Review Article

多功能RNase MCPIP1及其在心血管疾病中的作用

卷 28, 期 17, 2021

发表于: 13 November, 2020

页: [3385 - 3405] 页: 21

弟呕挨: 10.2174/0929867327999201113100918

价格: $65

摘要

单核细胞趋化蛋白-1诱导蛋白1 (Monocyte chemoattractant protein-1 induced protein 1, MCPIP1)是MCPIP家族成员之一,其特征是存在C-x8-C-x5-C-x3-H (CCCH)-型锌指和pilt - n端结构域。MCPIP1作为先天性免疫的有效调节因子,通过其核糖核酸酶(RNase)和去泛素酶活性分别降解细胞因子mRNA和抑制核因子-κB (NF-κB)发挥抗炎作用。MCPIP1不仅在免疫细胞中表达,而且在许多其他类型的细胞中表达,包括心肌细胞、血管内皮细胞(ECs)和平滑肌细胞(SMCs)。越来越多的证据表明MCPIP1在心功能调节中发挥作用,并参与缺血-再灌注(I/R)、动脉粥样硬化等血管疾病的过程。为了更好地理解MCPIP1在心血管系统中的新作用,我们回顾了目前有关MCPIP1功能的文献,并讨论了其与心血管疾病发病机制的关系以及作为治疗靶点的意义。

关键词: MCPIP1,核糖核酸酶,miRNA,炎症,动脉粥样硬化,心血管疾病,NF-κB

[1]
Li, Y.; Huang, X.; Huang, S.; He, H.; Lei, T.; Saaoud, F.; Yu, X.Q.; Melnick, A.; Kumar, A.; Papasian, C.J.; Fan, D.; Fu, M. Central role of myeloid MCPIP1 in protecting against LPS-induced inflammation and lung injury. Signal Transduct. Target. Ther., 2017, 2, 17066.
[http://dx.doi.org/10.1038/sigtrans.2017.66] [PMID: 29263935]
[2]
Zhou, L.; Azfer, A.; Niu, J.; Graham, S.; Choudhury, M.; Adamski, F.M.; Younce, C.; Binkley, P.F.; Kolattukudy, P.E. Monocyte chemoattractant protein-1 induces a novel transcription factor that causes cardiac myocyte apoptosis and ventricular dysfunction. Circ. Res., 2006, 98(9), 1177-1185.
[http://dx.doi.org/10.1161/01.RES.0000220106.64661.71] [PMID: 16574901]
[3]
Blazusiak, E.; Florczyk, D.; Jura, J.; Potempa, J.; Koziel, J. Differential regulation by Toll-like receptor agonists reveals that MCPIP1 is the potent regulator of innate immunity in bacterial and viral infections. J. Innate Immun., 2013, 5(1), 15-23.
[http://dx.doi.org/10.1159/000339826] [PMID: 22777400]
[4]
Cifuentes, R.A.; Cruz-Tapias, P.; Rojas-Villarraga, A.; Anaya, J.M. ZC3H12A (MCPIP1): molecular characteristics and clinical implications. Clin. Chim. Acta, 2010, 411(23-24), 1862-1868.
[http://dx.doi.org/10.1016/j.cca.2010.08.033] [PMID: 20807520]
[5]
Niu, J.; Shi, Y.; Xue, J.; Miao, R.; Huang, S.; Wang, T.; Wu, J.; Fu, M.; Wu, Z.H. USP10 inhibits genotoxic NF-κB activation by MCPIP1-facilitated deubiquitination of NEMO. EMBO J., 2013, 32(24), 3206-3219.
[http://dx.doi.org/10.1038/emboj.2013.247] [PMID: 24270572]
[6]
Wang, W.; Huang, X.; Xin, H.B.; Fu, M.; Xue, A.; Wu, Z.H. TRAF family member-associated NF-κB activator (TANK) inhibits genotoxic nuclear factor κB activation by facilitating deubiquitinase USP10-dependent deubiquitination of TRAF6 ligase. J. Biol. Chem., 2015, 290(21), 13372-13385.
[http://dx.doi.org/10.1074/jbc.M115.643767] [PMID: 25861989]
[7]
Matsushita, K.; Takeuchi, O.; Standley, D.M.; Kumagai, Y.; Kawagoe, T.; Miyake, T.; Satoh, T.; Kato, H.; Tsujimura, T.; Nakamura, H.; Akira, S. Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay. Nature, 2009, 458(7242), 1185-1190.
[http://dx.doi.org/10.1038/nature07924] [PMID: 19322177]
[8]
Liang, J.; Saad, Y.; Lei, T.; Wang, J.; Qi, D.; Yang, Q.; Kolattukudy, P.E.; Fu, M. MCP-induced protein 1 deubiquitinates TRAF proteins and negatively regulates JNK and NF-kappaB signaling. J. Exp. Med., 2010, 207(13), 2959-2973.
[http://dx.doi.org/10.1084/jem.20092641] [PMID: 21115689]
[9]
Miao, R.; Huang, S.; Zhou, Z.; Quinn, T.; Van Treeck, B.; Nayyar, T.; Dim, D.; Jiang, Z.; Papasian, C.J.; Eugene Chen, Y.; Liu, G.; Fu, M. Targeted disruption of MCPIP1/Zc3h12a results in fatal inflammatory disease. Immunol. Cell Biol., 2013, 91(5), 368-376.
[http://dx.doi.org/10.1038/icb.2013.11] [PMID: 23567898]
[10]
Zhou, Z.; Miao, R.; Huang, S.; Elder, B.; Quinn, T.; Papasian, C.J.; Zhang, J.; Fan, D.; Chen, Y.E.; Fu, M. MCPIP1 deficiency in mice results in severe anemia related to autoimmune mechanisms. PLoS One, 2013, 8(12), e82542.
[http://dx.doi.org/10.1371/journal.pone.0082542] [PMID: 24324805]
[11]
Iwasaki, H.; Takeuchi, O.; Teraguchi, S.; Matsushita, K.; Uehata, T.; Kuniyoshi, K.; Satoh, T.; Saitoh, T.; Matsushita, M.; Standley, D.M.; Akira, S. The IκB kinase complex regulates the stability of cytokine-encoding mRNA induced by TLR-IL-1R by controlling degradation of regnase-1. Nat. Immunol., 2011, 12(12), 1167-1175.
[http://dx.doi.org/10.1038/ni.2137] [PMID: 22037600]
[12]
Mizgalska, D.; Wegrzyn, P.; Murzyn, K.; Kasza, A.; Koj, A.; Jura, J.; Jarzab, B.; Jura, J. Interleukin-1-inducible MCPIP protein has structural and functional properties of RNase and participates in degradation of IL-1beta mRNA. FEBS J., 2009, 276(24), 7386-7399.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07452.x] [PMID: 19909337]
[13]
Zhang, W.; Zhu, T.; Chen, L.; Luo, W.; Chao, J. MCP-1 mediates ischemia-reperfusion-induced cardiomyocyte apoptosis via MCPIP1 and CaSR. Am. J. Physiol. Heart Circ. Physiol., 2020, 318(1), H59-H71.
[http://dx.doi.org/10.1152/ajpheart.00308.2019] [PMID: 31774703]
[14]
Yi, Q.; Tan, F.H.; Tan, J.A.; Chen, X.H.; Xiao, Q.; Liu, Y.H.; Zhang, G.P.; Luo, J.D. Minocycline protects against myocardial ischemia/reperfusion injury in rats by upregulating MCPIP1 to inhibit NF-κB activation. Acta Pharmacol. Sin., 2019, 40(8), 1019-1028.
[http://dx.doi.org/10.1038/s41401-019-0214-z] [PMID: 30792486]
[15]
Chao, J.; Wang, X.; Zhang, Y.; Zhu, T.; Zhang, W.; Zhou, Z.; Yang, J.; Han, B.; Cheng, Y.; Tu, X.; Yao, H. Role of MCPIP1 in the endothelial-mesenchymal transition induced by silica. Cell. Physiol. Biochem., 2016, 40(1-2), 309-325.
[http://dx.doi.org/10.1159/000452547] [PMID: 27866190]
[16]
Qi, Y.; Liang, J.; She, Z.G.; Cai, Y.; Wang, J.; Lei, T.; Stallcup, W.B.; Fu, M. MCP-induced protein 1 suppresses TNFalpha-induced VCAM-1 expression in human endothelial cells. FEBS Lett., 2010, 584(14), 3065-3072.
[http://dx.doi.org/10.1016/j.febslet.2010.05.040] [PMID: 20561987]
[17]
Zhu, T.; Yao, Q.; Hu, X.; Chen, C.; Yao, H.; Chao, J. The role of MCPIP1 in ischemia/reperfusion injury-induced HUVEC migration and apoptosis. Cell. Physiol. Biochem., 2015, 37(2), 577-591.
[http://dx.doi.org/10.1159/000430378] [PMID: 26329288]
[18]
Xie, X.; Zhu, T.; Chen, L.; Ding, S.; Chu, H.; Wang, J.; Yao, H.; Chao, J. MCPIP1-induced autophagy mediates ischemia/reperfusion injury in endothelial cells via HMGB1 and CaSR. Sci. Rep., 2018, 8(1), 1735.
[http://dx.doi.org/10.1038/s41598-018-20195-6] [PMID: 29379093]
[19]
Tan, X.; Gao, J.; Shi, Z.; Tai, S.; Chan, L.L.; Yang, Y.; Peng, D.Q.; Liao, D.F.; Jiang, Z.S.; Chang, Y.Z.; Gui, Y.; Zheng, X.L. MG132 induces expression of monocyte chemotactic protein-induced protein 1 in vascular smooth muscle cells. J. Cell. Physiol., 2017, 232(1), 122-128.
[http://dx.doi.org/10.1002/jcp.25396] [PMID: 27035356]
[20]
Xue, M.; Li, G.; Li, D.; Wang, Z.; Mi, L.; Da, J.; Jin, X. Up-regulated MCPIP1 in abdominal aortic aneurysm is associated with vascular smooth muscle cell apoptosis and MMPs production. Biosci. Rep., 2019, 39(11), BSR20191252.
[http://dx.doi.org/10.1042/BSR20191252] [PMID: 31651935]
[21]
Yang, L.; Chao, J.; Kook, Y.H.; Gao, Y.; Yao, H.; Buch, S.J. Involvement of miR-9/MCPIP1 axis in PDGF-BB-mediated neurogenesis in neuronal progenitor cells. Cell Death Dis., 2013, 4(12), e960.
[http://dx.doi.org/10.1038/cddis.2013.486] [PMID: 24336080]
[22]
Liang, J.; Wang, J.; Saad, Y.; Warble, L.; Becerra, E.; Kolattukudy, P.E. Participation of MCP-induced protein 1 in lipopolysaccharide preconditioning-induced ischemic stroke tolerance by regulating the expression of proinflammatory cytokines. J. Neuroinflammation, 2011, 8, 182.
[http://dx.doi.org/10.1186/1742-2094-8-182] [PMID: 22196138]
[23]
Jin, Z.; Liang, J.; Wang, J.; Kolattukudy, P.E. Delayed brain ischemia tolerance induced by electroacupuncture pretreatment is mediated via MCP-induced protein 1. J. Neuroinflammation, 2013, 10, 63.
[http://dx.doi.org/10.1186/1742-2094-10-63] [PMID: 23663236]
[24]
Jin, Z.; Liang, J.; Wang, J.; Kolattukudy, P.E. MCP-induced protein 1 mediates the minocycline-induced neuroprotection against cerebral ischemia/reperfusion injury in vitro and in vivo . J. Neuroinflammation, 2015, 12, 39.
[http://dx.doi.org/10.1186/s12974-015-0264-1] [PMID: 25888869]
[25]
Ligeza, J.; Marona, P.; Gach, N.; Lipert, B.; Miekus, K.; Wilk, W.; Jaszczynski, J.; Stelmach, A.; Loboda, A.; Dulak, J.; Branicki, W.; Rys, J.; Jura, J. MCPIP1 contributes to clear cell renal cell carcinomas development. Angiogenesis, 2017, 20(3), 325-340.
[http://dx.doi.org/10.1007/s10456-017-9540-2] [PMID: 28197812]
[26]
Marona, P.; Górka, J.; Mazurek, Z.; Wilk, W.; Rys, J.; Majka, M.; Jura, J.; Miekus, K. MCPIP1 downregulation in clear cell renal cell carcinoma promotes vascularization and metastatic progression. Cancer Res., 2017, 77(18), 4905-4920.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-3190] [PMID: 28716897]
[27]
Lin, R.J.; Chu, J.S.; Chien, H.L.; Tseng, C.H.; Ko, P.C.; Mei, Y.Y.; Tang, W.C.; Kao, Y.T.; Cheng, H.Y.; Liang, Y.C.; Lin, S.Y. MCPIP1 suppresses hepatitis C virus replication and negatively regulates virus-induced proinflammatory cytokine responses. J. Immunol., 2014, 193(8), 4159-4168.
[http://dx.doi.org/10.4049/jimmunol.1400337] [PMID: 25225661]
[28]
Li, M.; Yang, J.; Zhao, Y.; Song, Y.; Yin, S.; Guo, J.; Zhang, H.; Wang, K.; Wei, L.; Li, S.; Xu, W. MCPIP1 inhibits Hepatitis B virus replication by destabilizing viral RNA and negatively regulates the virus-induced innate inflammatory responses. Antiviral Res., 2020, 174, 104705.
[http://dx.doi.org/10.1016/j.antiviral.2020.104705] [PMID: 31926181]
[29]
Sun, P.; Lu, Y.X.; Cheng, D.; Zhang, K.; Zheng, J.; Liu, Y.; Wang, X.; Yuan, Y.F.; Tang, Y.D. Monocyte chemoattractant protein-induced protein 1 targets hypoxia-inducible factor 1α to protect against hepatic ischemia/reperfusion injury. Hepatology, 2018, 68(6), 2359-2375.
[http://dx.doi.org/10.1002/hep.30086] [PMID: 29742804]
[30]
Lu, W.; Ning, H.; Gu, L.; Peng, H.; Wang, Q.; Hou, R.; Fu, M.; Hoft, D.F.; Liu, J. MCPIP1 selectively destabilizes transcripts associated with an antiapoptotic gene expression program in breast cancer cells that can elicit complete tumor regression. Cancer Res., 2016, 76(6), 1429-1440.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1115] [PMID: 26833120]
[31]
Skalniak, L.; Koj, A.; Jura, J. Proteasome inhibitor MG-132 induces MCPIP1 expression. FEBS J., 2013, 280(11), 2665-2674.
[http://dx.doi.org/10.1111/febs.12264] [PMID: 23551903]
[32]
Skalniak, L.; Dziendziel, M.; Jura, J. MCPIP1 contributes to the toxicity of proteasome inhibitor MG-132 in HeLa cells by the inhibition of NF-κB. Mol. Cell. Biochem., 2014, 395(1-2), 253-263.
[http://dx.doi.org/10.1007/s11010-014-2134-z] [PMID: 24992982]
[33]
Liu, H.; Dai, X.; Cheng, Y.; Fang, S.; Zhang, Y.; Wang, X.; Zhang, W.; Liao, H.; Yao, H.; Chao, J. MCPIP1 mediates silica-induced cell migration in human pulmonary fibroblasts. Am. J. Physiol. Lung Cell. Mol. Physiol., 2016, 310(2), L121-L132.
[http://dx.doi.org/10.1152/ajplung.00278.2015] [PMID: 26608530]
[34]
Lipert, B.; Wegrzyn, P.; Sell, H.; Eckel, J.; Winiarski, M.; Budzynski, A.; Matlok, M.; Kotlinowski, J.; Ramage, L.; Malecki, M.; Wilk, W.; Mitus, J.; Jura, J. Monocyte chemoattractant protein-induced protein 1 impairs adipogenesis in 3T3-L1 cells. Biochim. Biophys. Acta, 2014, 1843(4), 780-788.
[http://dx.doi.org/10.1016/j.bbamcr.2014.01.001] [PMID: 24418043]
[35]
Makki, M.S.; Haqqi, T.M. Histone deacetylase inhibitor vorinostat (SAHA, MK0683) perturb miR-9-MCPIP1 axis to block IL-1β-induced IL-6 expression in human OA chondrocytes. Connect. Tissue Res., 2017, 58(1), 64-75.
[http://dx.doi.org/10.1080/03008207.2016.1211113] [PMID: 27404795]
[36]
Ren, Z.; He, M.; Shen, T.; Wang, K.; Meng, Q.; Chen, X.; Zhou, L.; Han, Y.; Ji, C.; Liu, S.; Fu, Q. MiR-421 promotes the development of osteosarcoma by regulating MCPIP1 expression. Cancer Biol. Ther., 2020, 21(3), 231-240.
[http://dx.doi.org/10.1080/15384047.2019.1683331] [PMID: 31718519]
[37]
Ruiz-Romeu, E.; Ferran, M.; Giménez-Arnau, A.; Bugara, B.; Lipert, B.; Jura, J.; Florencia, E.F.; Prens, E.P.; Celada, A.; Pujol, R.M.; Santamaria-Babí, L.F. MCPIP1 RNase is aberrantly distributed in psoriatic epidermis and rapidly induced by IL-17A. J. Invest. Dermatol., 2016, 136(8), 1599-1607.
[http://dx.doi.org/10.1016/j.jid.2016.04.030] [PMID: 27180111]
[38]
Bugara, B.; Konieczny, P.; Wolnicka-Glubisz, A.; Eckhart, L.; Fischer, H.; Skalniak, L.; Borowczyk-Michalowska, J.; Drukala, J.; Jura, J. MCPIP1 contributes to the inflammatory response of UVB-treated keratinocytes. J. Dermatol. Sci., 2017, 87(1), 10-18.
[http://dx.doi.org/10.1016/j.jdermsci.2017.03.013] [PMID: 28377026]
[39]
Liang, J.; Wang, J.; Azfer, A.; Song, W.; Tromp, G.; Kolattukudy, P.E.; Fu, M. A novel CCCH-zinc finger protein family regulates proinflammatory activation of macrophages. J. Biol. Chem., 2008, 283(10), 6337-6346.
[http://dx.doi.org/10.1074/jbc.M707861200] [PMID: 18178554]
[40]
Xu, J.; Fu, S.; Peng, W.; Rao, Z. MCP-1-induced protein-1, an immune regulator. Protein Cell, 2012, 3(12), 903-910.
[http://dx.doi.org/10.1007/s13238-012-2075-9] [PMID: 23132255]
[41]
Uehata, T.; Iwasaki, H.; Vandenbon, A.; Matsushita, K.; Hernandez-Cuellar, E.; Kuniyoshi, K.; Satoh, T.; Mino, T.; Suzuki, Y.; Standley, D.M.; Tsujimura, T.; Rakugi, H.; Isaka, Y.; Takeuchi, O.; Akira, S. Malt1-induced cleavage of regnase-1 in CD4(+) helper T cells regulates immune activation. Cell, 2013, 153(5), 1036-1049.
[http://dx.doi.org/10.1016/j.cell.2013.04.034] [PMID: 23706741]
[42]
Suzuki, H.I.; Arase, M.; Matsuyama, H.; Choi, Y.L.; Ueno, T.; Mano, H.; Sugimoto, K.; Miyazono, K. MCPIP1 ribonuclease antagonizes dicer and terminates microRNA biogenesis through precursor microRNA degradation. Mol. Cell, 2011, 44(3), 424-436.
[http://dx.doi.org/10.1016/j.molcel.2011.09.012] [PMID: 22055188]
[43]
Liang, J.; Song, W.; Tromp, G.; Kolattukudy, P.E.; Fu, M. Genome-wide survey and expression profiling of CCCH-zinc finger family reveals a functional module in macrophage activation. PLoS One, 2008, 3(8), e2880.
[http://dx.doi.org/10.1371/journal.pone.0002880] [PMID: 18682727]
[44]
Barabino, S.M.; Hübner, W.; Jenny, A.; Minvielle-Sebastia, L.; Keller, W. The 30-kD subunit of mammalian cleavage and polyadenylation specificity factor and its yeast homolog are RNA-binding zinc finger proteins. Genes Dev., 1997, 11(13), 1703-1716.
[http://dx.doi.org/10.1101/gad.11.13.1703
] [PMID: 9224719]
[45]
Lai, W.S.; Kennington, E.A.; Blackshear, P.J. Interactions of CCCH zinc finger proteins with mRNA: non-binding tristetraprolin mutants exert an inhibitory effect on degradation of AU-rich element-containing mRNAs. J. Biol. Chem., 2002, 277(11), 9606-9613.
[http://dx.doi.org/10.1074/jbc.M110395200] [PMID: 11782475]
[46]
Courtois, G.; Fauvarque, M.O. The many roles of ubiquitin in NF-κB signaling. Biomedicines, 2018, 6(2), 43.
[http://dx.doi.org/10.3390/biomedicines6020043] [PMID: 29642643]
[47]
Reyes-Turcu, F.E.; Ventii, K.H.; Wilkinson, K.D. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu. Rev. Biochem., 2009, 78, 363-397.
[http://dx.doi.org/10.1146/annurev.biochem.78.082307.091526] [PMID: 19489724]
[48]
Jura, J.; Skalniak, L.; Koj, A. Monocyte chemotactic protein-1-induced protein-1 (MCPIP1) is a novel multifunctional modulator of inflammatory reactions. Biochim. Biophys. Acta, 2012, 1823(10), 1905-1913.
[http://dx.doi.org/10.1016/j.bbamcr.2012.06.029] [PMID: 22771441]
[49]
Takeuchi, O. Endonuclease Regnase-1/Monocyte chemotactic protein-1-induced protein-1 (MCPIP1) in controlling immune responses and beyond. Wiley Interdiscip. Rev. RNA, 2018, 9(1), e1449.
[http://dx.doi.org/10.1002/wrna.1449] [PMID: 28929622]
[50]
Huang, S.; Qi, D.; Liang, J.; Miao, R.; Minagawa, K.; Quinn, T.; Matsui, T.; Fan, D.; Liu, J.; Fu, M. The putative tumor suppressor Zc3h12d modulates toll-like receptor signaling in macrophages. Cell. Signal., 2012, 24(2), 569-576.
[http://dx.doi.org/10.1016/j.cellsig.2011.10.011] [PMID: 22036805]
[51]
Liu, L.; Zhou, Z.; Huang, S.; Guo, Y.; Fan, Y.; Zhang, J.; Zhang, J.; Fu, M.; Chen, Y.E. Zc3h12c inhibits vascular inflammation by repressing NF-κB activation and pro-inflammatory gene expression in endothelial cells. Biochem. J., 2013, 451(1), 55-60.
[http://dx.doi.org/10.1042/BJ20130019] [PMID: 23360436]
[52]
Wawro, M.; Wawro, K.; Kochan, J.; Solecka, A.; Sowinska, W.; Lichawska-Cieslar, A.; Jura, J.; Kasza, A. ZC3H12B/MCPIP2, a new active member of the ZC3H12 family. RNA, 2019, 25(7), 840-856.
[http://dx.doi.org/10.1261/rna.071381.119] [PMID: 30988100]
[53]
von Gamm, M.; Schaub, A.; Jones, A.N.; Wolf, C.; Behrens, G.; Lichti, J.; Essig, K.; Macht, A.; Pircher, J.; Ehrlich, A.; Davari, K.; Chauhan, D.; Busch, B.; Wurst, W.; Feederle, R.; Feuchtinger, A.; Tschöp, M.H.; Friedel, C.C.; Hauck, S.M.; Sattler, M.; Geerlof, A.; Hornung, V.; Heissmeyer, V.; Schulz, C.; Heikenwalder, M.; Glasmacher, E. Immune homeostasis and regulation of the interferon pathway require myeloid-derived Regnase-3. J. Exp. Med., 2019, 216(7), 1700-1723.
[http://dx.doi.org/10.1084/jem.20181762] [PMID: 31126966]
[54]
Suk, F.M.; Chang, C.C.; Lin, R.J.; Lin, S.Y.; Chen, Y.T.; Liang, Y.C. MCPIP3as a potential metastasis suppressor gene in human colorectal cancer. Int. J. Mol. Sci., 2018, 19(5), 1350.
[http://dx.doi.org/10.3390/ijms19051350] [PMID: 29751537]
[55]
Minagawa, K.; Katayama, Y.; Nishikawa, S.; Yamamoto, K.; Sada, A.; Okamura, A.; Shimoyama, M.; Matsui, T. Inhibition of G(1) to S phase progression by a novel zinc finger protein P58(TFL) at P-bodies. Mol. Cancer Res., 2009, 7(6), 880-889.
[http://dx.doi.org/10.1158/1541-7786.MCR-08-0511] [PMID: 19531561]
[56]
Wang, M.; Vikis, H.G.; Wang, Y.; Jia, D.; Wang, D.; Bierut, L.J.; Bailey-Wilson, J.E.; Amos, C.I.; Pinney, S.M.; Petersen, G.M.; de Andrade, M.; Yang, P.; Wiest, J.S.; Fain, P.R.; Schwartz, A.G.; Gazdar, A.; Minna, J.; Gaba, C.; Rothschild, H.; Mandal, D.; Kupert, E.; Seminara, D.; Liu, Y.; Viswanathan, A.; Govindan, R.; Anderson, M.W.; You, M. Identification of a novel tumor suppressor gene p34 on human chromosome 6q25.1. Cancer Res., 2007, 67(1), 93-99.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2723] [PMID: 17210687]
[57]
Huang, S.; Liu, S.; Fu, J.J.; Tony Wang, T.; Yao, X.; Kumar, A.; Liu, G.; Fu, M. Monocyte chemotactic protein-induced protein 1 and 4 form a complex but act independently in regulation of interleukin-6 mRNA degradation. J. Biol. Chem., 2015, 290(34), 20782-20792.
[http://dx.doi.org/10.1074/jbc.M114.635870] [PMID: 26134560]
[58]
Xu, J.; Peng, W.; Sun, Y.; Wang, X.; Xu, Y.; Li, X.; Gao, G.; Rao, Z. Structural study of MCPIP1 N-terminal conserved domain reveals a PIN-like RNase. Nucleic Acids Res., 2012, 40(14), 6957-6965.
[http://dx.doi.org/10.1093/nar/gks359] [PMID: 22561375]
[59]
Li, M.; Cao, W.; Liu, H.; Zhang, W.; Liu, X.; Cai, Z.; Guo, J.; Wang, X.; Hui, Z.; Zhang, H.; Wang, J.; Wang, L. MCPIP1 down-regulates IL-2 expression through an ARE-independent pathway. PLoS One, 2012, 7(11), e49841.
[http://dx.doi.org/10.1371/journal.pone.0049841] [PMID: 23185455]
[60]
Garg, A.V.; Amatya, N.; Chen, K.; Cruz, J.A.; Grover, P.; Whibley, N.; Conti, H.R.; Hernandez Mir, G.; Sirakova, T.; Childs, E.C.; Smithgall, T.E.; Biswas, P.S.; Kolls, J.K.; McGeachy, M.J.; Kolattukudy, P.E.; Gaffen, S.L. MCPIP1 Endoribonuclease activity negatively regulates interleukin-17-mediated signaling and inflammation. Immunity, 2015, 43(3), 475-487.
[http://dx.doi.org/10.1016/j.immuni.2015.07.021] [PMID: 26320658]
[61]
Kochan, J.; Wawro, M.; Kasza, A. IF-combined smRNA FISH reveals interaction of MCPIP1 protein with IER3 mRNA. Biol. Open, 2016, 5(7), 889-898.
[http://dx.doi.org/10.1242/bio.018010] [PMID: 27256408]
[62]
Boratyn, E.; Nowak, I.; Horwacik, I.; Durbas, M.; Mistarz, A.; Kukla, M.; Kaczówka, P.; Łastowska, M.; Jura, J.; Rokita, H. Monocyte chemoattractant protein-induced protein 1 overexpression modulates transcriptome, including MicroRNA, in human neuroblastoma cells. J. Cell. Biochem., 2016, 117(3), 694-707.
[http://dx.doi.org/10.1002/jcb.25354] [PMID: 26308737]
[63]
Roy, A.; Zhang, M.; Saad, Y.; Kolattukudy, P.E. Antidicer RNAse activity of monocyte chemotactic protein-induced protein-1 is critical for inducing angiogenesis. Am. J. Physiol. Cell Physiol., 2013, 305(10), C1021-C1032.
[http://dx.doi.org/10.1152/ajpcell.00203.2013] [PMID: 24048733]
[64]
Anderson, P. Post-transcriptional regulons coordinate the initiation and resolution of inflammation. Nat. Rev. Immunol., 2010, 10(1), 24-35.
[http://dx.doi.org/10.1038/nri2685] [PMID: 20029446]
[65]
Carpenter, S.; Ricci, E.P.; Mercier, B.C.; Moore, M.J.; Fitzgerald, K.A. Post-transcriptional regulation of gene expression in innate immunity. Nat. Rev. Immunol., 2014, 14(6), 361-376.
[http://dx.doi.org/10.1038/nri3682] [PMID: 24854588]
[66]
Oliveira, C.; Faoro, H.; Alves, L.R.; Goldenberg, S. RNA-binding proteins and their role in the regulation of gene expression in Trypanosoma cruzi and Saccharomyces cerevisiae . Genet. Mol. Biol., 2017, 40(1), 22-30.
[http://dx.doi.org/10.1590/1678-4685-gmb-2016-0258] [PMID: 28463381]
[67]
Fu, M.; Blackshear, P.J. RNA-binding proteins in immune regulation: a focus on CCCH zinc finger proteins. Nat. Rev. Immunol., 2017, 17(2), 130-143.
[http://dx.doi.org/10.1038/nri.2016.129] [PMID: 27990022]
[68]
Mino, T.; Murakawa, Y.; Fukao, A.; Vandenbon, A.; Wessels, H.H.; Ori, D.; Uehata, T.; Tartey, S.; Akira, S.; Suzuki, Y.; Vinuesa, C.G.; Ohler, U.; Standley, D.M.; Landthaler, M.; Fujiwara, T.; Takeuchi, O. Regnase-1 and roquin regulate a common element in inflammatory mRNAs by spatiotemporally distinct mechanisms. Cell, 2015, 161(5), 1058-1073.
[http://dx.doi.org/10.1016/j.cell.2015.04.029] [PMID: 26000482]
[69]
Amatya, N.; Childs, E.E.; Cruz, J.A.; Aggor, F.E.Y.; Garg, A.V.; Berman, A.J.; Gudjonsson, J.E.; Atasoy, U.; Gaffen, S.L. IL-17 integrates multiple self-reinforcing, feed-forward mechanisms through the RNA binding protein Arid5a. Sci. Signal., 2018, 11(551), eaat4617.
[http://dx.doi.org/10.1126/scisignal.aat4617] [PMID: 30301788]
[70]
Dobosz, E.; Wilamowski, M.; Lech, M.; Bugara, B.; Jura, J.; Potempa, J.; Koziel, J. MCPIP-1, alias regnase-1, controls epithelial inflammation by posttranscriptional regulation of IL-8 production. J. Innate Immun., 2016, 8(6), 564-578.
[http://dx.doi.org/10.1159/000448038] [PMID: 27513529]
[71]
Monin, L.; Gudjonsson, J.E.; Childs, E.E.; Amatya, N.; Xing, X.; Verma, A.H.; Coleman, B.M.; Garg, A.V.; Killeen, M.; Mathers, A.; Ward, N.L.; Gaffen, S.L. MCPIP1/regnase-1 restricts IL-17A- and IL-17C-dependent skin inflammation. J. Immunol., 2017, 198(2), 767-775.
[http://dx.doi.org/10.4049/jimmunol.1601551] [PMID: 27920272]
[72]
Lim, L.P.; Lau, N.C.; Garrett-Engele, P.; Grimson, A.; Schelter, J.M.; Castle, J.; Bartel, D.P.; Linsley, P.S.; Johnson, J.M. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 2005, 433(7027), 769-773.
[http://dx.doi.org/10.1038/nature03315] [PMID: 15685193]
[73]
Niu, J.; Jin, Z.; Kim, H.; Kolattukudy, P.E. MCP-1-induced protein attenuates post-infarct cardiac remodeling and dysfunction through mitigating NF-κB activation and suppressing inflammation-associated microRNA expression. Basic Res. Cardiol., 2015, 110(3), 26.
[http://dx.doi.org/10.1007/s00395-015-0483-8] [PMID: 25840774]
[74]
Losko, M.; Lichawska-Cieslar, A.; Kulecka, M.; Paziewska, A.; Rumienczyk, I.; Mikula, M.; Jura, J. Ectopic overexpression of MCPIP1 impairs adipogenesis by modulating microRNAs. Biochim. Biophys. Acta Mol. Cell Res., 2018, 1865(1), 186-195.
[http://dx.doi.org/10.1016/j.bbamcr.2017.09.010] [PMID: 28939056]
[75]
Zhao, X.; Lu, Y.; Wang, F.; Dou, L.; Wang, L.; Guo, J.; Li, J. High glucose reduces hepatic glycogenesis by suppression of microRNA-152. Mol. Med. Rep., 2014, 10(4), 2073-2078.
[http://dx.doi.org/10.3892/mmr.2014.2426] [PMID: 25070263]
[76]
Song, G.; Xu, G.; Ji, C.; Shi, C.; Shen, Y.; Chen, L.; Zhu, L.; Yang, L.; Zhao, Y.; Guo, X. The role of microRNA-26b in human adipocyte differentiation and proliferation. Gene, 2014, 533(2), 481-487.
[http://dx.doi.org/10.1016/j.gene.2013.10.011] [PMID: 24140453]
[77]
Chen, X.; Zhao, Q.; Xie, Q.; Xing, Y.; Chen, Z. MCPIP1 negatively regulate cellular antiviral innate immune responses through DUB and disruption of TRAF3-TBK1-IKKε complex. Biochem. Biophys. Res. Commun., 2018, 503(2), 830-836.
[http://dx.doi.org/10.1016/j.bbrc.2018.06.083] [PMID: 29920243]
[78]
Mevissen, T.E.T.; Komander, D. Mechanisms of deubiquitinase specificity and regulation. Annu. Rev. Biochem., 2017, 86, 159-192.
[http://dx.doi.org/10.1146/annurev-biochem-061516-044916] [PMID: 28498721]
[79]
Shimizu, Y.; Taraborrelli, L.; Walczak, H. Linear ubiquitination in immunity. Immunol. Rev., 2015, 266(1), 190-207.
[http://dx.doi.org/10.1111/imr.12309] [PMID: 26085216]
[80]
Qian, Y.; Li, X.; Miao, R.; Liu, S.; Xin, H.B.; Huang, X.; Wang, T.T.; Fu, M. Selective degradation of plasmid-derived mRNAs by MCPIP1 RNase. Biochem. J., 2019, 476(19), 2927-2938.
[http://dx.doi.org/10.1042/BCJ20190646] [PMID: 31530713]
[81]
Kayagaki, N.; Phung, Q.; Chan, S.; Chaudhari, R.; Quan, C.; O’Rourke, K.M.; Eby, M.; Pietras, E.; Cheng, G.; Bazan, J.F.; Zhang, Z.; Arnott, D.; Dixit, V.M. DUBA: a deubiquitinase that regulates type I interferon production. Science, 2007, 318(5856), 1628-1632.
[http://dx.doi.org/10.1126/science.1145918] [PMID: 17991829]
[82]
Lyu, J.H.; Park, D.W.; Huang, B.; Kang, S.H.; Lee, S.J.; Lee, C.; Bae, Y.S.; Lee, J.G.; Baek, S.H. RGS2 suppresses breast cancer cell growth via a MCPIP1-dependent pathway. J. Cell. Biochem., 2015, 116(2), 260-267.
[http://dx.doi.org/10.1002/jcb.24964] [PMID: 25187114]
[83]
Qu, B.; Cao, J.; Zhang, F.; Cui, H.; Teng, J.; Li, J.; Liu, Z.; Morehouse, C.; Jallal, B.; Tang, Y.; Guo, Q.; Yao, Y.; Shen, N.; Type, I. Type I interferon inhibition of MicroRNA-146a maturation through up-regulation of monocyte chemotactic protein-induced protein 1 in systemic lupus erythematosus. Arthritis Rheumatol., 2015, 67(12), 3209-3218.
[http://dx.doi.org/10.1002/art.39398] [PMID: 26315540]
[84]
Li, Z.; Jia, Y.; Han, S.; Wang, X.; Han, F.; Zhang, J.; Zhang, W.; Guan, H.; Hu, D. Klf4 Alleviates lipopolysaccharide-induced inflammation by inducing expression of MCP-1 induced protein 1 to deubiquitinate TRAF6. Cell. Physiol. Biochem., 2018, 47(6), 2278-2290.
[http://dx.doi.org/10.1159/000491538] [PMID: 29975947]
[85]
Kapoor, N.; Niu, J.; Saad, Y.; Kumar, S.; Sirakova, T.; Becerra, E.; Li, X.; Kolattukudy, P.E. Transcription factors STAT6 and KLF4 implement macrophage polarization via the dual catalytic powers of MCPIP. J. Immunol., 2015, 194(12), 6011-6023.
[http://dx.doi.org/10.4049/jimmunol.1402797] [PMID: 25934862]
[86]
Li, Z.; Han, S.; Jia, Y.; Yang, Y.; Han, F.; Wu, G.; Li, X.; Zhang, W.; Jia, W.; He, X.; Han, J.; Hu, D. MCPIP1 regulates RORα expression to protect against liver injury induced by lipopolysaccharide via modulation of miR-155. J. Cell. Physiol., 2019. Epub ahead of print.
[http://dx.doi.org/10.1002/jcp.28327] [PMID: 30811042]
[87]
Xu, R.; Li, Y.; Yan, H.; Zhang, E.; Huang, X.; Chen, Q.; Chen, J.; Qu, J.; Liu, Y.; He, J.; Yi, Q.; Cai, Z. CCL2 promotes macrophages-associated chemoresistance via MCPIP1 dual catalytic activities in multiple myeloma. Cell Death Dis., 2019, 10(10), 781.
[http://dx.doi.org/10.1038/s41419-019-2012-4] [PMID: 31611552]
[88]
Liu, S.; Qiu, C.; Miao, R.; Zhou, J.; Lee, A.; Liu, B.; Lester, S.N.; Fu, W.; Zhu, L.; Zhang, L.; Xu, J.; Fan, D.; Li, K.; Fu, M.; Wang, T. MCPIP1 restricts HIV infection and is rapidly degraded in activated CD4+ T cells. Proc. Natl. Acad. Sci. USA, 2013, 110(47), 19083-19088.
[http://dx.doi.org/10.1073/pnas.1316208110] [PMID: 24191027]
[89]
Skalniak, A.; Boratyn, E.; Tyrkalska, S.D.; Horwacik, I.; Durbas, M.; Lastowska, M.; Jura, J.; Rokita, H. Expression of the monocyte chemotactic protein-1-induced protein 1 decreases human neuroblastoma cell survival. Oncol. Rep., 2014, 31(5), 2385-2392.
[http://dx.doi.org/10.3892/or.2014.3076] [PMID: 24626857]
[90]
Boratyn, E.; Nowak, I.; Durbas, M.; Horwacik, I.; Sawicka, A.; Rokita, H. MCPIP1 exogenous overexpression inhibits pathways regulating MYCN oncoprotein stability in neuroblastoma. J. Cell. Biochem., 2017, 118(7), 1741-1755.
[http://dx.doi.org/10.1002/jcb.25832] [PMID: 27935099]
[91]
Nowak, I.; Boratyn, E.; Durbas, M.; Horwacik, I.; Rokita, H. Exogenous expression of miRNA-3613-3p causes APAF1 downregulation and affects several proteins involved in apoptosis in BE(2)-C human neuroblastoma cells. Int. J. Oncol., 2018, 53(4), 1787-1799.
[http://dx.doi.org/10.3892/ijo.2018.4509] [PMID: 30066861]
[92]
Boratyn, E.; Nowak, I.; Karnas, E.; Ryszawy, D.; Wnuk, D.; Polus, A.; Durbas, M.; Horwacik, I.; Rokita, H. MCPIP1 overexpression in human neuroblastoma cell lines causes cell-cycle arrest by G1/S checkpoint block. J. Cell. Biochem., 2020, 121(5-6), 3406-3425.
[http://dx.doi.org/10.1002/jcb.29614] [PMID: 31919874]
[93]
Niu, J.; Azfer, A.; Zhelyabovska, O.; Fatma, S.; Kolattukudy, P.E. Monocyte chemotactic protein (MCP)-1 promotes angiogenesis via a novel transcription factor, MCP-1-induced protein (MCPIP). J. Biol. Chem., 2008, 283(21), 14542-14551.
[http://dx.doi.org/10.1074/jbc.M802139200] [PMID: 18364357]
[94]
Gavrilin, M.A.; Gulina, I.V.; Kawano, T.; Dragan, S.; Chakravarti, L.; Kolattukudy, P.E. Site-directed mutagenesis of CCR2 identified amino acid residues in transmembrane helices 1, 2, and 7 important for MCP-1 binding and biological functions. Biochem. Biophys. Res. Commun., 2005, 327(2), 533-540.
[http://dx.doi.org/10.1016/j.bbrc.2004.12.037] [PMID: 15629146]
[95]
Younce, C.W.; Wang, K.; Kolattukudy, P.E. Hyperglycaemia-induced cardiomyocyte death is mediated via MCP-1 production and induction of a novel zinc-finger protein MCPIP. Cardiovasc. Res., 2010, 87(4), 665-674.
[http://dx.doi.org/10.1093/cvr/cvq102] [PMID: 20356868]
[96]
Liu, H.; Fang, S.; Wang, W.; Cheng, Y.; Zhang, Y.; Liao, H.; Yao, H.; Chao, J. Macrophage-derived MCPIP1 mediates silica-induced pulmonary fibrosis via autophagy. Part. Fibre Toxicol., 2016, 13(1), 55.
[http://dx.doi.org/10.1186/s12989-016-0167-z] [PMID: 27782836]
[97]
Da, J.; Zhuo, M.; Qian, M. MCPIP is induced by cholesterol and participated in cholesterol-caused DNA damage in HUVEC. Int. J. Clin. Exp. Pathol., 2015, 8(9), 10625-10634.
[PMID: 26617772]
[98]
Skalniak, L.; Mizgalska, D.; Zarebski, A.; Wyrzykowska, P.; Koj, A.; Jura, J. Regulatory feedback loop between NF-kappaB and MCP-1-induced protein 1 RNase. FEBS J., 2009, 276(20), 5892-5905.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07273.x] [PMID: 19747262]
[99]
Kasza, A.; Wyrzykowska, P.; Horwacik, I.; Tymoszuk, P.; Mizgalska, D.; Palmer, K.; Rokita, H.; Sharrocks, A.D.; Jura, J. Transcription factors Elk-1 and SRF are engaged in IL1-dependent regulation of ZC3H12A expression. BMC Mol. Biol., 2010, 11, 14.
[http://dx.doi.org/10.1186/1471-2199-11-14] [PMID: 20137095]
[100]
Jiang, Z.; Ninomiya-Tsuji, J.; Qian, Y.; Matsumoto, K.; Li, X. Interleukin-1 (IL-1) receptor-associated kinase-dependent IL-1-induced signaling complexes phosphorylate TAK1 and TAB2 at the plasma membrane and activate TAK1 in the cytosol. Mol. Cell. Biol., 2002, 22(20), 7158-7167.
[http://dx.doi.org/10.1128/MCB.22.20.7158-7167.2002] [PMID: 12242293]
[101]
Yao, H.; Ma, R.; Yang, L.; Hu, G.; Chen, X.; Duan, M.; Kook, Y.; Niu, F.; Liao, K.; Fu, M.; Hu, G.; Kolattukudy, P.; Buch, S. MiR-9 promotes microglial activation by targeting MCPIP1. Nat. Commun., 2014, 5, 4386.
[http://dx.doi.org/10.1038/ncomms5386] [PMID: 25019481]
[102]
Makki, M.S.; Haseeb, A.; Haqqi, T.M. MicroRNA-9 promotion of interleukin-6 expression by inhibiting monocyte chemoattractant protein-induced protein 1 expression in interleukin-1β-stimulated human chondrocytes. Arthritis Rheumatol., 2015, 67(8), 2117-2128.
[http://dx.doi.org/10.1002/art.39173] [PMID: 25917063]
[103]
Makki, M.S.; Haqqi, T.M. miR-139 modulates MCPIP1/IL-6 expression and induces apoptosis in human OA chondrocytes. Exp. Mol. Med., 2015, 47(10), e189.
[http://dx.doi.org/10.1038/emm.2015.66] [PMID: 26450708]
[104]
Cheng, Y.; Du, L.; Jiao, H.; Zhu, H.; Xu, K.; Guo, S.; Shi, Q.; Zhao, T.; Pang, F.; Jia, X.; Wang, F. Mmu-miR-27a-5p-dependent upregulation of MCPIP1 inhibits the inflammatory response in LPS-induced RAW264.7 macrophage cells. BioMed Res. Int., 2015, 2015, 607692.
[http://dx.doi.org/10.1155/2015/607692] [PMID: 26295043]
[105]
Jeltsch, K.M.; Hu, D.; Brenner, S.; Zöller, J.; Heinz, G.A.; Nagel, D.; Vogel, K.U.; Rehage, N.; Warth, S.C.; Edelmann, S.L.; Gloury, R.; Martin, N.; Lohs, C.; Lech, M.; Stehklein, J.E.; Geerlof, A.; Kremmer, E.; Weber, A.; Anders, H.J.; Schmitz, I.; Schmidt-Supprian, M.; Fu, M.; Holtmann, H.; Krappmann, D.; Ruland, J.; Kallies, A.; Heikenwalder, M.; Heissmeyer, V. Cleavage of roquin and regnase-1 by the paracaspase MALT1 releases their cooperatively repressed targets to promote T(H)17 differentiation. Nat. Immunol., 2014, 15(11), 1079-1089.
[http://dx.doi.org/10.1038/ni.3008] [PMID: 25282160]
[106]
Staal, J.; Driege, Y.; Bekaert, T.; Demeyer, A.; Muyllaert, D.; Van Damme, P.; Gevaert, K.; Beyaert, R. T-cell receptor-induced JNK activation requires proteolytic inactivation of CYLD by MALT1. EMBO J., 2011, 30(9), 1742-1752.
[http://dx.doi.org/10.1038/emboj.2011.85] [PMID: 21448133]
[107]
Coornaert, B.; Baens, M.; Heyninck, K.; Bekaert, T.; Haegman, M.; Staal, J.; Sun, L.; Chen, Z.J.; Marynen, P.; Beyaert, R. T cell antigen receptor stimulation induces MALT1 paracaspase-mediated cleavage of the NF-kappaB inhibitor A20. Nat. Immunol., 2008, 9(3), 263-271.
[http://dx.doi.org/10.1038/ni1561] [PMID: 18223652]
[108]
Li, Y.; Huang, S.; Huang, X.; Li, X.; Falcon, A.; Soutar, A.; Bornancin, F.; Jiang, Z.; Xin, H.B.; Fu, M. Pharmacological inhibition of MALT1 protease activity suppresses endothelial activation via enhancing MCPIP1 expression. Cell. Signal., 2018, 50, 1-8.
[http://dx.doi.org/10.1016/j.cellsig.2018.05.009] [PMID: 29913212]
[109]
Younce, C.W.; Kolattukudy, P.E. MCP-1 causes cardiomyoblast death via autophagy resulting from ER stress caused by oxidative stress generated by inducing a novel zinc-finger protein, MCPIP. Biochem. J., 2010, 426(1), 43-53.
[http://dx.doi.org/10.1042/BJ20090976] [PMID: 19925454]
[110]
Kolattukudy, P.E.; Niu, J. Inflammation, endoplasmic reticulum stress, autophagy, and the monocyte chemoattractant protein-1/CCR2 pathway. Circ. Res., 2012, 110(1), 174-189.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.243212] [PMID: 22223213]
[111]
Niu, J.; Wang, K.; Graham, S.; Azfer, A.; Kolattukudy, P.E. MCP-1-induced protein attenuates endotoxin-induced myocardial dysfunction by suppressing cardiac NF-small ka, CyrillicB activation via inhibition of Ismall ka, CyrillicB kinase activation. J. Mol. Cell. Cardiol., 2011, 51(2), 177-186.
[http://dx.doi.org/10.1016/j.yjmcc.2011.04.018] [PMID: 21616078]
[112]
Omiya, S.; Omori, Y.; Taneike, M.; Murakawa, T.; Ito, J.; Tanada, Y.; Nishida, K.; Yamaguchi, O.; Satoh, T.; Shah, A.M.; Akira, S.; Otsu, K. Cytokine mRNA degradation in cardiomyocytes restrains sterile inflammation in pressure-overloaded hearts. Circulation, 2020, 141(8), 667-677.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.119.044582] [PMID: 31931613]
[113]
Li, M.; Yan, K.; Wei, L.; Yang, Y.; Qian, Q.; Xu, W. MCPIP1 inhibits coxsackievirus B3 replication by targeting viral RNA and negatively regulates virus-induced inflammation. Med. Microbiol. Immunol. (Berl.), 2018, 207(1), 27-38.
[http://dx.doi.org/10.1007/s00430-017-0523-0] [PMID: 29043433]
[114]
Moreira, D.M.; da Silva, R.L.; Vieira, J.L.; Fattah, T.; Lueneberg, M.E.; Gottschall, C.A. Role of vascular inflammation in coronary artery disease: potential of anti-inflammatory drugs in the prevention of atherothrombosis. Inflammation and anti-inflammatory drugs in coronary artery disease. Am. J. Cardiovasc. Drugs, 2015, 15(1), 1-11.
[http://dx.doi.org/10.1007/s40256-014-0094-z] [PMID: 25369900]
[115]
Nakagami, H.; Kaneda, Y.; Ogihara, T.; Morishita, R. Endothelial dysfunction in hyperglycemia as a trigger of atherosclerosis. Curr. Diabetes Rev., 2005, 1(1), 59-63.
[http://dx.doi.org/10.2174/1573399052952550] [PMID: 18220582]
[116]
Namiki, M.; Kawashima, S.; Yamashita, T.; Ozaki, M.; Hirase, T.; Ishida, T.; Inoue, N.; Hirata, K.; Matsukawa, A.; Morishita, R.; Kaneda, Y.; Yokoyama, M. Local overexpression of monocyte chemoattractant protein-1 at vessel wall induces infiltration of macrophages and formation of atherosclerotic lesion: synergism with hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol., 2002, 22(1), 115-120.
[http://dx.doi.org/10.1161/hq0102.102278] [PMID: 11788470]
[117]
Boring, L.; Gosling, J.; Cleary, M.; Charo, I.F. Decreased lesion formation in CCR2-/- mice reveals a role for chemokines in the initiation of atherosclerosis. Nature, 1998, 394(6696), 894-897.
[http://dx.doi.org/10.1038/29788] [PMID: 9732872]
[118]
Yu, F.; Du, F.; Wang, Y.; Huang, S.; Miao, R.; Major, A.S.; Murphy, E.A.; Fu, M.; Fan, D. Bone marrow deficiency of MCPIP1 results in severe multi-organ inflammation but diminishes atherogenesis in hyperlipidemic mice. PLoS One, 2013, 8(11), e80089.
[http://dx.doi.org/10.1371/journal.pone.0080089] [PMID: 24223214]
[119]
Gordon, S.; Martinez, F.O. Alternative activation of macrophages: mechanism and functions. Immunity, 2010, 32(5), 593-604.
[http://dx.doi.org/10.1016/j.immuni.2010.05.007] [PMID: 20510870]
[120]
Wynn, T.A.; Chawla, A.; Pollard, J.W. Macrophage biology in development, homeostasis and disease. Nature, 2013, 496(7446), 445-455.
[http://dx.doi.org/10.1038/nature12034] [PMID: 23619691]
[121]
Zhang, Y.; Huang, T.; Jiang, L.; Gao, J.; Yu, D.; Ge, Y.; Lin, S. MCP-induced protein 1 attenuates sepsis-induced acute lung injury by modulating macrophage polarization via the JNK/c-Myc pathway. Int. Immunopharmacol., 2019, 75, 105741.
[http://dx.doi.org/10.1016/j.intimp.2019.105741] [PMID: 31323531]
[122]
Shu, S.; Zhang, Y.; Li, W.; Wang, L.; Wu, Y.; Yuan, Z.; Zhou, J. The role of monocyte chemotactic protein-induced protein 1 (MCPIP1) in angiotensin II-induced macrophage apoptosis and vulnerable plaque formation. Biochem. Biophys. Res. Commun., 2019, 515(2), 378-385.
[http://dx.doi.org/10.1016/j.bbrc.2019.05.145] [PMID: 31155290]
[123]
Hansson, G.K.; Libby, P. The immune response in atherosclerosis: a double-edged sword. Nat. Rev. Immunol., 2006, 6(7), 508-519.
[http://dx.doi.org/10.1038/nri1882] [PMID: 16778830]
[124]
Quan, Y.; Yang, Y.; Wang, H.; Shu, B.; Gong, Q.H.; Qian, M. Gypenosides attenuate cholesterol-induced DNA damage by inhibiting the production of reactive oxygen species in human umbilical vein endothelial cells. Mol. Med. Rep., 2015, 11(4), 2845-2851.
[http://dx.doi.org/10.3892/mmr.2014.3095] [PMID: 25515035]
[125]
Mercer, J.R.; Cheng, K.K.; Figg, N.; Gorenne, I.; Mahmoudi, M.; Griffin, J.; Vidal-Puig, A.; Logan, A.; Murphy, M.P.; Bennett, M. DNA damage links mitochondrial dysfunction to atherosclerosis and the metabolic syndrome. Circ. Res., 2010, 107(8), 1021-1031.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.218966] [PMID: 20705925]
[126]
Banáth, J.P.; Klokov, D.; MacPhail, S.H.; Banuelos, C.A.; Olive, P.L. Residual gammaH2AX foci as an indication of lethal DNA lesions. BMC Cancer, 2010, 10, 4.
[http://dx.doi.org/10.1186/1471-2407-10-4] [PMID: 20051134]
[127]
Camaré, C.; Pucelle, M.; Nègre-Salvayre, A.; Salvayre, R. Angiogenesis in the atherosclerotic plaque. Redox Biol., 2017, 12, 18-34.
[http://dx.doi.org/10.1016/j.redox.2017.01.007] [PMID: 28212521]
[128]
Cochain, C.; Channon, K.M.; Silvestre, J.S. Angiogenesis in the infarcted myocardium. Antioxid. Redox Signal., 2013, 18(9), 1100-1113.
[http://dx.doi.org/10.1089/ars.2012.4849] [PMID: 22870932]
[129]
Roy, A.; Kolattukudy, P.E. Monocyte chemotactic protein-induced protein (MCPIP) promotes inflammatory angiogenesis via sequential induction of oxidative stress, endoplasmic reticulum stress and autophagy. Cell. Signal., 2012, 24(11), 2123-2131.
[http://dx.doi.org/10.1016/j.cellsig.2012.07.014] [PMID: 22820500]
[130]
Labedz-Maslowska, A.; Lipert, B.; Berdecka, D.; Kedracka-Krok, S.; Jankowska, U.; Kamycka, E.; Sekula, M.; Madeja, Z.; Dawn, B.; Jura, J.; Zuba-Surma, E.K. Monocyte chemoattractant protein-induced protein 1 (MCPIP1) enhances angiogenic and cardiomyogenic potential of murine bone marrow-derived mesenchymal stem cells. PLoS One, 2015, 10(7), e0133746.
[http://dx.doi.org/10.1371/journal.pone.0133746] [PMID: 26214508]
[131]
Johnson, J.L. Emerging regulators of vascular smooth muscle cell function in the development and progression of atherosclerosis. Cardiovasc. Res., 2014, 103(4), 452-460.
[http://dx.doi.org/10.1093/cvr/cvu171] [PMID: 25053639]
[132]
Yu, X.H.; Zheng, X.L.; Tang, C.K. Nuclear Factor-κB activation as a pathological mechanism of lipid metabolism and atherosclerosis. Adv. Clin. Chem., 2015, 70, 1-30.
[http://dx.doi.org/10.1016/bs.acc.2015.03.004] [PMID: 26231484]
[133]
Badimon, L.; Storey, R.F.; Vilahur, G. Update on lipids, inflammation and atherothrombosis. Thromb. Haemost., 2011, 105(Suppl. 1), S34-S42.
[http://dx.doi.org/10.1160/THS10-11-0717] [PMID: 21479344]
[134]
Pydyn, N.; Kadluczka, J.; Kus, E.; Pospiech, E.; Losko, M.; Fu, M.; Jura, J.; Kotlinowski, J. RNase MCPIP1 regulates hepatic peroxisome proliferator-activated receptor gamma via TXNIP/PGC-1alpha pathway. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2019, 1864(10), 1458-1471.
[http://dx.doi.org/10.1016/j.bbalip.2019.06.006] [PMID: 31185306]
[135]
Matsuda, M.; Shimomura, I. Roles of adiponectin and oxidative stress in obesity-associated metabolic and cardiovascular diseases. Rev. Endocr. Metab. Disord., 2014, 15(1), 1-10.
[http://dx.doi.org/10.1007/s11154-013-9271-7] [PMID: 24026768]
[136]
Losko, M.; Dolicka, D.; Pydyn, N.; Jankowska, U.; Kedracka-Krok, S.; Kulecka, M.; Paziewska, A.; Mikula, M.; Major, P.; Winiarski, M.; Budzynski, A.; Jura, J. Integrative genomics reveal a role for MCPIP1 in adipogenesis and adipocyte metabolism. Cell. Mol. Life Sci., 2020, 77(23), 4899-4919.
[http://dx.doi.org/10.1007/s00018-019-03434-5] [PMID: 31893310]
[137]
Younce, C.W.; Azfer, A.; Kolattukudy, P.E. MCP-1 (monocyte chemotactic protein-1)-induced protein, a recently identified zinc finger protein, induces adipogenesis in 3T3-L1 pre-adipocytes without peroxisome proliferator-activated receptor gamma. J. Biol. Chem., 2009, 284(40), 27620-27628.
[http://dx.doi.org/10.1074/jbc.M109.025320] [PMID: 19666473]
[138]
Younce, C.; Kolattukudy, P. MCP-1 induced protein promotes adipogenesis via oxidative stress, endoplasmic reticulum stress and autophagy. Cell. Physiol. Biochem., 2012, 30(2), 307-320.
[http://dx.doi.org/10.1159/000339066] [PMID: 22739135]
[139]
Habacher, C.; Guo, Y.; Venz, R.; Kumari, P.; Neagu, A.; Gaidatzis, D.; Harvald, E.B.; Færgeman, N.J.; Gut, H.; Ciosk, R. Ribonuclease-mediated control of body fat. Dev. Cell, 2016, 39(3), 359-369.
[http://dx.doi.org/10.1016/j.devcel.2016.09.018] [PMID: 27746047]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy