Research Article

MIF 在硫代乙酰胺诱导的小鼠肝损伤肝功能、氧化应激和炎症中的作用:甜菜碱的保护作用

卷 28, 期 16, 2021

发表于: 04 November, 2020

页: [3249 - 3268] 页: 20

弟呕挨: 10.2174/0929867327666201104151025

价格: $65

摘要

背景:巨噬细胞迁移抑制因子 (MIF) 是一种多能细胞因子,有助于化学性肝损伤的炎症反应。这种细胞因子根据肝病的病因和阶段表现出促炎和抗炎作用。 目的:我们的研究旨在研究 MIF 在氧化应激和肝脏炎症中的作用,以及甜菜碱对硫代乙酰胺 (TAA) 诱导的小鼠慢性肝损伤中 MIF 的调节作用。 方法:实验在野生型和敲除型 MIF-/- C57BL/6 小鼠上进行。它们被分为以下几组:对照;接受甜菜碱的 Bet 组(溶于饮用水中的 2% wt/v); MIF-/-小鼠组; MIF-/-+投注;接受 TAA (200 mg/kg b.w.),腹膜内,3x/周/8 周的 TAA 组; TAA+投注; MIF-/-+TAA 和 MIF-/-+TAA+Bet。在 TAA 和 Bet 治疗组中,动物接受相同的剂量。治疗八周后,采集血样进行生化分析,并制备肝脏标本用于评估氧化应激和炎症参数。 结果:在 MIF-/-小鼠中,TAA 降低转氨酶、γ-谷氨酰转肽酶、胆红素、丙二醛 (MDA)、氧化蛋白产物 (AOPP)、总氧化状态 (TOS)、C 反应蛋白 (CRP)、IL-6、 IFN-γ,以及增加的硫醇和总抗氧化状态 (TAS)。甜菜碱减弱了 MIF 的机制和 TAA 诱导的肝损伤中的介导作用,降低了转氨酶、γ-谷氨酰转肽酶、胆红素、MDA、AOPP、TOS、CRP、IL-6、IFN-g 和增加硫醇。结论:MIF 是 TAA 诱导的肝损伤的肝毒性、促氧化和促炎作用的介质。 MIF 靶向治疗可以潜在地减轻肝脏中的氧化应激和炎症,但其作用的确切机制需要进一步研究。甜菜碱可增强抗氧化防御并减弱 MIF 的肝毒性作用,表明甜菜碱可用于预防和治疗肝损伤。

关键词: 硫代乙酰胺、肝损伤、炎症、巨噬细胞迁移抑制因子、甜菜碱、小鼠。

« Previous
[1]
Gulati, K.; Reshi, M.R.; Rai, N.; Ray, A. Hepatotoxicity: its mechanisms, experimental evaluation and protective strategies. Am. J. Pharmacol., 2018, 1(1), 1004.
[2]
Singh, D.; Cho, W.C.; Upadhyay, G. Drug-induced liver toxicity and prevention by herbal antioxidants: an overview. Front. Physiol., 2016, 6, 363.
[http://dx.doi.org/10.3389/fphys.2015.00363] [PMID: 26858648]
[3]
Farzaei, M.H.; Zobeiri, M.; Parvizi, F.; El-Senduny, F.F.; Marmouzi, I.; Coy-Barrera, E.; Naseri, R.; Nabavi, S.M.; Rahimi, R.; Abdollahi, M. Curcumin in liver diseases: a systemic review of the cellular mechanisms of oxidative stress and clinical perspective. Nutrients, 2018, 10(7), 855.
[http://dx.doi.org/10.3390/nu10070855] [PMID: 29966389]
[4]
Asrani, S.K.; Devarbhavi, H.; Eaton, J.; Kamath, P.S. Burden of liver diseases in the world. J. Hepatol., 2019, 70(1), 151-171.
[http://dx.doi.org/10.1016/j.jhep.2018.09.014] [PMID: 30266282]
[5]
Tuñón, M.-J.; Alvarez, M.; Culebras, J.-M.; González-Gallego, J. An overview of animal models for investigating the pathogenesis and therapeutic strategies in acute hepatic failure. World J. Gastroenterol., 2009, 15(25), 3086-3098.
[http://dx.doi.org/10.3748/wjg.15.3086] [PMID: 19575487]
[6]
Liu, Y.; Meyer, C.; Xu, C.; Weng, H.; Hellerbrand, C.; ten Dijke, P.; Dooley, S. Animal models of chronic liver diseases. Am. J. Physiol. Gastrointest. Liver Physiol., 2013, 304(5), G449-G468.
[http://dx.doi.org/10.1152/ajpgi.00199.2012] [PMID: 23275613]
[7]
Heidari, R.; Niknahad, H.; Sadeghi, A.; Mohammadi, H.; Ghanbarinejad, V.; Ommati, M.M.; Hosseini, A.; Azarpira, N.; Khodaei, F.; Farshad, O.; Rashidi, E.; Siavashpour, A.; Najibi, A.; Ahmadi, A.; Jamshidzadeh, A. Betaine treatment protects liver through regulating mitochondrial function and counteracting oxidative stress in acute and chronic animal models of hepatic injury. Biomed. Pharmacother., 2018, 103, 75-86.
[http://dx.doi.org/10.1016/j.biopha.2018.04.010] [PMID: 29635131]
[8]
Bashandy, S.A.E.; Ebaid, H.; Abdelmottaleb Moussa, S.A.; Alhazza, I.M.; Hassan, I.; Alaamer, A.; Al Tamimi, J. Potential effects of the combination of nicotinamide, vitamin B2 and vitamin C on oxidative-mediated hepatotoxicity induced by thioacetamide. Lipids Health Dis., 2018, 17(1), 29.
[http://dx.doi.org/10.1186/s12944-018-0674-z] [PMID: 29444683]
[9]
Hajovsky, H.; Hu, G.; Koen, Y.; Sarma, D.; Cui, W.; Moore, D.S.; Staudinger, J.L.; Hanzlik, R.P. Metabolism and toxicity of thioacetamide and thioacetamide S-oxide in rat hepatocytes. Chem. Res. Toxicol., 2012, 25(9), 1955-1963.
[http://dx.doi.org/10.1021/tx3002719] [PMID: 22867114]
[10]
Li, S.; Tan, H.Y.; Wang, N.; Zhang, Z.J.; Lao, L.; Wong, C.W.; Feng, Y. The role of oxidative stress and antioxidants in liver diseases. Int. J. Mol. Sci., 2015, 16(11), 26087-26124.
[http://dx.doi.org/10.3390/ijms161125942] [PMID: 26540040]
[11]
Jorgačević, B.; Vučević, D.; Samardžić, J.; Mladenović, D.; Vesković, M.; Vukićević, D.; Ješić, R.; Radosavljević, T. The effect of CB1 antagonism on hepatic oxidative/nitrosative stress and inflammation in nonalcoholic fatty liver disease. Curr. Med. Chem., 2021, 28(1), 169-180.
[http://dx.doi.org/10.2174/0929867327666200303122734] [PMID: 32124686]
[12]
Cichoż-Lach, H.; Michalak, A. Oxidative stress as a crucial factor in liver diseases. World J. Gastroenterol., 2014, 20(25), 8082-8091.
[http://dx.doi.org/10.3748/wjg.v20.i25.8082] [PMID: 25009380]
[13]
Jorgačević, B.; Mladenović, D.; Ninković, M.; Vesković, M.; Dragutinović, V.; Vatazević, A.; Vučević, D.; Ješić Vukićević, R.; Radosavljević, T. Rimonabant improves oxidative/nitrosative stress in mice with nonalcoholic fatty liver disease. Oxid. Med. Cell. Longev., 2015, 2015, 842108.
[http://dx.doi.org/10.1155/2015/842108] [PMID: 26078820]
[14]
Grieb, G.; Merk, M.; Bernhagen, J.; Bucala, R. Macrophage migration inhibitory factor (MIF): a promising biomarker. Drug News Perspect., 2010, 23(4), 257-264.
[http://dx.doi.org/10.1358/dnp.2010.23.4.1453629] [PMID: 20520854]
[15]
Marin, V.; Odena, G.; Poulsen, K.; Tiribelli, C.; Bellentani, S.; Barchetti, A.; Bru, P.S.; Rosso, N.; Bataller, R.; Laura, E.; Nagy, L.E. Role of MIF in hepatic inflammatory diseases and fibrosis. In: MIF Family Cytokines in Innate Immunity and Homeostasis. Progress in Inflammation Research; Bucala, R.; Bernhagen, J., Eds.; Springer International. , 2017; pp. 109-134.
[http://dx.doi.org/10.1007/978-3-319-52354-5_7]
[16]
Heinrichs, D.; Knauel, M.; Offermanns, C.; Berres, M.L.; Nellen, A.; Leng, L.; Schmitz, P.; Bucala, R.; Trautwein, C.; Weber, C.; Bernhagen, J.; Wasmuth, H.E. Macrophage migration inhibitory factor (MIF) exerts antifibrotic effects in experimental liver fibrosis via CD74. Proc. Natl. Acad. Sci. USA, 2011, 108(42), 17444-17449.
[http://dx.doi.org/10.1073/pnas.1107023108] [PMID: 21969590]
[17]
Marin, V.; Poulsen, K.; Odena, G.; McMullen, M.R.; Altamirano, J.; Sancho-Bru, P.; Tiribelli, C.; Caballeria, J.; Rosso, N.; Bataller, R.; Nagy, L.E. Hepatocyte-derived macrophage migration inhibitory factor mediates alcohol-induced liver injury in mice and patients. J. Hepatol., 2017, 67(5), 1018-1025.
[http://dx.doi.org/10.1016/j.jhep.2017.06.014] [PMID: 28647568]
[18]
Ohta, S.; Kawakami, Y.; Okano, H. MIF: functions in brain and glioblastoma. Oncotarget, 2017, 8(29), 46706-46707.
[http://dx.doi.org/10.18632/oncotarget.18489] [PMID: 28636550]
[19]
Leyton-Jaimes, M.F.; Kahn, J.; Israelson, A. Macrophage migration inhibitory factor: a multifaceted cytokine implicated in multiple neurological diseases. Exp. Neurol., 2018, 301(Pt B), 83-91.
[http://dx.doi.org/10.1016/j.expneurol.2017.06.021] [PMID: 28679106]
[20]
Calandra, T.; Roger, T. Macrophage migration inhibitory factor: a regulator of innate immunity. Nat. Rev. Immunol., 2003, 3(10), 791-800.
[http://dx.doi.org/10.1038/nri1200] [PMID: 14502271]
[21]
Lehmann, L.E.; Weber, S.U.; Fuchs, D.; Book, M.; Klaschik, S.; Schewe, J.C.; Hoeft, A.; Stüber, F. Oxidoreductase Macrophage Migration Inhibitory Factor is simultaneously increased in leukocyte subsets of patients with severe sepsis. Biofactors, 2008, 33(4), 281-291.
[http://dx.doi.org/10.1002/biof.5520330404] [PMID: 19509463]
[22]
Sinitski, D.; Kontos, C.; Krammer, C.; Asare, Y.; Kapurniotu, A.; Bernhagen, J. Macrophage migration inhibitory factor (MIF)-based therapeutic concepts in atherosclerosis and inflammation. Thromb. Haemost., 2019, 119(4), 553-566.
[http://dx.doi.org/10.1055/s-0039-1677803] [PMID: 30716779]
[23]
Bilsborrow, J.B.; Doherty, E.; Tilstam, P.V.; Bucala, R. Macrophage migration inhibitory factor (MIF) as a therapeutic target for rheumatoid arthritis and systemic lupus erythematosus. Expert Opin. Ther. Targets, 2019, 23(9), 733-744.
[http://dx.doi.org/10.1080/14728222.2019.1656718] [PMID: 31414920]
[24]
Mizue, Y.; Ghani, S.; Leng, L.; McDonald, C.; Kong, P.; Baugh, J.; Lane, S.J.; Craft, J.; Nishihira, J.; Donnelly, S.C.; Zhu, Z.; Bucala, R. Role for macrophage migration inhibitory factor in asthma. Proc. Natl. Acad. Sci. USA, 2005, 102(40), 14410-14415.
[http://dx.doi.org/10.1073/pnas.0507189102] [PMID: 16186482]
[25]
Bruchfeld, A.; Carrero, J.J.; Qureshi, A.R.; Lindholm, B.; Barany, P.; Heimburger, O.; Hu, M.; Lin, X.; Stenvinkel, P.; Miller, E.J. Elevated serum macrophage migration inhibitory factor (MIF) concentrations in chronic kidney disease (CKD) are associated with markers of oxidative stress and endothelial activation. Mol. Med., 2009, 15(3-4), 70-75.
[http://dx.doi.org/10.2119/molmed.2008.00109] [PMID: 19081768]
[26]
Kleemann, R.; Bucala, R. Macrophage migration inhibitory factor: critical role in obesity, insulin resistance, and associated comorbidities. Mediators Inflamm., 2010, 2010, 610479.
[http://dx.doi.org/10.1155/2010/610479] [PMID: 20169173]
[27]
Hoi, A.Y.; Iskander, M.N.; Morand, E.F. Macrophage migration inhibitory factor: a therapeutic target across inflammatory diseases. Inflamm. Allergy Drug Targets, 2007, 6(3), 183-190.
[http://dx.doi.org/10.2174/187152807781696455] [PMID: 17897055]
[28]
Liu, A.; Fang, H.; Dirsch, O.; Jin, H.; Dahmen, U. Early release of macrophage migration inhibitory factor after liver ischemia and reperfusion injury in rats. Cytokine, 2012, 57(1), 150-157.
[http://dx.doi.org/10.1016/j.cyto.2011.11.009] [PMID: 22136975]
[29]
Akbar, S.M.; Abe, M.; Murakami, H.; Tanimoto, K.; Kumagi, T.; Yamashita, Y.; Michitaka, K.; Horiike, N.; Onji, M. Macrophage migration inhibitory factor in hepatocellular carcinoma and liver cirrhosis; relevance to pathogenesis. Cancer Lett., 2001, 171(2), 125-132.
[http://dx.doi.org/10.1016/S0304-3835(01)00606-1] [PMID: 11520595]
[30]
Nanji, A.A.; Lau, G.K.; Tipoe, G.L.; Yuen, S.T.; Chen, Y.X.; Thomas, P.; Lan, H.Y. Macrophage migration inhibitory factor expression in male and female ethanol-fed rats. J. Interferon Cytokine Res., 2001, 21(12), 1055-1062.
[http://dx.doi.org/10.1089/107999001317205187] [PMID: 11798463]
[31]
Akyildiz, M.; Gunsar, F.; Nart, D.; Sahin, O.; Yilmaz, F.; Akay, S.; Ersoz, G.; Karasu, Z.; Ilter, T.; Batur, Y.; Berdeli, A.; Akarca, U. Macrophage migration inhibitory factor expression and MIF gene -173 G/C polymorphism in nonalcoholic fatty liver disease. Eur. J. Gastroenterol. Hepatol., 2010, 22(2), 192-198.
[http://dx.doi.org/10.1097/MEG.0b013e328331a596] [PMID: 19829123]
[32]
Craig, S.A.S. Betaine in human nutrition. Am. J. Clin. Nutr., 2004, 80(3), 539-549.
[http://dx.doi.org/10.1093/ajcn/80.3.539] [PMID: 15321791]
[33]
Tsai, M.-T.; Chen, C.-Y.; Pan, Y.-H.; Wang, S.-H.; Mersmann, H.J.; Ding, S.-T. Alleviation of carbon-tetrachloride-induced liver injury and fibrosis by betaine supplementation in chickens. Evid. Based Complement. Alternat. Med., 2015, 2015, 725379.
[http://dx.doi.org/10.1155/2015/725379] [PMID: 26491462]
[34]
Zeisel, S.H.; Mar, M.H.; Howe, J.C.; Holden, J.M. Concentrations of choline-containing compounds and betaine in common foods. J. Nutr., 2003, 133(5), 1302-1307.
[http://dx.doi.org/10.1093/jn/133.5.1302] [PMID: 12730414]
[35]
Lever, M.; Slow, S. The clinical significance of betaine, an osmolyte with a key role in methyl group metabolism. Clin. Biochem., 2010, 43(9), 732-744.
[http://dx.doi.org/10.1016/j.clinbiochem.2010.03.009] [PMID: 20346934]
[36]
Day, C.R.; Kempson, S.A. Betaine chemistry, roles, and potential use in liver disease. Biochim. Biophys. Acta, 2016, 1860(6), 1098-1106.
[http://dx.doi.org/10.1016/j.bbagen.2016.02.001] [PMID: 26850693]
[37]
Jung, Y.S.; Kim, S.J.; Kwon, D.Y.; Ahn, C.W.; Kim, Y.S.; Choi, D.W.; Kim, Y.C. Alleviation of alcoholic liver injury by betaine involves an enhancement of antioxidant defense via regulation of sulfur amino acid metabolism. Food Chem. Toxicol., 2013, 62, 292-298.
[http://dx.doi.org/10.1016/j.fct.2013.08.049] [PMID: 23994088]
[38]
Bingül, İ.; Başaran-Küçükgergin, C.; Aydın, A.F.; Çoban, J.; Doğan-Ekici, I.; Doğru-Abbasoğlu, S.; Uysal, M. Betaine treatment decreased oxidative stress, inflammation, and stellate cell activation in rats with alcoholic liver fibrosis. Environ. Toxicol. Pharmacol., 2016, 45, 170-178.
[http://dx.doi.org/10.1016/j.etap.2016.05.033] [PMID: 27314760]
[39]
Bingül, İ.; Aydın, A.F.; Başaran-Küçükgergin, C.; Doğan-Ekici, I.; Çoban, J.; Doğru-Abbasoğlu, S.; Uysal, M. High- fat diet plus carbon tetrachloride-induced liver fibrosis is alleviated by betaine treatment in rats. Int. Immunopharmacol., 2016, 39, 199-207.
[http://dx.doi.org/10.1016/j.intimp.2016.07.028] [PMID: 27494683]
[40]
Veskovic, M.; Mladenovic, D.; Milenkovic, M.; Tosic, J.; Borozan, S.; Gopcevic, K.; Labudovic-Borovic, M.; Dragutinovic, V.; Vucevic, D.; Jorgacevic, B.; Isakovic, A.; Trajkovic, V.; Radosavljevic, T. Betaine modulates oxidative stress, inflammation, apoptosis, autophagy, and Akt/mTOR signaling in methionine-choline deficiency-induced fatty liver disease. Eur. J. Pharmacol., 2019, 848, 39-48.
[http://dx.doi.org/10.1016/j.ejphar.2019.01.043] [PMID: 30689995]
[41]
Heinrichs, D.; Berres, M.-L.; Coeuru, M.; Knauel, M.; Nellen, A.; Fischer, P.; Philippeit, C.; Bucala, R.; Trautwein, C.; Wasmuth, H.E.; Bernhagen, J. Protective role of macrophage migration inhibitory factor in nonalcoholic steatohepatitis. FASEB J., 2014, 28(12), 5136-5147.
[http://dx.doi.org/10.1096/fj.14-256776] [PMID: 25122558]
[42]
Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 1951, 193(1), 265-275.
[http://dx.doi.org/10.1016/S0021-9258(19)52451-6] [PMID: 14907713]
[43]
Girotti, M.J.; Khan, N.; McLellan, B.A. Early measurement of systemic lipid peroxidation products in the plasma of major blunt trauma patients. J. Trauma, 1991, 31(1), 32-35.
[http://dx.doi.org/10.1097/00005373-199101000-00007] [PMID: 1846013]
[44]
Witko, V.; Nguyen, A.T.; Descamps-Latscha, B. Microtiter plate assay for phagocyte-derived taurine-chloramines. J. Clin. Lab. Anal., 1992, 6(1), 47-53.
[http://dx.doi.org/10.1002/jcla.1860060110] [PMID: 1542083]
[45]
Capeillère-Blandin, C.; Gausson, V.; Descamps-Latscha, B.; Witko-Sarsat, V. Biochemical and spectrophotometric significance of advanced oxidized protein products. Biochim. Biophys. Acta, 2004, 1689(2), 91-102.
[http://dx.doi.org/10.1016/j.bbadis.2004.02.008] [PMID: 15196590]
[46]
Sun, M.; Zigman, S. An improved spectrophotometric assay for superoxide dismutase based on epinephrine autoxidation. Anal. Biochem., 1978, 90(1), 81-89.
[http://dx.doi.org/10.1016/0003-2697(78)90010-6] [PMID: 727489]
[47]
Beers, R.F., Jr; Sizer, I.W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem., 1952, 195(1), 133-140.
[http://dx.doi.org/10.1016/S0021-9258(19)50881-X] [PMID: 14938361]
[48]
Hu, M.L.; Louie, S.; Cross, C.E.; Motchnik, P.; Halliwell, B. Antioxidant protection against hypochlorous acid in human plasma. J. Lab. Clin. Med., 1993, 121(2), 257-262.
[PMID: 8381845]
[49]
Erel, O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem., 2004, 37(4), 277-285.
[http://dx.doi.org/10.1016/j.clinbiochem.2003.11.015] [PMID: 15003729]
[50]
Erel, O. A new automated colorimetric method for measuring total oxidant status. Clin. Biochem., 2005, 38(12), 1103-1111.
[http://dx.doi.org/10.1016/j.clinbiochem.2005.08.008] [PMID: 16214125]
[51]
Singh, R.; Kumar, S.; Rana, A.C.; Sharma, N. Different models of hepatotoxicity and related liver diseases: a review. Int. Res. J Pharm., 2012, 3(7), 86-95.
[52]
Singh, A.; Bhat, T.K.; Sharma, O.P. Clinical biochemistry of hepatotoxicity. J. Clin. Toxicol., 2011, 4(1), 1-9.
[http://dx.doi.org/10.4172/2161-0495.S4-001]
[53]
Shin, R-H.; Ri, H-C.; Ri, J-H.; Ri, H-C.; Ri, A-J. Effect of lesimarin against thioacetamide-induced liver cirrhosis in rat. Braz. J. Pharm. Sci., 2019, 55, e17821.
[http://dx.doi.org/10.1590/s2175-97902019000217821]
[54]
Chen, I.S.; Chen, Y.C.; Chou, C.H.; Chuang, R.F.; Sheen, L.Y.; Chiu, C.H. Hepatoprotection of silymarin against thioacetamide-induced chronic liver fibrosis. J. Sci. Food Agric., 2012, 92(7), 1441-1447.
[http://dx.doi.org/10.1002/jsfa.4723] [PMID: 22102319]
[55]
Sukalingam, K.; Ganesan, K.; Xu, B. Protective effect of aqueous extract from the leaves of justicia tranquebariesis against thioacetamide-induced oxidative stress and hepatic fibrosis in rats. Antioxidants, 2018, 7(7), 78.
[http://dx.doi.org/10.3390/antiox7070078] [PMID: 29932107]
[56]
Reuben, A. Hy’s law. Hepatology, 2004, 39(2), 574-578.
[http://dx.doi.org/10.1002/hep.20081] [PMID: 14768020]
[57]
Wang, Z.; Yao, T.; Pini, M.; Zhou, Z.; Fantuzzi, G.; Song, Z. Betaine improved adipose tissue function in mice fed a high-fat diet: a mechanism for hepatoprotective effect of betaine in nonalcoholic fatty liver disease. Am. J. Physiol. Gastrointest. Liver Physiol., 2010, 298(5), G634-G642.
[http://dx.doi.org/10.1152/ajpgi.00249.2009] [PMID: 20203061]
[58]
Khodayar, M.J.; Kalantari, H.; Khorsandi, L.; Rashno, M.; Zeidooni, L. Upregulation of Nrf2-related cytoprotective genes expression by acetaminophen-induced acute hepatotoxicity in mice and the protective role of betaine. Hum. Exp. Toxicol., 2020, 39(7), 948-959.
[http://dx.doi.org/10.1177/0960327120905962] [PMID: 32081044]
[59]
Xie, J.; Yang, L.; Tian, L.; Li, W.; Yang, L.; Li, L. Macrophage migration inhibitor factor upregulates MCP-1 expression in an autocrine manner in hepatocytes during acute mouse liver injury. Sci. Rep., 2016, 6, 27665.
[http://dx.doi.org/10.1038/srep27665] [PMID: 27273604]
[60]
Abdel-Daim, M.M.; Abdellatief, S.A.; Abdellatief, S.A. Attenuating effects of caffeic acid phenethyl ester and betaine on abamectin-induced hepatotoxicity and nephrotoxicity. Environ. Sci. Pollut. Res. Int., 2018, 25(16), 15909-15917.
[http://dx.doi.org/10.1007/s11356-018-1786-8] [PMID: 29589235]
[61]
Radosavljevic, T.S.; Mladenovic, D.R.; Ninkovic, M.B.; Vucevic, D.B.; Boricic, I.V.; Jesic-Vukicevic, R.S.; Sljivancanin, T.; Lopicic, S.N.; Todorovic, V.N. Oxidative stress in rat liver during acute cadmium and ethanol intoxication. J. Serb. Chem. Soc., 2012, 77(2), 159-176.
[http://dx.doi.org/10.2298/JSC110330174R]
[62]
Ahn, M.; Park, J.S.; Chae, S.; Kim, S.; Moon, C.; Hyun, J.W.; Shin, T. Hepatoprotective effects of Lycium chinense Miller fruit and its constituent betaine in CCl4-induced hepatic damage in rats. Acta Histochem., 2014, 116(6), 1104-1112.
[http://dx.doi.org/10.1016/j.acthis.2014.05.004] [PMID: 24998029]
[63]
Zhang, M.; Zhang, H.; Li, H.; Lai, F.; Li, X.; Tang, Y.; Min, T.; Wu, H. Antioxidant mechanism of betaine without free radical scavenging ability. J. Agric. Food Chem., 2016, 64(42), 7921-7930.
[http://dx.doi.org/10.1021/acs.jafc.6b03592] [PMID: 27677203]
[64]
Zhao, G.; He, F.; Wu, C.; Li, P.; Li, N.; Deng, J.; Zhu, G.; Ren, W.; Peng, Y. Betaine in inflammation: mechanistic aspects and applications. Front. Immunol., 2018, 24(9), 1070.
[http://dx.doi.org/10.3389/fimmu.2018.01070] [PMID: 29881379 ]
[65]
Nguyen, M.T.; Lue, H.; Kleemann, R.; Thiele, M.; Tolle, G.; Finkelmeier, D.; Wagner, E.; Braun, A.; Bernhagen, J. The cytokine macrophage migration inhibitory factor reduces pro-oxidative stress-induced apoptosis. J. Immunol., 2003, 170(6), 3337-3347.
[http://dx.doi.org/10.4049/jimmunol.170.6.3337] [PMID: 12626594]
[66]
Israelson, A.; Ditsworth, D.; Sun, S.; Song, S.; Liang, J.; Hruska-Plochan, M.; McAlonis-Downes, M.; Abu-Hamad, S.; Zoltsman, G.; Shani, T.; Maldonado, M.; Bui, A.; Navarro, M.; Zhou, H.; Marsala, M.; Kaspar, B.K.; Da Cruz, S.; Cleveland, D.W. Macrophage migration inhibitory factor as a chaperone inhibiting accumulation of misfolded SOD1. Neuron, 2015, 86(1), 218-232.
[http://dx.doi.org/10.1016/j.neuron.2015.02.034] [PMID: 25801706]
[67]
Ko, J.A.; Sotani, Y.; Ibrahim, D.G.; Kiuchi, Y. Role of macrophage migration inhibitory factor (MIF) in the effects of oxidative stress on human retinal pigment epithelial cells. Cell Biochem. Funct., 2017, 35(7), 426-432.
[http://dx.doi.org/10.1002/cbf.3292] [PMID: 28906008]
[68]
Hu, Y.; Xia, W.; Hou, M. Macrophage migration inhibitory factor serves a pivotal role in the regulation of radiation-induced cardiac senescencethrough rebalancing the microRNA-34a/sirtuin 1 signaling pathway. Int. J. Mol. Med., 2018, 42(5), 2849-2858.
[http://dx.doi.org/10.3892/ijmm.2018.3838] [PMID: 30226567]
[69]
Ruze, A.; Chen, B.D.; Liu, F.; Chen, X.C.; Gai, M.T.; Li, X.M.; Ma, Y.T.; Du, X.J.; Yang, Y.N.; Gao, X.M. Macrophage migration inhibitory factor plays an essential role in ischemic preconditioning-mediated cardioprotection. Clin. Sci. (Lond.), 2019, 133(5), 665-680.
[http://dx.doi.org/10.1042/CS20181013] [PMID: 30804219]
[70]
Li, J.H.; Tang, Y.; Lv, J.; Wang, X.H.; Yang, H.; Tang, P.M.K.; Huang, X.R.; He, Z.J.; Zhou, Z.J.; Huang, Q.Y.; Klug, J.; Meinhardt, A.; Fingerle-Rowson, G.; Xu, A.P.; Zheng, Z.H.; Lan, H.Y. Macrophage migration inhibitory factor promotes renal injury induced by ischemic reperfusion. J. Cell. Mol. Med., 2019, 23(6), 3867-3877.
[http://dx.doi.org/10.1111/jcmm.14234] [PMID: 30968541]
[71]
Merk, M.; Mitchell, R.A.; Endres, S.; Bucala, R. D-dopachrome tautomerase (D-DT or MIF-2): doubling the MIF cytokine family. Cytokine, 2012, 59(1), 10-17.
[http://dx.doi.org/10.1016/j.cyto.2012.03.014] [PMID: 22507380]
[72]
Kleemann, R.; Kapurniotu, A.; Frank, R.W.; Gessner, A.; Mischke, R.; Flieger, O.; Jüttner, S.; Brunner, H.; Bernhagen, J. Disulfide analysis reveals a role for macrophage migration inhibitory factor (MIF) as thiol-protein oxidoreductase. J. Mol. Biol., 1998, 280(1), 85-102.
[http://dx.doi.org/10.1006/jmbi.1998.1864] [PMID: 9653033]
[73]
Schinagl, A.; Kerschbaumer, R.J.; Sabarth, N.; Douillard, P.; Scholz, P.; Voelkel, D.; Hollerweger, J.C.; Goettig, P.; Brandstetter, H.; Scheiflinger, F.; Thiele, M. Role of the cysteine 81 residue of macrophage migration inhibitory factor as a molecular redox switch. Biochemistry, 2018, 57(9), 1523-1532.
[http://dx.doi.org/10.1021/acs.biochem.7b01156] [PMID: 29412660]
[74]
Yukitake, H.; Takizawa, M.; Kimura, H. Macrophage migration inhibitory factor as an emerging drug target to regulate antioxidant response element system. Oxid. Med. Cell. Longev., 2017, 2017, 8584930.
[http://dx.doi.org/10.1155/2017/8584930] [PMID: 28191280]
[75]
Riad, A.; Jäger, S.; Sobirey, M.; Escher, F.; Yaulema-Riss, A.; Westermann, D.; Karatas, A.; Heimesaat, M.M.; Bereswill, S.; Dragun, D.; Pauschinger, M.; Schultheiss, H.P.; Tschöpe, C. Toll-like receptor-4 modulates survival by induction of left ventricular remodeling after myocardial infarction in mice. J. Immunol., 2008, 180(10), 6954-6961.
[http://dx.doi.org/10.4049/jimmunol.180.10.6954] [PMID: 18453617]
[76]
Kharbanda, K.K.; Mailliard, M.E.; Baldwin, C.R.; Beckenhauer, H.C.; Sorrell, M.F.; Tuma, D.J. Betaine attenuates alcoholic steatosis by restoring phosphatidylcholine generation via the phosphatidylethanolamine methyltransferase pathway. J. Hepatol., 2007, 46(2), 314-321.
[http://dx.doi.org/10.1016/j.jhep.2006.08.024] [PMID: 17156888]
[77]
Yi, E-Y.; Kim, Y-J. Betaine inhibits in vitro and in vivo angiogenesis through suppression of the NF-κB and Akt signaling pathways. Int. J. Oncol., 2012, 41(5), 1879-1885.
[http://dx.doi.org/10.3892/ijo.2012.1616] [PMID: 22940742]
[78]
Jacobs, R.L.; van der Veen, J.N.; Vance, D.E. Finding the balance: the role of S-adenosylmethionine and phosphatidylcholine metabolism in development of nonalcoholic fatty liver disease. Hepatology, 2013, 58(4), 1207-1209.
[http://dx.doi.org/10.1002/hep.26499] [PMID: 23703836]
[79]
Kim, S.K.; Kim, Y.C. Effects of betaine supplementation on hepatic metabolism of sulfur-containing amino acids in mice. J. Hepatol., 2005, 42(6), 907-913.
[http://dx.doi.org/10.1016/j.jhep.2005.01.017] [PMID: 15885362]
[80]
Jacobs, R.L.; van der Veen, J.N.; Vance, D.E. Finding the balance: the role of S-adenosylmethionine and phosphatidylcholine metabolism in development of nonalcoholic fatty liver disease. Hepatology, 2013, 58(4), 1207-1209.
[http://dx.doi.org/10.1002/hep.26499] [PMID: 23703836]
[81]
Okada, T.; Kawakami, S.; Nakamura, Y.; Han, K-H.; Ohba, K.; Aritsuka, T.; Uchino, H.; Shimada, K.; Sekikawa, M.; Ishii, H.; Fukushima, M. Amelioration of D-galactosamine-induced acute liver injury in rats by dietary supplementation with betaine derived from sugar beet molasses. Biosci. Biotechnol. Biochem., 2011, 75(7), 1335-1341.
[http://dx.doi.org/10.1271/bbb.110105] [PMID: 21737928]
[82]
Yeung, J.H.K.; Or, P.M. Effects of polysaccharide peptides from COV-1 strain of Coriolus versicolor on glutathione and glutathione-related enzymes in the mouse. Food Chem. Toxicol., 2007, 45(6), 953-961.
[http://dx.doi.org/10.1016/j.fct.2006.12.005] [PMID: 17240508]
[83]
Go, E.K.; Jung, K.J.; Kim, J.M.; Lim, H.; Lim, H.K.; Yu, B.P.; Chung, H.Y. Betaine modulates age-related NF-kappaB by thiol-enhancing action. Biol. Pharm. Bull., 2007, 30(12), 2244-2249.
[http://dx.doi.org/10.1248/bpb.30.2244] [PMID: 18057706]
[84]
Kanbak, G.; Akyüz, F.; Inal, M. Preventive effect of betaine on ethanol-induced membrane lipid composition and membrane ATPases. Arch. Toxicol., 2001, 75(1), 59-61.
[http://dx.doi.org/10.1007/s002040000179] [PMID: 11357522]
[85]
Alirezaei, M.; Khoshdel, Z.; Dezfoulian, O.; Rashidipour, M.; Taghadosi, V. Beneficial antioxidant properties of betaine against oxidative stress mediated by levodopa/benserazide in the brain of rats. J. Physiol. Sci., 2015, 65(3), 243-252.
[http://dx.doi.org/10.1007/s12576-015-0360-0] [PMID: 25665954]
[86]
Merk, M.; Baugh, J.; Zierow, S.; Leng, L.; Pal, U.; Lee, S.J.; Ebert, A.D.; Mizue, Y.; Trent, J.O.; Mitchell, R.; Nickel, W.; Kavathas, P.B.; Bernhagen, J.; Bucala, R. The Golgi-associated protein p115 mediates the secretion of macrophage migration inhibitory factor. J. Immunol., 2009, 182(11), 6896-6906.
[http://dx.doi.org/10.4049/jimmunol.0803710] [PMID: 19454686]
[87]
Ping, Z.; Peng, Y.; Lang, H.; Xinyong, C.; Zhiyi, Z.; Xiaocheng, W.; Hong, Z.; Liang, S. Oxidative stress in radiation-induced cardiotoxicity. Oxid. Med. Cell. Longev., 2020, 2020, 3579143.
[http://dx.doi.org/10.1155/2020/3579143] [PMID: 32190171]
[88]
Wheelhouse, N.M.; Dowidar, N.; Dejong, C.H.; Garden, O.J.; Powell, J.J.; Barber, M.D.; Sangster, K.; Maingay, J.P.; Ross, J.A. The effects of macrophage migratory inhibitory factor on acute-phase protein production in primary human hepatocytes. Int. J. Mol. Med., 2006, 18(5), 957-961.
[http://dx.doi.org/10.3892/ijmm.18.5.957] [PMID: 17016627]
[89]
Kozaci, L.D.; Sari, I.; Alacacioglu, A.; Akar, S.; Akkoc, N. Evaluation of inflammation and oxidative stress in ankylosing spondylitis: a role for macrophage migration inhibitory factor. Mod. Rheumatol., 2010, 20(1), 34-39.
[http://dx.doi.org/10.3109/s10165-009-0230-9] [PMID: 19787418]
[90]
Park, M.C.; Kwon, O.C.; Lee, S.W.; Song, J.J.; Park, Y.B. MiR-451 suppresses inflammatory responses in ankylosing spondylitis by targeting macrophage migration inhibitory factor. Clin. Exp. Rheumatol., 2020, 38(2), 275-281.
[PMID: 31287414]
[91]
Eissa, L.A.; Kenawy, H.I.; El-Karef, A.; Elsherbiny, N.M.; El-Mihi, K.A. Antioxidant and anti-inflammatory activities of berberine attenuate hepatic fibrosis induced by thioacetamide injection in rats. Chem. Biol. Interact., 2018, 294, 91-100.
[http://dx.doi.org/10.1016/j.cbi.2018.08.016] [PMID: 30138605]
[92]
Wang, J.; Gujar, S.A.; Cova, L.; Michalak, T.I. Bicistronic woodchuck hepatitis virus core and gamma interferon DNA vaccine can protect from hepatitis but does not elicit sterilizing antiviral immunity. J. Virol., 2007, 81(2), 903-916.
[http://dx.doi.org/10.1128/JVI.01537-06] [PMID: 17079319]
[93]
Tan, G.; Song, H.; Xu, F.; Cheng, G. When hepatitis B virus meets interferons. Front. Microbiol., 2018, 9, 1611.
[http://dx.doi.org/10.3389/fmicb.2018.01611] [PMID: 30072974]
[94]
Calandra, T.; Bucala, R. Macrophage migration inhibitory factor (MIF): a glucocorticoid counter-regulator within the immune system. Crit. Rev. Immunol., 2017, 37(2-6), 359-370.
[http://dx.doi.org/10.1615/CritRevImmunol.v37.i2-6.90] [PMID: 29773026]
[95]
Ruiz-Rosado, J.D.; Olguín, J.E.; Juárez-Avelar, I.; Saavedra, R.; Terrazas, L.I. Partida-Sánchez, Robledo-Avila, F.H.; Vazquez-Mendoza, A.; Fernández, J.; Satoskar, A.R.; Rodriguez-Sosa, M. MIF promotes classical activation and conversion of inflammatory Ly6c(high) monocytes into TipDCs during murine toxoplasmosis. Mediators Inflamm., 2016, 2016, 9101762.
[http://dx.doi.org/10.1155/2016/9101762] [PMID: 27057101]
[96]
Wang, Y.; Yu, W.; Shen, C.; Wang, W.; Zhang, L.; Liu, F.; Sun, H.; Zhao, Y.; Che, H.; Zhao, C. Predictive value of serum IFN-γ inducible protein-10 and IFN-γ/IL-4 ratio for liver fibrosis progression in CHB patients. Sci. Rep., 2017, 7, 40404.
[http://dx.doi.org/10.1038/srep40404] [PMID: 28067328]
[97]
Leng, L.; Metz, C.N.; Fang, Y.; Xu, J.; Donnelly, S.; Baugh, J.; Delohery, T.; Chen, Y.; Mitchell, R.A.; Bucala, R. MIF signal transduction initiated by binding to CD74. J. Exp. Med., 2003, 197(11), 1467-1476.
[http://dx.doi.org/10.1084/jem.20030286] [PMID: 12782713]
[98]
van der Vorst, E.P.C.; Döring, Y.; Weber, C. Chemokines and their receptors in Atherosclerosis. J. Mol. Med. (Berl.), 2015, 93(9), 963-971.
[http://dx.doi.org/10.1007/s00109-015-1317-8] [PMID: 26175090]
[99]
Barnes, M.A.; McMullen, M.R.; Roychowdhury, S.; Pisano, S.G.; Liu, X.; Stavitsky, A.B.; Bucala, R.; Nagy, L.E. Macrophage migration inhibitory factor contributes to ethanol-induced liver injury by mediating cell injury, steatohepatitis, and steatosis. Hepatology, 2013, 57(5), 1980-1991.
[http://dx.doi.org/10.1002/hep.26169] [PMID: 23174952]
[100]
Qin, D.; Jiang, Y.; Jin, X. Effect of macrophage migration inhibitory factor on inflammatory cytokines and fibrogenic gene expression in human RPE cells. Mol. Med. Rep., 2019, 20(1), 830-836.
[http://dx.doi.org/10.3892/mmr.2019.10277] [PMID: 31180524]
[101]
Poulsen, K.L.; McMullen, M.R.; Huang, E.; Kibler, C.D.; Sheehan, M.M.; Leng, L.; Bucala, R.; Nagy, L.E. Novel role of macrophage migration inhibitory factor in upstream control of the unfolded protein response after ethanol feeding in mice. Alcohol. Clin. Exp. Res., 2019, 43(7), 1439-1451.
[http://dx.doi.org/10.1111/acer.14065] [PMID: 31009094]
[102]
Poulsen, K.; Mcmullen, M.; Sheehan, M.; Leng, L.; Bucala, R.; Nagy, L. Protection from Gao-Binge induced liver injury in Mif-/- Mice is associated with decreased ER stress. J. Hepatol., 2018, 68, S47-S48.
[http://dx.doi.org/10.1016/S0168-8278(18)30313-1]
[103]
Lang, T.; Lee, J.P.W.; Elgass, K.; Pinar, A.A.; Tate, M.D.; Aitken, E.H.; Fan, H.; Creed, S.J.; Deen, N.S.; Traore, D.A.K.; Mueller, I.; Stanisic, D.; Baiwog, F.S.; Skene, C.; Wilce, M.C.J.; Mansell, A.; Morand, E.F.; Harris, J. Macrophage migration inhibitory factor is required for NLRP3 inflammasome activation. Nat. Commun., 2018, 9(1), 2223.
[http://dx.doi.org/10.1038/s41467-018-04581-2] [PMID: 29884801]
[104]
Tsiomita, S.; Georgopoulou, U.; Doumba, P.P.; Koskinas, J.; Adamidis, K.; Papaloukas, C.; Thyphronitis, G. Evaluation of alternative serum biomarkers to monitor the progression of chronic HBV and HCV infection. Infect. Genet. Evol., 2018, 58, 17-22.
[http://dx.doi.org/10.1016/j.meegid.2017.12.002] [PMID: 29221787]
[105]
Rodriguez-Sosa, M.; Cabellos-Avelar, T.; Sanchez-Zamora, Y.; Juárez-Avelar, I.; García-Reyes, E.; Lira-León, A.; Benítez-Flores, J.D.C.; Pacheco-Fernández, T.; Hiriart, M.; Gutiérrez-Cirlos, E.B. Proinflammatory cytokine MIF plays a role in the pathogenesis of type-2 diabetes mellitus, but does not affect hepatic mitochondrial function. Cytokine, 2017, 99, 214-224.
[http://dx.doi.org/10.1016/j.cyto.2017.07.012] [PMID: 28780379]
[106]
Sanchez-Zamora, Y.; Terrazas, L.I.; Vilches-Flores, A.; Leal, E.; Juárez, I.; Whitacre, C.; Kithcart, A.; Pruitt, J.; Sielecki, T.; Satoskar, A.R.; Rodriguez-Sosa, M. Macrophage migration inhibitory factor is a therapeutic target in treatment of non-insulin-dependent diabetes mellitus. FASEB J., 2010, 24(7), 2583-2590.
[http://dx.doi.org/10.1096/fj.09-147066] [PMID: 20203087]
[107]
Li, Y.-H.; Wen, K.; Zhu, L.-L.; Lv, S.-K.; Cao, Q.; Li, Q.; Deng, L.; Chen, T.; Wang, X.; Deng, K.-Y.; Wang, L.-F.; Xin, H.-B. Tautomerase activity-lacking of the macrophage migration inhibitory factor alleviates the inflammation and insulin tolerance in high fat diet-induced obese mice. Front. Endocrinol. (Lausanne), 2020, 11, 134.
[http://dx.doi.org/10.3389/fendo.2020.00134] [PMID: 32265835]
[108]
Gligorovska, L.; Bursać, B.; Kovačević, S.; Veličković, N.; Matić, G.; Djordjevic, A. Mif deficiency promotes adiposity in fructose-fed mice. J. Endocrinol., 2019, 240(2), 133-145.
[http://dx.doi.org/10.1530/JOE-18-0333] [PMID: 30400058]
[109]
Ju, C.; Mandrekar, P. Macrophages and alcohol-related liver inflammation. Alcohol Res., 2015, 37(2), 251-262.
[PMID: 26717583]
[110]
Jankauskas, S.S.; Wong, D.W.L.; Bucala, R.; Djudjaj, S.; Boor, P. Evolving complexity of MIF signaling. Cell. Signal., 2019, 57, 76-88.
[http://dx.doi.org/10.1016/j.cellsig.2019.01.006] [PMID: 30682543]
[111]
Barnes, M.A.; McMullen, M.R.; Roychowdhury, S.; Madhun, N.Z.; Niese, K.; Olman, M.A.; Stavitsky, A.B.; Bucala, R.; Nagy, L.E. Macrophage migration inhibitory factor is required for recruitment of scar-associated macrophages during liver fibrosis. J. Leukoc. Biol., 2015, 97(1), 161-169.
[http://dx.doi.org/10.1189/jlb.3A0614-280R] [PMID: 25398607]
[112]
Heinrichs, D.; Knauel, M.; Offermanns, C.; Berres, M.-L.; Nellen, A.; Leng, L.; Schmitz, P.; Bucala, R.; Trautwein, C.; Weber, C.; Bernhagen, J.; Wasmuth, H.E. Macrophage migration inhibitory factor (MIF) exerts antifibrotic effects in experimental liver fibrosis via CD74. Proc. Natl. Acad. Sci. USA, 2011, 108(42), 17444-17449.
[http://dx.doi.org/10.1073/pnas.1107023108] [PMID: 21969590]
[113]
Thuy, T.T.; Kawada, N.; Kawada, N. Antifibrotic role of macrophage migration inhibitory factor: discovery of an unexpected function. Hepatology, 2012, 55(4), 1295-1297.
[http://dx.doi.org/10.1002/hep.25605] [PMID: 22461077]
[114]
Kim, M.J.; Kim, W.S.; Kim, D.O.; Byun, J.E.; Huy, H.; Lee, S.Y.; Song, H.Y.; Park, Y.J.; Kim, T.D.; Yoon, S.R.; Choi, E.J.; Ha, H.; Jung, H.; Choi, I. Macrophage migration inhibitory factor interacts with thioredoxin-interacting protein and induces NF-κB activity. Cell. Signal., 2017, 34, 110-120.
[http://dx.doi.org/10.1016/j.cellsig.2017.03.007] [PMID: 28323005]
[115]
Shin, M.S.; Kang, Y.; Wahl, E.R.; Park, H.J.; Lazova, R.; Leng, L.; Mamula, M.; Krishnaswamy, S.; Bucala, R.; Kang, I. Macrophage migration inhibitory factor regulates u1 small nuclear RNP immune complex-mediated activation of the NLRP3 inflammasome. Arthritis Rheumatol., 2019, 71(1), 109-120.
[http://dx.doi.org/10.1002/art.40672] [PMID: 30009530]
[116]
Miller, E.J.; Li, J.; Leng, L.; McDonald, C.; Atsumi, T.; Bucala, R.; Young, L.H. Macrophage migration inhibitory factor stimulates AMP-activated protein kinase in the ischaemic heart. Nature, 2008, 451(7178), 578-582.
[http://dx.doi.org/10.1038/nature06504] [PMID: 18235500]
[117]
Zhang, L.; Qi, Y.; ALuo, Z.; Liu, S.; Zhang, Z.; Zhou, L. Betaine increases mitochondrial content and improves hepatic lipid metabolism. Food Funct., 2019, 10(1), 216-223.
[http://dx.doi.org/10.1039/C8FO02004C] [PMID: 30534761]
[118]
Jung Kim, M. Betaine enhances the cellular survival via mitochondrial fusion and fission factors, MFN2 and DRP1. Anim Cells Syst (Seoul), 2018, 22(5), 289-298.
[http://dx.doi.org/10.1080/19768354.2018.1512523] [PMID: 30460110]
[119]
Sivanesan, S.; Taylor, A.; Zhang, J.; Bakovic, M. Betaine and choline improve lipid homeostasis in obesity by participation in mitochondrial oxidative demethylation. Front. Nutr., 2018, 5, 61.
[http://dx.doi.org/10.3389/fnut.2018.00061] [PMID: 30042948]
[120]
Meng, X.; Li, Y.; Li, S.; Gan, R-Y.; Li, H-B. Natural products for prevention and treatment of chemical-induced liver injuries. Compr. Rev. Food Sci. Food Saf., 2018, 17(2), 472-495.
[http://dx.doi.org/10.1111/1541-4337.12335] [PMID: 33350084]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy