Generic placeholder image

Current Pediatric Reviews

Editor-in-Chief

ISSN (Print): 1573-3963
ISSN (Online): 1875-6336

Review Article

COVID-19 and Comorbidities: Is Inflammation the Underlying Condition in Children? A Narrative Review

Author(s): Giulia Pinna, Lavinia Sanfilippo, Pier Paolo Bassareo*, Vassilios Fanos and Maria Antonietta Marcialis

Volume 17, Issue 1, 2021

Published on: 12 November, 2020

Page: [38 - 44] Pages: 7

DOI: 10.2174/1573396316666201112093920

Price: $65

Abstract

This paper examines the potential link between COVID-19 and the presence of comorbidities and assesses the role of inflammation in this correlation. In COVID-19 patients, the most frequently associated diseases share a pathogenic inflammatory basis and apparently act as a risk factor in the onset of a more severe form of the disease, particularly in adulthood. However, in children, the understanding of the underlying pathogenic mechanisms is often complicated by the milder symptoms presented. A series of theories have, therefore, been put forward with a view of providing a better understanding of the role played by inflammation in this dramatic setting. All evidence available to date on this topic is discussed in this review.

Keywords: COVID-19, coronavirus, inflammation, risk factors, children, pathogenic.

[1]
Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q, et al. Prevalence of comorbidities in the novel Wuhan coronavirus (COVID-19) infection: a systematic review and meta-analysis. Int J Infect Dis 2020; 94: 91-5.
[http://dx.doi.org/10.1016/j.ijid.2020.03.017] [PMID: 32173574]
[2]
Wang B, Li R, Lu Z, Huang Y. Does comorbidity increase the risk of patients with COVID-19: evidence from meta-analysis. Aging (Albany NY) 2020; 12(7): 6049-57.
[http://dx.doi.org/10.18632/aging.103000] [PMID: 32267833]
[3]
Wang T, Du Z, Zhu F, et al. Comorbidities and multi-organ injuries in the treatment of COVID-19. Lancet 2020; 395(10228)
[http://dx.doi.org/10.1016/S0140-6736(20)30558-4] [PMID: 32171074]
[4]
Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020; 323(11): 1061-9.
[http://dx.doi.org/10.1001/jama.2020.1585] [PMID: 32031570]
[5]
Grasselli G, Zangrillo A, Zanella A, et al. Lombardy ICU Network. Baseline characteristics and outcomes of 1591 patients infected with SARS-COV-2 admitted to ICUs of the lombardy region, Italy. JAMA 2020; 323(16): 1574-81.
[http://dx.doi.org/10.1001/jama.2020.5394] [PMID: 32250385]
[6]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[7]
Guan WJ, Ni ZY, Hu Y, et al. China Medical Treatment Expert Group for Covid-19. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020; 382(18): 1708-20.
[http://dx.doi.org/10.1056/NEJMoa2002032] [PMID: 32109013]
[8]
Li B, Yang J, Zhao F, et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol 2020; 109(5): 531-8.
[http://dx.doi.org/10.1007/s00392-020-01626-9] [PMID: 32161990]
[9]
Singhal T. A review of coronavirus disease-2019 (COVID-19). Indian J Pediatr 2020; 87(4): 281-6.
[http://dx.doi.org/10.1007/s12098-020-03263-6] [PMID: 32166607]
[10]
Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med 2020; 180(7): 934-43.
[http://dx.doi.org/10.1001/jamainternmed.2020.0994] [PMID: 32167524]
[11]
Epidemiology Working Group for NCIP Epidemic Response, Chinese Center for Disease Control and Prevention. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Zhonghua Liu Xing Bing Xue Za Zhi 2020; 41(2): 145-51.
[PMID: 32064853]
[12]
Emami A, Javanmardi F, Pirbonyeh N, Akbari A. Prevalence of underlying diseases in hospitalized patients with COVID-19: a systematic review and meta-analysis. Arch Acad Emerg Med 2020; 8(1): e35.
[PMID: 32232218]
[13]
Parrino C. Diabetes mellitus, respiratory infections and COVID-19 syndrome: available evidence and practical advice for the management of people with diabetes during hospitalization. New Coronavirus Infection: News from the Literature and Information Material - Doctors Today 2020; 3(6): 16-9.
[14]
Calcaterra G, Bassareo PP, Barilla F, et al. The Deadly Quartet (Covid-19, old age, lung disease, and heart failure) explain why coronavirus-related mortality in northern Italy was so high. Curr Cardiol Rev 2021; 17(1): 74-.
[http://dx.doi.org/10.2174/1573403X16666200731162614] [PMID: 32735524]
[15]
Casti G, Bassareo PP, Limone M, Pistolesi F, Fanos V, Marcialis MA. Epidemiology of SARS-CoV-2: numbers matter! J Pediatr Neonat Individual Med 2020; 9(2): e090203.
[http://dx.doi.org/10.7363/090203]
[16]
Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020; 395(10223): 507-13.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[17]
Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395(10229): 1054-62.
[http://dx.doi.org/10.1016/S0140-6736(20)30566-3] [PMID: 32171076]
[18]
Guo L, Wei D, Zhang X, et al. Clinical features predicting mortality risk in patients with viral pneumonia: The MuLBSTA Score. Front Microbiol 2019; 10: 2752.
[http://dx.doi.org/10.3389/fmicb.2019.02752] [PMID: 31849894]
[19]
Molloy EJ, Bearer CF. COVID-19 in children and altered inflammatory responses. Pediatr Res 2020; 88(3): 340-1.
[http://dx.doi.org/10.1038/s41390-020-0881-y] [PMID: 32244248]
[20]
Cristiani L, Mancino E, Matera L, et al. Will children reveal their secret? The coronavirus dilemma. Eur Respir J 2020; 55(4): 2000749.
[http://dx.doi.org/10.1183/13993003.00749-2020] [PMID: 32241833]
[21]
Ramseyer VD, Garvin JL. Tumor necrosis factor-α: regulation of renal function and blood pressure. Am J Physiol Renal Physiol 2013; 304(10): F1231-42.
[http://dx.doi.org/10.1152/ajprenal.00557.2012] [PMID: 23515717]
[22]
Brands MW, Banes-Berceli AKL, Inscho EW, Al-Azawi H, Allen AJ, Labazi H. Interleukin-6 knockout prevents angiotensin II hypertension: role of renal vasoconstriction and JAK2/STAT3 activation. Hypertension 2010; 56(5): 879-84.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.110.158071] [PMID: 20921429]
[23]
Onishi RM, Gaffen SL. Interleukin-17 and its target genes: mechanisms of interleukin-17 function in disease. Immunology 2010; 129(3): 311-21.
[http://dx.doi.org/10.1111/j.1365-2567.2009.03240.x] [PMID: 20409152]
[24]
De Miguel C, Rudemiller NP, Abais JM, Mattson DL. Inflammation and hypertension: new understandings and potential therapeutic targets. Curr Hypertens Rep 2015; 17(1): 507.
[http://dx.doi.org/10.1007/s11906-014-0507-z] [PMID: 25432899]
[25]
Badawi A, Ryoo SG. Prevalence of diabetes in the 2009 influenza A (H1N1) and the Middle East respiratory syndrome coronavirus: a systematic review and meta-analysis. J Public Health Res 2016; 5(3): 733.
[http://dx.doi.org/10.4081/jphr.2016.733] [PMID: 28083520]
[26]
Alraddadi BM, Watson JT, Almarashi A, et al. Risk factors for primary middle east respiratory syndrome coronavirus illness in humans, Saudi Arabia, 2014. Emerg Infect Dis 2016; 22(1): 49-55.
[http://dx.doi.org/10.3201/eid2201.151340] [PMID: 26692185]
[27]
Hong KW, Cheong HJ, Choi WS, et al. Clinical courses and outcomes of hospitalized adult patients with seasonal influenza in Korea, 2011-2012: Hospital-based Influenza Morbidity & Mortality (HIMM) surveillance. J Infect Chemother 2014; 20(1): 9-14.
[http://dx.doi.org/10.1016/j.jiac.2013.07.001] [PMID: 24462445]
[28]
Dryden M, Baguneid M, Eckmann C, et al. Pathophysiology and burden of infection in patients with diabetes mellitus and peripheral vascular disease: focus on skin and soft-tissue infections. Clin Microbiol Infect 2015; 21(Suppl. 2): S27-32.
[http://dx.doi.org/10.1016/j.cmi.2015.03.024] [PMID: 26198368]
[29]
Barnes PJ. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol 2016; 138(1): 16-27.
[http://dx.doi.org/10.1016/j.jaci.2016.05.011] [PMID: 27373322]
[30]
Barnes PJ. Cellular and molecular mechanisms of chronic obstructive pulmonary disease. Clin Chest Med 2014; 35(1): 71-86.
[http://dx.doi.org/10.1016/j.ccm.2013.10.004] [PMID: 24507838]
[31]
Van Kerkhove MD, Vandemaele KA, Shinde V, et al. WHO Working Group for Risk Factors for Severe H1N1pdm Infection. Risk factors for severe outcomes following 2009 influenza A (H1N1) infection: a global pooled analysis. PLoS Med 2011; 8(7): e1001053.
[http://dx.doi.org/10.1371/journal.pmed.1001053] [PMID: 21750667]
[32]
Dietz W, Santos-Burgoa C. Obesity and its implications for COVID-19 Mortality. Obesity (Silver Spring) 2020; 28(6): 1005.
[http://dx.doi.org/10.1002/oby.22818] [PMID: 32237206]
[33]
Luzi L, Radaelli MG. Influenza and obesity: its odd relationship and the lessons for COVID-19 pandemic. Acta Diabetol 2020; 57(6): 759-64.
[http://dx.doi.org/10.1007/s00592-020-01522-8] [PMID: 32249357]
[34]
Qingxian C, Fengjuan C, Fang L, Xiaohui L, Tao W, Qikai W, et al. Obesity and COVID-19 severity in a designated hospital in Shenzhen China Lancet 2020.https://ssrn.com/abstract=3556658
[35]
Ellulu MS, Patimah I, Khaza’ai H, Rahmat A, Abed Y. Obesity and inflammation: the linking mechanism and the complications. Arch Med Sci 2017; 13(4): 851-63.
[http://dx.doi.org/10.5114/aoms.2016.58928] [PMID: 28721154]
[36]
Lafontan M. Fat cells: afferent and efferent messages define new approaches to treat obesity. Annu Rev Pharmacol Toxicol 2005; 45: 119-46.
[http://dx.doi.org/10.1146/annurev.pharmtox.45.120403.095843] [PMID: 15822173]
[37]
Ji LN, Chao S, Wang YJ, et al. Clinical features of pediatric patients with COVID-19: a report of two family cluster cases. World J Pediatr 2020; 16(3): 267-70.
[http://dx.doi.org/10.1007/s12519-020-00356-2] [PMID: 32180140]
[38]
Jin YH, Cai L, Cheng ZS, et al. for the Zhongnan Hospital of Wuhan University Novel Coronavirus Management and Research Team, Evidence-Based Medicine Chapter of China International Exchange and Promotive Association for Medical and Health Care (CPAM). A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil Med Res 2020; 7(1): 4.
[http://dx.doi.org/10.1186/s40779-020-0233-6] [PMID: 32029004]
[39]
Sun D, Li H, Lu XX, et al. Clinical features of severe pediatric patients with coronavirus disease 2019 in Wuhan: a single center’s observational study. World J Pediatr 2020; 16(3): 251-9.
[http://dx.doi.org/10.1007/s12519-020-00354-4] [PMID: 32193831]
[40]
Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72,314 cases from the Chinese Center for Disease Control and Prevention. JAMA 2020; 323(13): 1239-42.
[http://dx.doi.org/10.1001/jama.2020.2648] [PMID: 32091533]
[41]
Turner D, Huang Y, Martín-de-Carpi J, Aloi M, Focht G, et al. COVID-19 and paediatric inflammatory bowel diseases: Global Experience and Provisional Guidance (March 2020) from the Paediatric IBD Porto group of ESPGHAN. J Pediatr Gastroenterol Nutr 2020; 70(6): 727-33.
[http://dx.doi.org/10.1097/MPG.0000000000002729] [PMID: 32443020]
[42]
Jones VG, Mills M, Suarez D, et al. COVID-19 and Kawasaki disease: novel virus and novel case. Hosp Pediatr 2020; 10(6): 537-40.
[http://dx.doi.org/10.1542/hpeds.2020-0123] [PMID: 32265235]
[43]
Zheng F, Liao C, Fan Q, et al. Clinical Characteristics of Children with Coronavirus Disease 2019 in Hubei, China. 40(2):2020. Curr Med Sci 2020; 40(2): 275-80.
[http://dx.doi.org/10.1007/s11596-020-2172-6] [PMID: 32207032]
[44]
Bassareo PP, Calcaterra G, Fanos V. Coronavirus disease 2019, Kawasaki disease, and multisystem inflammatory syndrome in children. J Pediatr 2020; 224: 184.
[http://dx.doi.org/10.1016/j.jpeds.2020.06.033] [PMID: 32540255]
[45]
Lee PI, Hu YL, Chen PY, Huang YC, Hsueh PR. Are children less susceptible to COVID-19? J Microbiol Immunol Infect 2020; 53(3): 371-2.
[http://dx.doi.org/10.1016/j.jmii.2020.02.011] [PMID: 32147409]
[46]
Brodin P. Why is COVID-19 so mild in children? Acta Paediatr 2020; 109(6): 1082-3.
[http://dx.doi.org/10.1111/apa.15271] [PMID: 32212348]
[47]
Sanna G, Serrau G, Bassareo PP, Neroni P, Fanos V, Marcialis MA. Children’s heart and COVID-19: Up-to-date evidence in the form of a systematic review. Eur J Pediatr 2020; 179(7): 1079-87.
[http://dx.doi.org/10.1007/s00431-020-03699-0] [PMID: 32474800]
[48]
Li Q, Zhang A, Wu J, et al. A retrospective study of 186 patients reveals the strongest immunity in the early two years of life against coronavirus disease Lancet 2019. Available from: https://ssrn.com/abstract=3566159
[49]
Chen F, Liu ZS, Zhang FR, et al. First case of severe childhood novel coronavirus pneumonia in China Zhonghua Er Ke Za Zhi 2020; 58(0): E005.
[PMID: 32045966]
[50]
Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol 2016; 16(10): 626-38.
[http://dx.doi.org/10.1038/nri.2016.90] [PMID: 27546235]
[51]
Henry BM, Lippi G, Plebani M. Laboratory abnormalities in children with novel coronavirus disease 2019. Clin Chem Lab Med 2020; 58(7): 1135-8.
[http://dx.doi.org/10.1515/cclm-2020-0272] [PMID: 32172227]
[52]
Li X, Qian K, Xie L, et al. A mini review on current clinical and research findings for children suffering from COVID-19. 2020.
[53]
Nickbakhsh S, Mair C, Matthews L, et al. Virus-virus interactions impact the population dynamics of influenza and the common cold. Proc Natl Acad Sci USA 2019; 2019: 11083.
[http://dx.doi.org/10.1073/pnas.1911083116] [PMID: 31843887]
[54]
Liniger M, Zuniga A, Tamin A, et al. Induction of neutralising antibodies and cellular immune responses against SARS coronavirus by recombinant measles viruses. Vaccine 2008; 26(17): 2164-74.
[http://dx.doi.org/10.1016/j.vaccine.2008.01.057] [PMID: 18346823]
[55]
Fanos V, Pintus MC, Pintus R, Marcialis MA. Lung microbiota in the acute respiratory disease: from coronavirus to metabolomics. J Pediatr Neonat Individual Med 2020; 9(1): e090139.
[http://dx.doi.org/10.7363/090139]
[56]
Xu Y, Li X, Zhu B, et al. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nat Med 2020; 26(4): 502-5.
[http://dx.doi.org/10.1038/s41591-020-0817-4] [PMID: 32284613]
[57]
Chen CJ, Wu GH, Kuo RL, Shih SR. Role of the intestinal microbiota in the immunomodulation of influenza virus infection. Microbes Infect 2017; 19(12): 570-9.
[http://dx.doi.org/10.1016/j.micinf.2017.09.002] [PMID: 28939355]
[58]
Meazzi S, Stranieri A, Lauzi S, et al. Feline gut microbiota composition in association with feline coronavirus infection: A pilot study. Res Vet Sci 2019; 125: 272-8.
[http://dx.doi.org/10.1016/j.rvsc.2019.07.003] [PMID: 31326703]
[59]
Nishihira J, Moriya T, Sakai F, Kabuki T, Kawasaki Y, Nishimura M. Lactobacillus gasseri SBT2055 stimulates immunoglobulin production and innate immunity after influenza vaccination in healthy adult volunteers. J Funct Foods Health Dis 2016; 6(9): 544-68.
[http://dx.doi.org/10.31989/ffhd.v6i9.284]
[60]
Hyun-tai S. Korean researchers found substance inhibiting COVID-19. Available from: http://www.koreabiomed.com/news/ articleView.html?idxno=77442020
[61]
Leng Z, Zhu R, Hou W, et al. Transplantation of ACE2- Mesenchymal Stem Cells Improves the Outcome of Patients with COVID-19 Pneumonia. Aging Dis 2020; 11(2): 216-28.
[http://dx.doi.org/10.14336/AD.2020.0228] [PMID: 32257537]
[62]
Götzinger F, Santiago-García B, Noguera-Julián A, et al. ptbnet COVID-19 Study Group. COVID-19 in children and adolescents in Europe: a multinational, multicentre cohort study. Lancet Child Adolesc Health 2020; 4(9): 653-61.
[http://dx.doi.org/10.1016/S2352-4642(20)30177-2] [PMID: 32593339]
[63]
Xia W, Shao J, Guo Y, Peng X, Li Z, Hu D. Clinical and CT features in pediatric patients with COVID-19 infection: Different points from adults. Pediatr Pulmonol 2020; 55(5): 1169-74.
[http://dx.doi.org/10.1002/ppul.24718] [PMID: 32134205]
[65]
Morens DM, Taubenberger JK, Fauci AS. Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: implications for pandemic influenza preparedness. J Infect Dis 2008; 198(7): 962-70.
[http://dx.doi.org/10.1086/591708] [PMID: 18710327]
[66]
Ding Q, Lu P, Fan Y, Xia Y, Liu M. The clinical characteristics of pneumonia patients coinfected with 2019 novel coronavirus and influenza virus in Wuhan, China. J Med Virol 2020.
[http://dx.doi.org/10.1002/jmv.25781] [PMID: 32196707]
[67]
Fan BE, Lim KGE, Chong VCL, Chan SSW, Ong KH, Kuperan P. COVID-19 and mycoplasma pneumoniae coinfection. Am J Hematol 2020; 95(6): 723-4.
[http://dx.doi.org/10.1002/ajh.25785] [PMID: 32173883]
[68]
Kotula JJ3rd, Moore WS2nd, Chopra A, Cies JJ. Association of procalcitonin value and bacterial coinfections in pediatric patients with viral lower respiratory tract infections admitted to the pediatric intensive care unit. J Pediatr Pharmacol Ther 2018; 23(6): 466-72.
[http://dx.doi.org/10.5863/1551-6776-23.6.466] [PMID: 30697132]
[69]
Memoli MJ, Athota R, Reed S, et al. The natural history of influenza infection in the severely immunocompromised vs nonimmunocompromised hosts. Clin Infect Dis 2014; 58(2): 214-24.
[http://dx.doi.org/10.1093/cid/cit725] [PMID: 24186906]
[70]
Kaltsas A, Sepkowitz K. Community acquired respiratory and gastrointestinal viral infections: challenges in the immunocompromised host. Curr Opin Infect Dis 2012; 25(4): 423-30.
[http://dx.doi.org/10.1097/QCO.0b013e328355660b] [PMID: 22766648]
[71]
Stockman LJ, Massoudi MS, Helfand R, et al. Severe acute respiratory syndrome in children. Pediatr Infect Dis J 2007; 26(1): 68-74.
[http://dx.doi.org/10.1097/01.inf.0000247136.28950.41] [PMID: 17195709]
[72]
Hui DS, Azhar EI, Kim YJ, Memish ZA, Oh MD, Zumla A. Middle East respiratory syndrome coronavirus: risk factors and determinants of primary, household, and nosocomial transmission. Lancet Infect Dis 2018; 18(8): e217-27.
[http://dx.doi.org/10.1016/S1473-3099(18)30127-0] [PMID: 29680581]
[73]
Siddiqi HK, Mehra MR. COVID-19 illness in native and immunosuppressed states: A clinical-therapeutic staging proposal. J Heart Lung Transplant 2020; 39(5): 405-7.
[http://dx.doi.org/10.1016/j.healun.2020.03.012] [PMID: 32362390]
[74]
Xu X, Han M, Li T, et al. Effective Treatment of Severe COVID-19 Patients with Tocilizumab. PNAS 2020; 117(20): 10970-5.
[75]
D’Antiga L. Coronaviruses and immunosuppressed patients. The facts during the third epidemic. Liver Transpl 2020; 26(6): 832-4.
[http://dx.doi.org/10.1002/lt.25756] [PMID: 32196933]
[76]
Rubin DT, Abreu MT, Rai V, Siegel CA. International organization for the study of inflammatory bowel disease. management of patients with crohn’s disease and ulcerative colitis during the covid-19 pandemic: results of an international meeting. In: Gastroenterology. 2020; 159: pp. (1)6-13.
[77]
Chen Z, Xiong H, Li JX, et al. COVID-19 with post-chemotherapy agranulocytosis in childhood acute leukemia: a case report. Zhonghua Xue Ye Xue Za Zhi 2020; 41(4): 341-3.
[http://dx.doi.org/10.3760/cma.j.issn.0253-2727.2020.0004] [PMID: 32149486]
[78]
Bassareo PP, Melis MR, Marras S, Calcaterra G. Learning from the past in the COVID-19 era: rediscovery of quarantine, previous pandemics, origin of hospitals and national healthcare systems, and ethics in medicine. Postgrad Med J 2020; 138370.
[http://dx.doi.org/10.1136/postgradmedj-2020-138370]
[79]
Paraluppi V, Pintus MC, Fanos V, Marcialis MA. COVID-19 in newborns and in children: the state of the art. J Pediatr Neonat Individual Med 2020; 9(1): e090138.
[http://dx.doi.org/10.7363/090138]
[80]
Castagnoli R, Votto M, Licari A, et al. Severe acute respiratory syndrome coronavirus 2 (sars-cov-2) infection in children and adolescents: A systematic review. JAMA Pediatr 2020; 174(9): 882-9.
[http://dx.doi.org/10.1001/jamapediatrics.2020.1467] [PMID: 32320004]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy