Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

The Fraction of the Snake Venom, Its Leishmanicidal Effect, and the Stimulation of an Anti-Leishmania Response in Infected Macrophages

Author(s): Saeideh Nikpour, Fatemeh Tabatabaie*, Iraj Sharifi, Mahshid Mostafavi, Razieh T. Oliaee, Fatemeh Sharifi, Zahra Babaei, Elham Jafari, Ehsan Salarkia and Delavar Shahbazzadeh

Volume 21, Issue 6, 2021

Published on: 10 November, 2020

Page: [1115 - 1124] Pages: 10

DOI: 10.2174/1871530320999201110211222

Price: $65

Abstract

Background and Aims: Due to the lack of an effective vaccine and complexity of the control measures against vectors and reservoir hosts, the control of leishmaniasis depends primarily on chemotherapy. This study was aimed to assess the snake venom, Naja naja oxiana fraction 11(NNOVF11) on Leishmania infantum and its broad mode of action.

Methods: A wide range of in vitro advanced assays including high-performance liquid chromatography (HPLC), MTT (3-[4, 5-Dimethylthiazol-2-yl]-2, 5diphenyltetrazolium bromide; Thiazolyl blue), macrophage assays, quantitative real-time polymerase chain reaction (qPCR), flow cytometry and enzyme- linked immunosorbent assay (ELISA) on L. infantum promastigote and amastigote stages were used. IC50 values of L. infantum stages, CC50 value, and apoptosis were also analyzed.

Results: The NNOV-F11 demonstrated strong antileishmanial activity against L. infantum stages in a dose-dependent manner compared to the untreated control group. Interleukin (IL)-12, TNF-α, and iNOS genes expression as the indicators of T helper(h)1 response significantly increased; in contrast, the expression level of IL-10, as the representative of Th2 response significantly decreased (p < 0.001). Reactive oxygen species (ROS) detection showed a significant increase (p < 0.001) after treatment with different concentrations of NNOV-F11, unlike arginase (ARG) activity, which displayed a significant reduction (p < 0.001).

Conclusion: NNOV-F11 possessed a potent inhibitory effect on L. infantum stages with the multifunctional and broad mode of actions, which promoted the immunomodulatory role, induced ROS production, stimulated apoptotic–like mechanisms, and inhibited L-ARG activity, which collectively led to the parasite death. Further studies are crucial to assess the effect of the NNOV-F11 on animal models or clinical settings.

Keywords: Snake venom, Leishmania infantum, ELISA, T helper, antileishmanial activity, Naja naja oxiana.

Graphical Abstract

[1]
Scott, D.A.; Slaymaker, I.M.; Gao, L.; Zetsche, B.; Yan, W.X.; Zhang, F. Rationally engineered Cas9 nucleases with improved specificity. Science, 2016, 351(6268), 84-88.
[http://dx.doi.org/10.1126/science.aad5227] [PMID: 26628643]
[2]
Khosravi, A.; Sharifi, I.; Fekri, A.; Kermanizadeh, A.; Bamorovat, M.; Mostafavi, M.; Aflatoonian, M.R.; Keyhani, A. Clinical features of anthroponotic cutaneous leishmaniasis in a major focus, southeastern Iran, 1994-2014. Iran. J. Parasitol., 2017, 12(4), 544-553.
[PMID: 29317879]
[3]
Le Rutte, E.A.; Zijlstra, E.E.; de Vlas, S.J. Post-Kala-Azar Dermal Leishmaniasis as a Reservoir for Visceral Leishmaniasis Transmission. Trends Parasitol., 2019, 35(8), 590-592.
[http://dx.doi.org/10.1016/j.pt.2019.06.007] [PMID: 31266711]
[4]
Bailey, F.; Mondragon-Shem, K.; Hotez, P.; Ruiz-Postigo, J.A.; Al-Salem, W.; Acosta-Serrano, Á.; Molyneux, D.H. A new perspective on cutaneous leishmaniasis-Implications for global prevalence and burden of disease estimates. PLoS Negl. Trop. Dis., 2017, 11(8), e0005739.
[http://dx.doi.org/10.1371/journal.pntd.0005739] [PMID: 28796782]
[5]
Akter, S.; Alam, M.Z.; Nakao, R.; Yasin, G.; Kato, H.; Katakura, K. Molecular and Serological Evidence of Leishmania Infection in Stray Dogs from Visceral Leishmaniasis-Endemic Areas of Bangladesh. Am. J. Trop. Med. Hyg., 2016, 95(4), 795-799.
[http://dx.doi.org/10.4269/ajtmh.16-0151] [PMID: 27382083]
[6]
WHO Expert. Committee on the control of the Leishmaniases & World Health Organization., (2010). Control of the leishmaniases: report of a meeting of the WHO Expert Commitee on the control of Leishmaniases, Geneva, 22-26 March 2010. World Health Organization. Available at: https://apps.who.int/iris/handle/10665/44412
[7]
Aflatoonian, M.R.; Sharifi, I.; Aflatoonian, B.; Bamorovat, M.; Heshmatkhah, A.; Babaei, Z.; Almani, P.G.N.; Mohammadi, M.A.; Salarkia, E.; Aghaei Afshar, A.; Sharifi, H.; Sharifi, F.; Khosravi, A.; Khatami, M.; Arefinia, N.; Fekri, A.; Farajzadeh, S.; Khamesipour, A.; Mohebali, M.; Gouya, M.M.; Shirzadi, M.R.; Varma, R.S. Associated-risk determinants for anthroponotic cutaneous leishmaniasis treated with meglumine antimoniate: A cohort study in Iran. PLoS Negl. Trop. Dis., 2019, 13(6), e0007423.
[http://dx.doi.org/10.1371/journal.pntd.0007423] [PMID: 31188834]
[8]
Oliaee, R.T.; Sharifi, I.; Afgar, A.; Kareshk, A.T.; Asadi, A.; Heshmatkhah, A.; Bamorovat, M.; Jafarzadeh, A.; Mohammadi, M.A.; Daneshvar, H. Unresponsiveness to meglumine antimoniate in anthroponotic cutaneous leishmaniasis field isolates: analysis of resistance biomarkers by gene expression profiling. Trop. Med. Int. Health, 2018, 23(6), 622-633.
[http://dx.doi.org/10.1111/tmi.13062] [PMID: 29709098]
[9]
Aronson, N.; Herwaldt, B.L.; Libman, M.; Pearson, R.; Lopez-Velez, R.; Weina, P.; Carvalho, E.M.; Ephros, M.; Jeronimo, S.; Magill, A. Diagnosis and Treatment of Leishmaniasis: Clinical Practice Guidelines by the Infectious Diseases Society of America (IDSA) and the American Society of Tropical Medicine and Hygiene (ASTMH). Clin. Infect. Dis., 2016, 63(12), e202-e264.
[http://dx.doi.org/10.1093/cid/ciw670] [PMID: 27941151]
[10]
Ghorbani, M.; Farhoudi, R. Leishmaniasis in humans: drug or vaccine therapy? Drug Des. Devel. Ther., 2017, 12, 25-40.
[http://dx.doi.org/10.2147/DDDT.S146521] [PMID: 29317800]
[11]
Nasoori, A.; Shahbazzadeh, D.; Tsubota, T.; Young, B. The defensive behaviour of Naja oxiana, with comments on the visual displays of cobras. Herpetol. Bull., 2016, 138, 13-17.
[12]
Andreotti, N.; Jouirou, B.; Mouhat, S.; Mouhat, L.; Sabatier, J-M. Therapeutic value of peptides from animal venoms. In: Comprehensive natural products II; Hung-Wen (Ben) Liu, Lew Mander; Elsevier: Amsterdam, 2010; Vol. 5, pp. 287-303.
[http://dx.doi.org/10.1016/B978-008045382-8.00114-3]
[13]
Bhattacharya, S.; Ghosh, P.; De, T.; Gomes, A.; Gomes, A.; Dungdung, S.R. In vivo and in vitro antileishmanial activity of Bungarus caeruleus snake venom through alteration of immunomodulatory activity. Exp. Parasitol., 2013, 135(1), 126-133.
[http://dx.doi.org/10.1016/j.exppara.2013.06.006] [PMID: 23830987]
[14]
Costa Torres, A.F.; Dantas, R.T.; Toyama, M.H.; Diz Filho, E.; Zara, F.J.; Rodrigues de Queiroz, M.G.; Pinto Nogueira, N.A.; Rosa de Oliveira, M.; de Oliveira Toyama, D.; Monteiro, H.S.A.; Martins, A.M.C. Antibacterial and antiparasitic effects of Bothrops marajoensis venom and its fractions: Phospholipase A2 and L-amino acid oxidase. Toxicon, 2010, 55(4), 795-804.
[http://dx.doi.org/10.1016/j.toxicon.2009.11.013] [PMID: 19944711]
[15]
Altgelt, K.H. Composition and analysis of heavy petroleum fractions; CRC Press: Boca Raton, 1993.
[16]
Desjardins, P.; Hansen, J.B.; Allen, M. Microvolume protein concentration determination using the NanoDrop 2000c Spectrophotometer. J. Vis. Exp., 2010, (33), 1610.
[http://dx.doi.org/10.3791/1610] [PMID: 19890248]
[17]
Shokri, A.; Sharifi, I.; Khamesipour, A.; Nakhaee, N.; Fasihi Harandi, M.; Nosratabadi, J.; Hakimi Parizi, M.; Barati, M. The effect of verapamil on in vitro susceptibility of promastigote and amastigote stages of Leishmania tropica to meglumine antimoniate. Parasitol. Res., 2012, 110(3), 1113-1117.
[http://dx.doi.org/10.1007/s00436-011-2599-6] [PMID: 21847598]
[18]
Ganguly, S.; Bandyopadhyay, S.; Sarkar, A.; Chatterjee, M. Development of a semi-automated colorimetric assay for screening anti-leishmanial agents. J. Microbiol. Methods, 2006, 66(1), 79-86.
[http://dx.doi.org/10.1016/j.mimet.2005.10.011] [PMID: 16316700]
[19]
Croft, S.L.; Sundar, S.; Fairlamb, A.H. Drug resistance in leishmaniasis. Clin. Microbiol. Rev., 2006, 19(1), 111-126.
[http://dx.doi.org/10.1128/CMR.19.1.111-126.2006] [PMID: 16418526]
[20]
da Silva, M.F.L.; Zampieri, R.A.; Muxel, S.M.; Beverley, S.M.; Floeter-Winter, L.M. Leishmania amazonensis arginase compartmentalization in the glycosome is important for parasite infectivity. PLoS One, 2012, 7(3), e34022.
[http://dx.doi.org/10.1371/journal.pone.0034022] [PMID: 22479507]
[21]
Croft, S.L.; Sundar, S.; Fairlamb, A.H. Drug Resistance in Leishmaniasis Drug Resistance in Leishmaniasis. Clin. Microbiol. Rev., 2006, 19(1), 111-126.
[http://dx.doi.org/10.1128/cmr.19.1.111-126.2006] [PMID: 16418526]
[22]
Jeddi, F.; Piarroux, R.; Mary, C. Antimony resistance in leishmania, focusing on experimental research. J. Trop. Med., 2011, 2011, 695382.
[http://dx.doi.org/10.1155/2011/695382] [PMID: 22174724]
[23]
Ouellette, M.; Drummelsmith, J.; Papadopoulou, B. Leishmaniasis: drugs in the clinic, resistance and new developments. Drug Resist. Updat., 2004, 7(4-5), 257-266.
[http://dx.doi.org/10.1016/j.drup.2004.07.002] [PMID: 15533763]
[24]
Kazemi-Rad, E.; Mohebali, M.; Khadem-Erfan, M.B.; Saffari, M.; Raoofian, R.; Hajjaran, H.; Hadighi, R.; Khamesipour, A.; Rezaie, S.; Abedkhojasteh, H.; Heidari, M. Identification of antimony resistance markers in Leishmania tropica field isolates through a cDNA-AFLP approach. Exp. Parasitol., 2013, 135(2), 344-349.
[http://dx.doi.org/10.1016/j.exppara.2013.07.018] [PMID: 23928349]
[25]
Costa, M.S.; Gonçalves, Y.G.; Teixeira, S.C.; Nunes, D.C.O.; Lopes, D.S.; da Silva, C.V.; da Silva, M.S.; Borges, B.C.; Silva, M.J.B.; Rodrigues, R.S.; Rodrigues, V.M.; Von Poelhsitz, G.; Yoneyama, K.A.G. Increased ROS generation causes apoptosis-like death: Mechanistic insights into the anti-Leishmania activity of a potent ruthenium(II) complex. J. Inorg. Biochem., 2019, 195, 1-12.
[http://dx.doi.org/10.1016/j.jinorgbio.2019.03.005] [PMID: 30861423]
[26]
Yang, B.; Yin, C.; Zhou, Y.; Wang, Q.; Jiang, Y.; Bai, Y.; Qian, H.; Xing, G.; Wang, S.; Li, F.; Feng, Y.; Zhang, Y.; Cai, J.; Aschner, M.; Lu, R. Curcumin protects against methylmercury-induced cytotoxicity in primary rat astrocytes by activating the Nrf2/ARE pathway independently of PKCδ. Toxicology, 2019, 425, 152248.
[http://dx.doi.org/10.1016/j.tox.2019.152248] [PMID: 31330227]
[27]
Jawed, J.J.; Majumdar, S. Recent Trends in Leishmania Research: A Therapeutic Perspective. J. Infect., 2018, 1, 1-4.
[http://dx.doi.org/10.29245/2689-9981/2018/3.1120]
[28]
Fallahi, N.; Shahbazzadeh, D.; Maleki, F.; Aghdasi, M.; Tabatabaie, F.; Khanaliha, K. The in vitro study of anti-leishmanial effect of Naja naja oxiana snake venom on Leishmania major. Infect. Disord. Drug Targets, 2020, 20(6), 913-919.
[http://dx.doi.org/10.2174/1871526520666200106121839] [PMID: 31903885]
[29]
Schaut, R.G.; Lamb, I.M.; Toepp, A.J.; Scott, B.; Mendes-Aguiar, C.O.; Coutinho, J.F.V.; Jeronimo, S.M.B.; Wilson, M.E.; Harty, J.T.; Waldschmidt, T.J.; Petersen, C.A. Regulatory IgDhi B cells suppress T cell function via IL-10 and PD-L1 during progressive visceral leishmaniasis. J. Immunol., 2016, 196(10), 4100-4109.
[http://dx.doi.org/10.4049/jimmunol.1502678] [PMID: 27076677]
[30]
Dayakar, A.; Chandrasekaran, S.; Kuchipudi, S.V.; Kalangi, S.K. Cytokines: Key determinants of resistance or disease progression in visceral leishmaniasis: Opportunities for novel diagnostics and immunotherapy. Front. Immunol., 2019, 10, 670.
[http://dx.doi.org/10.3389/fimmu.2019.00670] [PMID: 31024534]
[31]
Tomiotto-Pellissier, F.; Bortoleti, B.T.D.S.; Assolini, J.P.; Gonçalves, M.D.; Carloto, A.C.M.; Miranda-Sapla, M.M.; Conchon-Costa, I.; Bordignon, J.; Pavanelli, W.R. Macrophage Polarization in Leishmaniasis: Broadening Horizons. Front. Immunol., 2018, 9, 2529.
[http://dx.doi.org/10.3389/fimmu.2018.02529] [PMID: 30429856]
[32]
Muxel, S.M.; Aoki, J.I.; Fernandes, J.C.R.; Laranjeira-Silva, M.F.; Zampieri, R.A.; Acuña, S.M.; Müller, K.E.; Vanderlinde, R.H.; Floeter-Winter, L.M. Arginine and polyamines fate in Leishmania infection. Front. Microbiol., 2018, 8, 2682.
[http://dx.doi.org/10.3389/fmicb.2017.02682] [PMID: 29379478]
[33]
Aoki, J.I.; Muxel, S.M.; Fernandes, J.C.R.; Floeter-Winter, L.M. Polyamine Pathway as a Potential Target for Leishmaniases Chemotherapy. In: Leishmaniases as Re-Emerging Diseases; IntechOpen: London, 2018; p. 107.
[34]
Mandell, M.A.; Beverley, S.M. Continual renewal and replication of persistent Leishmania major parasites in concomitantly immune hosts. Proc. Natl. Acad. Sci. USA, 2017, 114(5), E801-E810.
[http://dx.doi.org/10.1073/pnas.1619265114] [PMID: 28096392]
[35]
Badirzadeh, A.; Taheri, T.; Taslimi, Y.; Abdossamadi, Z.; Heidari-Kharaji, M.; Gholami, E.; Sedaghat, B.; Niyyati, M.; Rafati, S. Arginase activity in pathogenic and non-pathogenic species of Leishmania parasites. PLoS Negl. Trop. Dis., 2017, 11(7), e0005774.
[http://dx.doi.org/10.1371/journal.pntd.0005774] [PMID: 28708893]
[36]
Carneiro, P.P.; Conceição, J.; Macedo, M.; Magalhães, V.; Carvalho, E.M.; Bacellar, O. The role of nitric oxide and reactive oxygen species in the killing of Leishmania braziliensis by monocytes from patients with cutaneous leishmaniasis. PLoS One, 2016, 11(2), e0148084.
[http://dx.doi.org/10.1371/journal.pone.0148084] [PMID: 26840253]
[37]
Olekhnovitch, R.; Bousso, P. Induction, propagation, and activity of host nitric oxide: lessons from Leishmania infection. Trends Parasitol., 2015, 31(12), 653-664.
[http://dx.doi.org/10.1016/j.pt.2015.08.001] [PMID: 26440786]
[38]
Das, M.; Mukherjee, S.B.; Shaha, C. Hydrogen peroxide induces apoptosis-like death in Leishmania donovani promastigotes. J. Cell Sci., 2001, 114(Pt 13), 2461-2469.
[PMID: 11559754]
[39]
Ribeiro, G.A.; Cunha-Júnior, E.F.; Pinheiro, R.O.; da-Silva, S.A.G.; Canto-Cavalheiro, M.M.; da Silva, A.J.M.; Costa, P.R.R.; Netto, C.D.; Melo, R.C.N.; Almeida-Amaral, E.E.; Torres-Santos, E.C. LQB-118, an orally active pterocarpanquinone, induces selective oxidative stress and apoptosis in Leishmania amazonensis. J. Antimicrob. Chemother., 2013, 68(4), 789-799.
[http://dx.doi.org/10.1093/jac/dks498] [PMID: 23288404]
[40]
Fonseca-Silva, F.; Inacio, J.D.F.; Canto-Cavalheiro, M.M.; Almeida-Amaral, E.E. Reactive oxygen species production and mitochondrial dysfunction contribute to quercetin induced death in Leishmania amazonensis. PLoS One, 2011, 6(2), e14666.
[http://dx.doi.org/10.1371/journal.pone.0014666] [PMID: 21346801]
[41]
Sundar, S.; Singh, B. Emerging therapeutic targets for treatment of leishmaniasis. Expert Opin. Ther. Targets, 2018, 22(6), 467-486.
[http://dx.doi.org/10.1080/14728222.2018.1472241] [PMID: 29718739]
[42]
Adak, S. Leishmania; Caister Academic Press, 2015.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy