
[34]
Arunkumar, T.; Karthikeyan, R.; Ram Subramani, R.; Viswanathan, K.; Anish, M. Synthesis and Characterisation of Multi Walled Carbon Nanotubes (MWCNT). Int. J. Ambient Energy, 2018, 2018, 1-12.
[35]
Coquay, P.; De Grave, E.; Peigney, A.; Vandenberghe, R.E.; Laurent, C. Carbon Nanotubes by a CVD Method. Part I: Synthesis and Characterization of the (Mg, Fe)O Catalysts. J. Phys. Chem. B, 2002, 106(51), 13186-13198.
[http://dx.doi.org/10.1021/jp026631s]
[36]
Nisar, A.; Ariharan, S.; Balani, K. Establishing microstructure-mechanical property correlation in ZrB2 -based ultra-high temperature ceramic composites. Ceram. Int., 2017, 43(16), 13483-13492.
[http://dx.doi.org/10.1016/j.ceramint.2017.07.053]
[37]
Liu, G.R. A step-by-step method of rule-of-mixture of fiber- and particle-reinforced composite materials. Compos. Struct., 1997, 40(3-4), 313-322.
[http://dx.doi.org/10.1016/S0263-8223(98)00033-6]
[38]
Melechko, A.V.; Merkulov, V.I.; McKnight, T.E.; Guillorn, M.A.; Klein, K.L.; Lowndes, D.H. Vertically aligned carbon nanofibers and related structures: Controlled synthesis and directed assembly. J. Appl. Phys., 2005, 97(4), 041301.
[http://dx.doi.org/10.1063/1.1857591]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy