Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Properties and Recent Advantages of N,N’-dialkylimidazolium-ion Liquids Application in Electrochemistry

Author(s): Marzieh Alizadeh*, Marzieh Nodehi*, Sadegh Salmanpour*, Fatemeh Karimi*, Afsaneh L. Sanati, Samira Malekmohammadi*, Nilofar Zakariae, Roghayeh Esmaeili and Hedayat Jafari

Volume 18, Issue 1, 2022

Published on: 22 October, 2020

Page: [31 - 52] Pages: 22

DOI: 10.2174/1573411016999201022141930

Price: $65

Abstract

N,N’-dialkylimidazolium-ion liquids are one of the important ionic liquids with a wide range of applications as a conductive electrolyte and in electrochemistry. The modified electrodes create a new view for the fabrication of electroanalytical sensors. Many modifiers have been suggested for modification of electroanalytical sensors since many years ago. Over these years, ionic liquids and especially room temperature ionic liquids have attracted more attention due to their wide range of electrochemical windows and high electrical conductivity. N,N’-dialkylimidazoliumion liquids are the main ionic liquids that have been suggested to modify bare electrodes and especially carbon paste electrodes. Although many review articles have reported on the use of ionic liquids in electrochemical sensors, no review article has specifically introduced so far the advantages of N,N’-dialkylimidazolium ionic liquids. Therefore, in this review paper, we focused on the introduction of recent advantages of N,N’-dialkyl imidazolium ionic liquids in electrochemistry

Keywords: Ionic liquids, N, N’-dialkylimidazolium, Electrochemical application, Contaminants detection.

Graphical Abstract

[1]
Bukkitgar, S.D.; Shetti, N.P. Fabrication of a TiO2 and clay nanoparticle composite electrode as a sensor. Anal. Methods, 2017, 9(30), 4387-4393.
[http://dx.doi.org/10.1039/C7AY01068K]
[2]
Bukkitgar, S.D.; Shetti, N.P.; Kulkarni, R.M.; Nandibewoor, S.T. Electro-sensing base for mefenamic acid on a 5% barium-doped zinc oxide nanoparticle modified electrode and its analytical application. RSC Adv, 2015, 5(127), 104891-104899.
[http://dx.doi.org/10.1039/C5RA22581G]
[3]
Bukkitgar, S.D.; Shetti, N.P.; Kulkarni, R.M. Construction of nanoparticles composite sensor for atorvastatin and its determination in pharmaceutical and urine samples. Sens. Actuators B Chem., 2018, 255, 1462-1470.
[http://dx.doi.org/10.1016/j.snb.2017.08.150]
[4]
Bukkitgar, S.D.; Shetti, N.P. Electrochemical sensor for the determination of anticancer drug 5- fluorouracil at glucose modified electrode. Chem. Select, 2016, 1(4), 771-777.
[http://dx.doi.org/10.1002/slct.201600197]
[5]
Bukkitgar, Shikandar D. Surf. Interfaces, 2017, 6, 127-133.
[http://dx.doi.org/10.1016/j.surfin.2017.01.003]
[6]
Bukkitgar, S.D.; Shetti, N.P.; Kulkarni, R.M. Construction of nanoparticles composite sensor for atorvastatin and its determination in pharmaceutical and urine samples. Sens. Actuators B Chem., 2018, 255, 1462-1470.
[http://dx.doi.org/10.1016/j.snb.2017.08.150]
[7]
Bukkitgar, S.D.; Shetti, N.P.; Kulkarni, R.M.; Halbhavi, S.B.; Wasim, M.; Mylar, M.; Durgi, P.S.; Chirmure, S.S. Electrochemical oxidation of nimesulide in aqueous acid solutions based on TiO2 nanostructure modified electrode as a sensor. J. Electroanal. Chem. (Lausanne Switz.), 2016, 778, 103-109.
[http://dx.doi.org/10.1016/j.jelechem.2016.08.024]
[8]
Dakshayini, B.S.; Reddy, K.R.; Mishra, A.; Shetti, N.P.; Malode, S.J.; Basu, S.; Naveen, S.; Raghu, A.V. Role of conducting polymer and metal oxide-based hybrids for applications in ampereometric sensors and biosensors. Microchem. J., 2019, 147, 7-24.
[http://dx.doi.org/10.1016/j.microc.2019.02.061]
[9]
Kulkarni, D.R.; Malode, S.J.; Keerthi Prabhu, K.; Ayachit, N.H.; Kulkarni, R.M.; Shetti, N.P. Development of a novel nanosensor using Ca-doped ZnO for antihistamine drug. Mater. Chem. Phys., 2020, 246122791
[http://dx.doi.org/10.1016/j.matchemphys.2020.122791]
[10]
Kumar, S.; Bukkitgar, S.D.; Singh, S.; Pratibha, S.V.; Reddy, K.R.; Shetti, N.P.; Venkata, R.C.; Sadhu, V.; Naveen, S. Electrochemical sensors and biosensors based on graphene functionalized with metal oxide nanostructures for healthcare applications. ChemistrySelect, 2019, 4, 5322-5337.
[http://dx.doi.org/10.1002/slct.201803871]
[11]
Shetti, N.P.; Bukkitgar, S.D.; Reddy, K.R.; Reddy, C.V.; Aminabhavi, T.M. Nanostructured titanium oxide hybrids-based electrochemical biosensors for healthcare applications. Colloids Surf. B Biointerfaces, 2019, 178, 385-394.
[http://dx.doi.org/10.1016/j.colsurfb.2019.03.013] [PMID: 30903977]
[12]
Shetti, N.P.; Bukkitgar, S.D.; Reddy, K.R.; Reddy, C.V.; Aminabhavi, T.M. ZnO-based nanostructured electrodes for electrochemical sensors and biosensors in biomedical applications. Biosens. Bioelectron., 2019, 141111417
[http://dx.doi.org/10.1016/j.bios.2019.111417] [PMID: 31202187]
[13]
Shetti, N.P.; Malode, S.J.; Ilager, D.; Raghava Reddy, K.; Shukla, S.S.; Aminabhavi, T.M. A novel electrochemical sensor for detection of molinate using ZnO nanoparticles loaded carbon electrode. Electroanalysis, 2019, 31(6), 1040-1049.
[http://dx.doi.org/10.1002/elan.201800775]
[14]
Shetti, N.P.; Malode, S.J.; Nandibewoor, S.T. Electro-oxidation of captopril at a gold electrode and its determination in pharmaceuticals and human fluids. Anal. Methods, 2015, 7(20), 8673-8682.
[http://dx.doi.org/10.1039/C5AY01619C]
[15]
Shetti, N.P.; Malode, S.J.; Nayak, D.S.; Venkata, R.C.; Raghava, R.K. Novel biosensor for efficient electrochemical detection of methdilazine using carbon nanotubes-modified electrodes. Mater. Res. Express, 2019, 6(11)116308
[http://dx.doi.org/10.1088/2053-1591/ab4471]
[16]
Shetti, N.P.; Malode, S.J.; Vernekarg, P.R.; Nayak, D.S.; Shetty, N.S.; Reddy, K.R.; Shukla, S.S.; Aminabhavi, T.M. Electro-sensing base for herbicide aclonifen at graphitic carbon nitride modified carbon electrode - Water and soil sample analysis. Microchem. J., 2019, 149103976
[http://dx.doi.org/10.1016/j.microc.2019.103976]
[17]
Shetti, N.P.; Nayak, D.S.; Kuchinad, G.T. Electrochemical oxidation of erythrosine at TiO2 nanoparticles modified gold electrode - An environmental application. J. Environ. Chem. Eng., 2017, 5(3), 2083-2089.
[http://dx.doi.org/10.1016/j.jece.2017.03.040]
[18]
Shetti, N.P.; Nayak, D.S.; Malode, S.J.; Kakarla, R.R.; Shukla, S.S.; Aminabhavi, T.M. Sensors based on ruthenium-doped TiO2 nanoparticles loaded into multi-walled carbon nanotubes for the detection of flufenamic acid and mefenamic acid. Anal. Chim. Acta, 2019, 1051, 58-72.
[http://dx.doi.org/10.1016/j.aca.2018.11.041] [PMID: 30661620]
[19]
Shetti, N.P.; Nayak, D.S.; Malode, S.J.; Kulkarni, R.M. Nano molar detection of acyclovir, an antiviral drug at nanoclay modified carbon paste electrode. Sens. Biosensing Res., 2017, 14, 39-46.
[http://dx.doi.org/10.1016/j.sbsr.2017.04.004]
[20]
Shetti, N.P.; Nayak, D.S.; Malode, S.J.; Kulkarni, R.M.; Kulkarni, D.B.; Teggi, R.A.; Joshi, V.V. Electrooxidation and determination of flufenamic acid at graphene oxide modified carbon electrode. Surf. Interfaces, 2017, 9, 107-113.
[http://dx.doi.org/10.1016/j.surfin.2017.08.008]
[21]
Shikandar, D.B.; Shetti, N.P.; Kulkarni, R.M.; Kulkarni, S.D. Silver-doped titania modified carbon electrode for electrochemical studies of furantril. ECS J. Solid State Sci. Technol., 2018, 7(7), 3215-3220.
[http://dx.doi.org/10.1149/2.0321807jss]
[22]
Karimi-Maleh, H.; Karimi, F.; Orooji, Y.; Mansouri, G.; Razmjou, A.; Aygun, A.; Sen, F. A new nickel-based co-crystal complex electrocatalyst amplified by NiO dope Pt nanostructure hybrid; a highly sensitive approach for determination of cysteamine in the presence of serotonin. Sci. Rep., 2020, 10(1), 11699.
[http://dx.doi.org/10.1038/s41598-020-68663-2] [PMID: 32678156]
[23]
Karimi-Maleh, H.; Amini, F.; Akbari, A.; Shojaei, M. Amplified electrochemical sensor employing CuO/SWCNTs and 1-butyl-3-methylimidazolium hexafluorophosphate for selective analysis of sulfisoxazole in the presence of folic acid. J. Colloid Interface Sci., 2017, 495, 61-67.
[http://dx.doi.org/10.1016/j.jcis.2017.01.119] [PMID: 28189110]
[24]
Ensafi, A.A.; Dadkhah, M.; Karimi-Maleh, H. Determination of isoproterenol and uric acid by voltammetric method using carbon nanotubes paste electrode and p-chloranil. Colloids Surf. B Biointerfaces, 2011, 84(1), 148-154.
[http://dx.doi.org/10.1016/j.colsurfb.2010.12.028] [PMID: 21256720]
[25]
Rezaei, B.; Majidi, N.; Ensafi, A.A.; Karimi-Maleh, H. Molecularly imprinted-multiwall carbon nanotube paste electrode as a biosensor for voltammetric detection of rutin. Anal. Methods, 2011, 3(11), 2510-2516.
[http://dx.doi.org/10.1039/c1ay05271c]
[26]
Gheibi, S.; Karimi-Maleh, H.; Khalilzadeh, M.A.; Bagheri, H. A new voltammetric sensor for electrocatalytic determination of vitamin C in fruit juices and fresh vegetable juice using modified multi-wall carbon nanotubes paste electrode. J. Food Sci. Technol., 2015, 52(1), 276-284.
[http://dx.doi.org/10.1007/s13197-013-1026-7]
[27]
Akbarian, Y.; Shabani-Nooshabadi, M.; Karimi-Maleh, H. Fabrication of a new electrocatalytic sensor for determination of diclofenac, morphine and mefenamic acid using synergic effect of NiO-SWCNT and 2, 4-dimethyl-N/-[1- (2, 3-dihydroxy phenyl) methylidene] aniline. Sens. Actuators B Chem., 2018, 273, 228-233.
[http://dx.doi.org/10.1016/j.snb.2018.06.049]
[28]
Karimi-Maleh, H.; Ahanjan, K.; Taghavi, M.; Ghaemy, M. A novel voltammetric sensor employing zinc oxide nanoparticles and a new ferrocene-derivative modified carbon paste electrode for determination of captopril in drug samples. Anal. Methods, 2016, 8(8), 1780-1788.
[http://dx.doi.org/10.1039/C5AY03284A]
[29]
Taherkhani, A.; Jamali, T.; Hadadzadeh, H.; Karimi-Maleh, H.; Beitollahi, H.; Taghavi, M.; Karimi, F. ZnO nanoparticle-modified ionic liquid-carbon paste electrodefor voltammetric determination of folic acid in food and pharmaceutical samples. Environ. Monit. Assess., 2014, 186(11), 7431-7441.
[PMID: 25027778]
[30]
Karimi-Maleh, H.; Khataee, A.; Karimi, F.; Baghayeri, M.; Fu, L.; Rouhi, J.; Karaman, C.; Karaman, O.; Boukherrou, R. A green and sensitive guanine-based DNA biosensor for idarubicin anticancer monitoring in biological samples: A simple and fast strategy for control of health quality in chemotherapy procedure confirmed by docking investigation. Chemosphere, 2022.132928 Epub ahead of print
[31]
Karimi-Maleh, H.; Moazampour, M.; Ahmar, H.; Beitollahi, H.; Ensafi, A.A. A sensitive nanocomposite-based electrochemical sensor for voltammetric simultaneous determination of isoproterenol, acetaminophen and tryptophan. Measurement, 2014, 51, 91-99.
[http://dx.doi.org/10.1016/j.measurement.2014.01.028]
[32]
Rabiee, N.; Safarkhani, M.; Rabiee, M. Ultra-sensitive electrochemical on-line determination of Clarithromycin based on Poly (L-Aspartic acid)/graphite oxide/pristine graphene/glassy carbon electrode. Asian J. Nanosci. Mater, 2018, 1, 63-73.
[33]
Stoytcheva, M.; Zlatev, R.; Triny-Beleno, M.; Montero, G. Detection of phenolic compounds by tyrosinase modified clark type electrode. Curr. Anal. Chem., 2015, 11, 50-55.
[http://dx.doi.org/10.2174/1573411010666141119220515]
[34]
Yilmaz, B.; Yilmaz, N. Simultaneous determination of rosuvastatin and amlodipine in binary mixtures by differential pulse voltammetry and HPLC methods. Eurasian Chem. Communi., 2020, 2, 881-894.
[35]
Pyman, H.; Roshanfekr, H.; Ansari, S. DNA-based electrochemical biosensor using chitosan–carbon nanotubes composite film for biodetection of Pirazon. Eurasian Chem. Communi., 2020, 2, 213-225.
[http://dx.doi.org/10.33945/SAMI/ECC.2020.2.7]
[36]
Demir, E.; Senocak, A.; Tassembedo-Koubangoye, M.F.; Demirbas, E.; Aboul-Eneın, H.Y. Electrochemical Evaluation of the Total Antioxidant Capacity of Yam Food Samples on a Polyglycine-Glassy Carbon Modified Electrode. Curr. Anal. Chem., 2018, 14, 1-8.
[37]
Chen, Q.; Li, X.; Min, X.; Cheng, D.; Zhou, J.; Li, Y.; Zhang, C. Determination of catechol and hydroquinone with high sensitivity using MOF-graphene composites modified electrode. J. Electroanal. Chem. (Lausanne Switz.), 2017, 89, 114-122.
[http://dx.doi.org/10.1016/j.jelechem.2017.02.033]
[38]
Vinodhkumar, G.; Ramya, R.; Potheher, I.; Cyrac Peter, A. Reduced graphene oxide based on simultaneous detection of neurotransmitters. Prog. Chem. Biochem. Res., 2018, 1, 40-49.
[http://dx.doi.org/10.29088/SAMI/PCBR.2018.1.4049]
[39]
Alizadeh, M.; Azar, P.A.; Mozaffari, S.A.; Karimi-Maleh, H.; Tamaddon, A.M. Evaluation of Pt,Pd-doped, NiO-decorated, single-wall carbon nanotube-ionic liquid carbon paste chemically modified electrode: an ultrasensitive anticancer drug sensor for the determination of daunorubicin in the presence of tamoxifen. Front Chem., 2020, 8, 677.
[http://dx.doi.org/10.3389/fchem.2020.00677] [PMID: 32974271]
[40]
Jahandari, S.; Taher, M.A.; Karimi-Maleh, H.; Mansouri, G. Simultaneous voltammetric determination of glutathione, doxorubicin and tyrosine based on the electrocatalytic effect of a nickel(II) complex and of Pt:Co nanoparticles as a conductive mediator. Mikrochim. Acta, 2019, 186(8), 493.
[http://dx.doi.org/10.1007/s00604-019-3598-z] [PMID: 31267341]
[41]
Baghayeri, M.; Nodehi, M.; Amiri, A.; Amirzadeh, N.; Behazin, R.; Iqbal, M.Z. Electrode designed with a nanocomposite film of CuO Honeycombs/Ag nanoparticles electrogenerated on a magnetic platform as an amperometric glucose sensor. Anal. Chim. Acta, 2020, 1111, 49-59.
[http://dx.doi.org/10.1016/j.aca.2020.03.039] [PMID: 32312396]
[42]
Ghanei-Motlagh, M.; Taher, M.A.; Fayazi, M.; Baghayeri, M.; Hosseinifar, A. Non-enzymatic amperometric sensing of hydrogen peroxide based on vanadium pentoxide nanostructures. J. Electrochem. Soc., 2019, 166, B367-B372.
[http://dx.doi.org/10.1149/2.0521906jes]
[43]
Baghayeri, M.; Alinezhad, H.; Tarahomi, M.; Fayazi, M.; Ghanei-Motlagh, M.; Maleki, B. A non-enzymatic hydrogen peroxide sensor based on dendrimer functionalized magnetic graphene oxide decorated with palladium nanoparticles. Appl. Surf. Sci., 2019, 478, 87-93.
[http://dx.doi.org/10.1016/j.apsusc.2019.01.201]
[44]
Baghayeri, M.; Amiri, A.; Razghandi, H. Employment of Pd nanoparticles at the structure of poly aminohippuric acid as a nanocomposite for hydrogen peroxide detection. J. Electroanal. Chem. (Lausanne Switz.), 2019, 832, 142-151.
[http://dx.doi.org/10.1016/j.jelechem.2018.10.063]
[45]
Veisi, H.; Baghayeri, M.; Kazemi, S. Biosynthesis of silver nanoparticles using Oak leaf extract and their application for electrochemical sensing of hydrogen peroxide. Appl. Organomet. Chem., 2018, 32e4537
[http://dx.doi.org/10.1002/aoc.4537]
[46]
Baghayeri, M.; Veisi, H.; Farhadi, S.; Beitollahi, H.; Maleki, B. Ag nanoparticles decorated Fe3O4/chitosan nanocomposite: synthesis, characterization and application toward electrochemical sensing of hydrogen peroxide. J. Iran. Chem. Soc., 2018, 15, 1015-1022.
[http://dx.doi.org/10.1007/s13738-018-1298-y]
[47]
Baghayeri, M.; Amiri, A.; Alizadeh, Z.; Veisi, H.; Hasheminejad, E. Non-enzymatic voltammetric glucose sensor made of ternary NiO/Fe3O4-SH/para-amino hippuric acid nanocomposite. J. Electroanal. Chem. (Lausanne Switz.), 2018, 810, 69-77.
[http://dx.doi.org/10.1016/j.jelechem.2018.01.007]
[48]
Baghayeri, M.; Veisi, H.; Ghanei-Motlagh, M. Amperometric glucose biosensor based on immobilization of glucose oxidase on a magnetic glassy carbon electrode modified with a novel magnetic nanocomposite. Sens. Actuators B Chem., 2017, 249, 321-330.
[http://dx.doi.org/10.1016/j.snb.2017.04.100]
[49]
Baghayeri, M.; Sedrpoushan, A.; Mohammadi, A.; Heidari, M. A non-enzymatic glucose sensor based on NiO nanoparticles/functionalized SBA 15/MWCNT-modified carbon paste electrode. Ionics, 2017, 23, 1553-1562.
[http://dx.doi.org/10.1007/s11581-016-1964-y]
[50]
Baghayeri, M.; Amiri, A.; Motamedifar, A. Investigation about electrocatalytic oxidation of glucose on loaded Ag nanoparticles on functionalized carbon nanotubes. Ionics, 2016, 22, 1709-1717.
[http://dx.doi.org/10.1007/s11581-016-1689-y]
[51]
Baghayeri, M.; Amiri, A.; Farhadi, S. Development of non-enzymatic glucose sensor based on efficient loading Ag nanoparticles on functionalized carbon nanotubes. Sens. Actuators B Chem., 2016, 225, 354-362.
[http://dx.doi.org/10.1016/j.snb.2015.11.003]
[52]
Maleki, B.; Baghayeri, M. Synthesis of symmetrical N,N′-alkylidene bisamides catalyzed by silica coated magnetic NiFe2O4 nanoparticle supported polyphosphoric acid (NiFe2O4@SiO2-PPA) and its application toward silver nanoparticle synthesis for electrochemical detection of glucose. RSC Adv, 2015, 5, 79746-79758.
[http://dx.doi.org/10.1039/C5RA16481H]
[53]
Baghayeri, M. Glucose sensing by a glassy carbon electrode modified with glucose oxidase and a magnetic polymeric nanocomposite. RSC Adv, 2015, 5, 18267-18274.
[http://dx.doi.org/10.1039/C4RA15888A]
[54]
Veisi, H.; Hosseini, E.F.; Hemmati, S.; Baghayeri, M. Selective hydrogen peroxide oxidation of sulfides to sulfones with carboxylated multi-walled carbon nano tubes (MWCNTs-COOH) as heterogeneous and recyclable nanocatalysts under organic solvent-free conditions. RSC Adv, 2015, 5, 10152-10158.
[http://dx.doi.org/10.1039/C4RA14964E]
[55]
Baghayeri, M.; Nazarzadeh, Z.E.; Mansour, L.M. A simple hydrogen peroxide biosensor based on a novel electro-magnetic poly(p-phenylenediamine)@Fe3O4 nanocomposite. Biosens. Bioelectron., 2014, 55, 259-265.
[http://dx.doi.org/10.1016/j.bios.2013.12.033] [PMID: 24389389]
[56]
Golikand, A.N.; Raoof, J.; Baghayeri, M.; Asgari, M.; Irannejad, L. Nickel electrode modified by N,N-bis (Salicylidene)Phenylenediamine (Salophen) as a catalyst for methanol oxidation in alkaline medium. Russ. J. Electrochem., 2009, 45, 192-198.
[http://dx.doi.org/10.1134/S1023193509020104]
[57]
Golikand, A.N.; Raoof, J.B.; Baghayeri, M.; Asgari, M.; Irannejad, L. Electrochemical reduction of dioxygen on alizarin modified glassy carbon electrode in acidic medium. Russ. J. Electrochem., 2009, 45, 881-886.
[http://dx.doi.org/10.1134/S1023193509080072]
[58]
Raoof, J.B.; Nozad, G.A.; Baghayeri, M. A study of the electro-catalytic oxidation of methanol on a nickel-salophen modified glassy carbon electrode. J. Solid State Electrochem., 2010, 14, 817-822.
[http://dx.doi.org/10.1007/s10008-009-0859-5]
[59]
Raoof, J.B.; Ojani, R.; Baghayeri, M.; Ahmadi, F. Fabrication of a fast, simple and sensitive voltammetric sensor for the simultaneous determination of 4-aminohippuric acid and uric acid using a functionalized multi-walled carbon nanotube modified glassy carbon electrode. Anal. Methods, 2012, 4, 1825-1832.
[http://dx.doi.org/10.1039/c2ay05900b]
[60]
Beitollahi, H.; Tajik, S.; Mohammadi, S.Z.; Baghayeri, M. Voltammetric determination of hydroxylamine in water samples using a 1-benzyl-4-ferrocenyl-1H-[1,2,3]-triazole/carbon nanotube-modified glassy carbon electrode. Ionics, 2014, 20, 571-579.
[http://dx.doi.org/10.1007/s11581-013-1004-0]
[61]
Baghayeri, M.; Veisi, H.; Maleki, B.; Karimi-Maleh, H.; Beitollahi, H. Multi-walled carbon nanotubes decorated with palladium nanoparticles as a novel platform for electrocatalytic sensing applications. RSC Adv, 2014, 4, 49595-49604.
[http://dx.doi.org/10.1039/C4RA08536A]
[62]
Mansour, L.M.; Nazarzadeh, Z.E.; Baghayeri, M. Electro-magnetic polyfuran/Fe3O4 nanocomposite: Synthesis, characterization, antioxidant activity and its application as a biosensor. Int. J. Polym. Mater., 2015, 64, 175-183.
[http://dx.doi.org/10.1080/00914037.2014.936588]
[63]
Baghayeri, M.; Mahdavi, B.; Hosseinpor-Mohsen, A.Z.; Farhadi, S. Green synthesis of silver nanoparticles using water extract of Salvia leriifolia: Antibacterial studies and applications as catalysts in the electrochemical detection of nitrite. Appl. Organomet. Chem., 2017, 32, 1-9.
[64]
Baghayeri, M.; Amiri, A.; Hasheminejad, E.; Mahdavi, B. Poly(aminohippuric acid)-sodium dodecyl sulfate/functionalized graphene oxide nanocomposite for amplified electrochemical sensing of gallic acid. J. Iran. Chem. Soc., 2018, 15, 1931-1938.
[http://dx.doi.org/10.1007/s13738-018-1390-3]
[65]
Rouhi, M.; Lakouraj, M.M.; Baghayeri, M. Low band gap conductive copolymer of thiophene with p-phenylenediamine and its magnetic nanocomposite: synthesis, characterization and biosensing activity. Polym. Compos., 2019, 40, 1034-1042.
[http://dx.doi.org/10.1002/pc.24790]
[66]
Iqbal, M.Z.; Haider, S.S.; Siddique, S.; Karim, M.R.A.; Zakar, S.; Tayyab, M.; Faisal, M.M.; Sulman, M.; Khan, A.; Baghayeri, M.; Kamran, M.A.; Alherbi, T.; Javaid Iqbal, M.; Hussain, T. Capacitive and diffusion-controlled mechanism of strontium oxide based symmetric and asymmetric devices. J. Ener. Stor., 2020, 27101056
[http://dx.doi.org/10.1016/j.est.2019.101056]
[67]
Łuczak, J.; Paszkiewicz, M.; Krukowska, A.; Malankowska, A.; Zaleska-Medynska, A. Ionic liquids for nano- and microstructures preparation. Part 1: Properties and multifunctional role. Adv. Colloid Interface Sci., 2016, 230, 13-28.
[http://dx.doi.org/10.1016/j.cis.2015.08.006] [PMID: 26329594]
[68]
MacFarlane, D.R.; Forsyth, S.A.; Golding, J.; Deacon, G.B. Ionic liquids based on imidazolium, ammonium and pyrrolidinium salts of the dicyanamide anion. Curr. Green Chem., 2002, 4, 444-448.
[http://dx.doi.org/10.1039/b205641k]
[69]
Kato, T.; Yoshio, M. Electrochemical aspects of ionic liquids; Ohno, H., Ed.; John Wiley & Sons, Inc., 2005.
[70]
Liu, Q.S.; Li, P.P.; Urs, W.B.; Chen, J.; Liu, X.X. Density, dynamic viscosity, and electrical conductivity of pyridinium-based hydrophobic ionic liquids. J. Chem. Thermodyn., 2013, 66, 88-94.
[http://dx.doi.org/10.1016/j.jct.2013.06.008]
[71]
Gifford, R.; Palmisano, J.B. A substituted imidazolium chloroaluminate molten salt possessing an increased electrochemical window. J. Electrochem. Soc., 1987, 134, 610-614.
[http://dx.doi.org/10.1149/1.2100516]
[72]
Zech, O.; Stoppa, A.; Buchner, R.K. Werner. The conductivity of imidazolium-based ionic liquids from (248 to 468) K. B. Variation of the Anion. J. Chem. Eng. Data, 2010, 55, 1774-1778.
[http://dx.doi.org/10.1021/je900793r]
[73]
N, Tetsuo., Tashiro, Y, Yamamoto, M. Physical and electrochemical properties of 1-alkyl-3-methylimidazolium tetrafluoroborate for electrolyte. J. Fluor. Chem., 2003, 120, 135-141.
[http://dx.doi.org/10.1016/S0022-1139(02)00322-6]
[74]
Andriyko, O.Y.; Reischl, W.E.; Nauer, G. Trialkyl-substituted imidazolium-based ionic liquids for electrochemical applications: basic physicochemical properties. J. Chem. Eng. Data, 2009, 54(3), 855-860.
[http://dx.doi.org/10.1021/je800636k]
[75]
Vila, J.; Varela, L.M.; Cabez, O. Cation and anion sizes influence in the temperature dependence of the electrical conductivity in nine imidazolium based ionic liquids. Electrochim. Acta, 2007, 52, 7413-7417.
[http://dx.doi.org/10.1016/j.electacta.2007.06.044]
[76]
Quinn, B.M.; Ding, Z.; Moulton, R.; Bard, A.J. Novel electrochemical studies of ionic liquids. Langmuir, 2002, 18, 1734-1742.
[http://dx.doi.org/10.1021/la011458x]
[77]
Seddon, K.R.; Stark, A.; Torres, M-J. Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl. Chem., 2000, 72, 2275-2287.
[http://dx.doi.org/10.1351/pac200072122275]
[78]
Anthony, J.L.; Maginn, E.J.; Brennecke, J.F. Solution thermodynamics of imidazolium-based ionic liquids and water. J. Phys. Chem. B, 2001, 105, 10942-10949.
[http://dx.doi.org/10.1021/jp0112368]
[79]
Wei, D.; Ivask, A. Applications of ionic liquids in electrochemical sensors. Anal. Chim. Acta, 2008, 607, 126-135.
[http://dx.doi.org/10.1016/j.aca.2007.12.011]
[80]
Matsumoto, H. Electrochemical aspects of ionic liquids; Ohno, H., Ed.; John Wiley & Sons, Inc, 2005.
[81]
Kulsing, C.; Nolvachai, Y.; Hügel, H.M.; Marriott, P.J. Developments in gas chromatography using ionic liquid stationary phases. LC GC Eur., 2015, 28, 434-440.
[82]
Huang, Y.; Yao, S.; Song, H. Application of ionic liquids in liquid chromatography and electrodriven separation. J. Chromatogr. Sci., 2013, 51(7), 739-752.
[http://dx.doi.org/10.1093/chromsci/bmt076] [PMID: 23833208]
[83]
Behera, K.; Pandey, S.; Kadyan, A.; Pandey, S.; Rehman, A. Ionic liquid-based optical and electrochemical carbon dioxide sensors. Sensors (Basel), 2015, 15(12), 30487-30503.
[http://dx.doi.org/10.3390/s151229813] [PMID: 26690155]
[84]
Armstrong, D.W.; Zhang, L.K.; He, L.; Gross, M.L. Ionic liquids as matrixes for matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem., 2001, 73(15), 3679-3686.
[http://dx.doi.org/10.1021/ac010259f] [PMID: 11510834]
[85]
Vaher, M.; Koel, M.; Kaljurand, M. Ionic liquids as electrolytes for nonaqueous capillary electrophoresis. Electrophoresis, 2002, 23(3), 426-430.
[http://dx.doi.org/10.1002/1522-2683(200202)23:3<426:AID-ELPS426>3.0.CO;2-8] [PMID: 11870743]
[86]
Wang, X.; Hao, J. Recent Adv in ionic liquid-based electrochemical biosensors. Sci. Bull. (Beijing), 2016, 611281-611295.
[http://dx.doi.org/10.1007/s11434-016-1151-6]
[87]
Abo-Hamad, A.; Abdul-Hakim, A.M.; Hayyan, M.; Juneidi, I.; Hashim, M.A. Ionic liquid-carbon nanomaterial hybrids for electrochemical sensor applications: A Review. Electrochim. Acta, 2016, 193, 321-343.
[http://dx.doi.org/10.1016/j.electacta.2016.02.044]
[88]
Rehman, A.; Zeng, X. Interfacial composition, structure, and properties of ionic liquids and conductive polymers for the construction of chemical sensors and biosensors: a Perspective. Curr Opin Electrochem., 2020, 23, 47-56.
[http://dx.doi.org/10.1016/j.coelec.2020.03.010]
[89]
McEwen, A.B.; Ngo, H.L.; LeCompte, K.; Goldman, J.L. Electrochemical properties of imidazolium salt electrolytes for electrochemical capacitor applications. J. Electrochem. Soc., 1999, 146, 1687-1695.
[http://dx.doi.org/10.1149/1.1391827]
[90]
Bonhôte, P.; Dias, A.P.; Papageorgiou, N.; Kalyanasundaram, K.; Grätzel, M. Hydrophobic, highly conductive ambient-temperature molten salts. Inorg. Chem., 1996, 35(5), 1168-1178.
[http://dx.doi.org/10.1021/ic951325x] [PMID: 11666305]
[91]
Widegren, J.A.; Saurer, E.M.; Marsh, K.N.; Magee, J.W. Electrolytic conductivity of four imidazolium-based room-temperature ionic liquids and the effect of a water impurity. J. Chem. Thermodyn., 2005, 37, 569-575.
[http://dx.doi.org/10.1016/j.jct.2005.04.009]
[92]
Yoshida, Y.; Baba, O.; Saito, G. Ionic liquids based on dicyanamide anion: influence of structural variations in cationic structures on ionic conductivity. J. Phys. Chem. B, 2007, 111(18), 4742-4749.
[http://dx.doi.org/10.1021/jp067055t] [PMID: 17474700]
[93]
Singh, J.K.; Sharma, R.K.; Ghosh, P.; Kumar, A.; Khan, M.L. Imidazolium based ionic liquids: a promising green solvent for water hyacinth biomass deconstruction. Front Chem., 2018, 6, 548.
[http://dx.doi.org/10.3389/fchem.2018.00548] [PMID: 30519555]
[94]
Shukla, M.; Saha, A.S. Comparative study of piperidinium and imidazolium based ionic liquids: Thermal, spectroscopic and theoretical studies. InTech, 2013, 3, 61-84.
[95]
Riahimanesh, F.; Alahabadi, A.; Baghayeri, M.; Maleki, B.; Miri, M. Investigation on the removal of entacapone from contaminated water using magnetic activated carbon. Mater. Res. Express, 2019, 6096105
[http://dx.doi.org/10.1088/2053-1591/ab2ceb]
[96]
Baghayeri, M.; Nodehi, M.; Veisi, H.; Tehrani, M.B.; Maleki, B.; Mehmandost, M. The role of pramipexole functionalized MWCNTs to the fabrication of Pd nanoparticles modified GCE for electrochemical detection of dopamine. Daru, 2019, 27(2), 593-603.
[http://dx.doi.org/10.1007/s40199-019-00287-y] [PMID: 31317442]
[97]
Baghayeri, M.; Beitollahi, H.; Akbari, A.; Farhadi, S. Highly sensitive nanostructured electrochemical sensor based on carbon nanotubes-Pt nanoparticles paste electrode for simultaneous determination of levodopa and tyramine. Russ. J. Electrochem., 2018, 54, 292-301.
[http://dx.doi.org/10.1134/S1023193517120023]
[98]
Baghayeri, M. Pt nanoparticles/reduced graphene oxide nanosheets as a sensing platform: Application to determination of droxidopa in presence of phenobarbital. Sens. Actuators B Chem., 2017, 240, 255-263.
[http://dx.doi.org/10.1016/j.snb.2016.08.161]
[99]
Baghayeri, M.; Tehrani, M.B.; Amiri, A.; Maleki, B.; Farhadi, S. A novel way for detection of antiparkinsonism drug entacapone via electrodeposition of silver nanoparticles/functionalized multi-walled carbon nanotubes as an amperometric sensor. Mater. Sci. Eng. C, 2016, 66, 77-83.
[http://dx.doi.org/10.1016/j.msec.2016.03.077] [PMID: 27207040]
[100]
Raoof, J.; Ojani, R.; Baghayeri, M. Electrocatalytic determination of isoproterenol using p-aminophenol modified multi-walled carbon nanotubes paste electrode. J. Electrochem. Soc., 2016, 1, 91-99.
[101]
Ahmadi, F.; Raoof, J.B.; Ojani, R.; Baghayeri, M.; Lakouraj, M.M.; Tashakkorian, H. Synthesis of Ag nanoparticles for the electrochemical detection of anticancer drug flutamide. Chin. J. Catal., 2015, 36, 439-445.
[http://dx.doi.org/10.1016/S1872-2067(14)60209-6]
[102]
Baghayeri, M.; Maleki, B.; Zarghani, R. Voltammetric behavior of tiopronin on carbon paste electrode modified with nanocrystalline Fe50Ni50 alloys. Mater. Sci. Eng. C, 2014, 44, 175-182.
[http://dx.doi.org/10.1016/j.msec.2014.08.023] [PMID: 25280694]
[103]
Beitollahi, H.; Mohadesi, A.; Mostafavi, M.; Karimi-Maleh, H.; Baghayeri, M.; Akbari, A. Voltammetric sensor for simultaneous determination of ascorbic acid, acetaminophen, and tryptophan in pharmaceutical products. Ionics, 2014, 20, 729-737.
[http://dx.doi.org/10.1007/s11581-013-1037-4]
[104]
Baghayeri, M.; Namadchian, M. Fabrication of a nanostructured luteolin biosensor for simultaneous determination of levodopa in the presence of acetaminophen and tyramine: Application to the analysis of some real samples. Electrochim. Acta, 2013, 108, 22-31.
[http://dx.doi.org/10.1016/j.electacta.2013.06.069]
[105]
Vahedi, J.; Karimi-Maleh, H.; Baghayeri, M.; Sanati, A.L.; Khalilzadeh, M.A.; Bahrami, M. A fast and sensitive nanosensor based on MgO nanoparticle room-temperature ionic liquid carbon paste electrode for determination of methyldopa in pharmaceutical and patient human urine samples. Ionics, 2013, 19, 1907-1914.
[http://dx.doi.org/10.1007/s11581-013-0940-z]
[106]
Beitollahi, H.; Mohadesi, A.; Ghorbani, F.; Karimi Maleh, H.; Baghayeri, M.; Hosseinzadeh, R. Electrocatalytic measurement of methionine concentration with a carbon nanotube paste electrode modified with benzoylferrocene. Chin. J. Catal., 2013, 34, 1333-1338.
[http://dx.doi.org/10.1016/S1872-2067(12)60582-8]
[107]
Baghayeri, M.; Namadchian, M.; Karimi-Maleh, H.; Beitollahi, H. Determination of nifedipine using nanostructured electrochemical sensor based on simple synthesis of Ag nanoparticles at the surface of glassy carbon electrode: Application to the analysis of some real samples. J. Electroanal. Chem. (Lausanne Switz.), 2013, 697, 53-59.
[http://dx.doi.org/10.1016/j.jelechem.2013.03.011]
[108]
Raoof, J.B.; Ojani, R.; Baghayeri, M. Fabrication of layer-by-layer deposited films containing carbon nanotubes and poly(malachite green) as a sensor for simultaneous determination of ascorbic acid, epinephrine and uric acid. Turk. J. Chem., 2013, 37, 36-50.
[109]
Raoof, J.B.; Baghayeri, M.; Ojani, R. A high sensitive voltammetric sensor for qualitative and quantitative determination of phenobarbital as an antiepileptic drug in presence of acetaminophen. Colloids Surf. B Biointerfaces, 2012, 95, 121-128.
[http://dx.doi.org/10.1016/j.colsurfb.2012.02.038] [PMID: 22465049]
[110]
Raoof, J.B.; Ojani, R.; Amiri-Aref, M.; Baghayeri, M. Electrodeposition of quercetin at a multi-walled carbon nanotubes modified glassy carbon electrode as a novel and efficient voltammetric sensor for simultaneous determination of levodopa, uric acid and tyramine. Sens. Actuators B Chem., 2012, 166-167, 508-518.
[http://dx.doi.org/10.1016/j.snb.2012.02.096]
[111]
Raoof, J.B.; Ojani, R.; Baghayeri, M.; Amiri-Aref, M. Application of a glassy carbon electrode modified with functionalized multi-walled carbon nanotube as sensor devise for simultaneous determination of acetaminophen and tyramine. Anal. Methods, 2012, 4, 1579-1587.
[http://dx.doi.org/10.1039/c2ay05494a]
[112]
Raoof, J.B.; Ojani, R.; Baghayeri, M. Sensitive voltammetric determination of captopril using a carbon paste electrode modified with nano-TiO2/Ferrocene carboxylic acid. Chin. J. Catal., 2011, 32, 1685-1692.
[http://dx.doi.org/10.1016/S1872-2067(10)60268-9]
[113]
Raoof, J.B.; Ojani, R.; Baghayeri, M. A selective sensor based on glassy carbon electrode modified with carbon nanotubes and ruthenium oxide/hexacyanoferrate film for simultaneous determination of ascorbic acid, epinephrine and uric acid. Anal. Methods, 2011, 3, 2367-2373.
[http://dx.doi.org/10.1039/c1ay05305a]
[114]
Raoof, J.B.; Ojani, R.; Baghayeri, M. Simultaneous electrochemical determination of glutathione and tryptophan on a nano-TiO2/ferrocene carboxylic acid modified carbon paste electrode. Sens. Actuators B Chem., 2009, 143, 261-269.
[http://dx.doi.org/10.1016/j.snb.2009.08.046]
[115]
Khoshroo, A.; Hosseinzadeh, L.; Sobhani-Nasab, A.; Rahimi-Nasrabadi, M.; Ahmadi, F. Silver nanofibers/ionic liquid nanocomposite based electrochemical sensor for detection of clonazepam via electrochemically amplified detection. Microchem. J., 2019, 145, 1185-1190.
[http://dx.doi.org/10.1016/j.microc.2018.12.049]
[116]
Bavandpour, R.; Rajabi, M.; Karimi-Maleh, H.; Asghari, A. Ultrasensitive electroanalytical sulfisoxazole sensors amplified with Pd doped ZnO nanoparticle and 1-hexyl-3-methyl imidazolium bis (tri fluoro methyl sulfonyl) imid modified. New J. Chem., 2020, 44, 11125-11130.
[http://dx.doi.org/10.1039/D0NJ01461C]
[117]
Wong, A.; Silva, T.A.; Vicentini, F.C.; Fatibello-Filho, O. Electrochemical sensor based on graphene oxide and ionic liquid for ofloxacin determination at nanomolar levels. Talanta, 2016, 161, 333-341.
[http://dx.doi.org/10.1016/j.talanta.2016.08.035] [PMID: 27769415]
[118]
Lu, Y.; Hu, J.; Zeng, Y.; Zhu, Y.; Wang, H.; Lei, X.; Huang, S.; Guo, L.; Li, L. Electrochemical determination of rutin based on molecularly imprinted poly (ionic liquid) with ionic liquid-graphene as a sensitive element. Sens. Actuators B Chem., 2020, 311127911
[http://dx.doi.org/10.1016/j.snb.2020.127911]
[119]
Xia, Y.; Zhao, F.; Zeng, B. A molecularly imprinted copolymer based electrochemical sensor for the highly sensitive detection of L-Tryptophan. Talanta, 2020, 206120245
[http://dx.doi.org/10.1016/j.talanta.2019.120245] [PMID: 31514823]
[120]
Santos, A.M.; Wong, A.; Fatibello-Filho, O. Simultaneous determination of salbutamol and propranolol in biological fluid samples using an electrochemical sensor based on functionalized-graphene, ionic liquid and silver nanoparticles. J. Electroanal. Chem. (Lausanne Switz.), 2018, 824, 1-8.
[http://dx.doi.org/10.1016/j.jelechem.2018.07.018]
[121]
Tavana, T.; Rezvani, A.R.; Karimi-Maleh, H. Pt-Pd-doped NiO nanoparticle decorated at single-wall carbon nanotubes: An excellent, powerful electrocatalyst for the fabrication of An electrochemical sensor to determine nalbuphine in the presence of tramadol as two opioid analgesic drugs. J. Pharm. Biomed. Anal., 2020, 189113397
[http://dx.doi.org/10.1016/j.jpba.2020.113397] [PMID: 32563934]
[122]
Mohammadi, S.Z.; Beitollahi, H.; Kaykhaii, M.; Mohammadizadeh, N. A Novel electrochemical sensor based on graphene oxide nanosheets and ionic liquid binder for differential pulse voltammetric determination of droxidopa in pharmaceutical and urine samples. Russ. J. Electrochem., 2019, 55(12), 1229-1236.
[http://dx.doi.org/10.1134/S1023193519120127]
[123]
Khaleghi, F.; Irai, A.E.; Gupta, V.K.; Agarwal, S.; Bijad, M.; Abbasghorbani, M. Highly sensitive nanostructure voltammetric sensor employing Pt/CNTs and 1-butyl-3-methylimidazolium hexafluoro phosphate for determination of tryptophan in food and pharmaceutical samples. J. Mol. Liq., 2016, 223, 431-435.
[http://dx.doi.org/10.1016/j.molliq.2016.08.058]
[124]
Karimi-Maleh, H.; Sheikhshoaie, M.; Sheikhshoaie, I.; Ranjbar, M.; Alizadeh, J.; Maxakato, N.W.; Abbaspourrad, A. A novel electrochemical epinine sensor using amplified CuO nanoparticles and a: N -hexyl-3-methylimidazolium hexafluorophosphate electrode. New J. Chem., 2019, 43(5), 2362-2367.
[http://dx.doi.org/10.1039/C8NJ05581E]
[125]
Baghayeri, M.; Rouhi, M.; Lakouraj, M.M.; Amiri-Aref, M. Bioelectrocatalysis of hydrogen peroxide based on immobilized hemoglobin onto glassy carbon electrode modified with magnetic poly(indole-co-thiophene) nanocomposite. J. Electroanal. Chem. (Lausanne Switz.), 2017, 784, 69-76.
[http://dx.doi.org/10.1016/j.jelechem.2016.12.006]
[126]
Rouhi, M.; Lakouraj, M.M.; Baghayeri, M.; Hasantabar, V. Novel conductive magnetic nanocomposite based on poly (Indole-co-Thiophene) as a hemoglobin diagnostic biosensor: synthesis, characterization and physical properties. Int. J. Polym. Mater., 2017, 66, 12-19.
[http://dx.doi.org/10.1080/00914037.2016.1180615]
[127]
Baghayeri, M.; Veisi, H. Fabrication of a facile electrochemical biosensor for hydrogen peroxide using efficient catalysis of hemoglobin on the porous Pd@Fe3O4-MWCNT nanocomposite. Biosens. Bioelectron., 2015, 74, 190-198.
[http://dx.doi.org/10.1016/j.bios.2015.06.016] [PMID: 26143458]
[128]
Baghayeri, M.; Zare, E.N.; Lakouraj, M.M. Monitoring of hydrogen peroxide using a glassy carbon electrode modified with hemoglobin and a polypyrrole-based nanocomposite. Mikrochim. Acta, 2015, 182, 771-779.
[http://dx.doi.org/10.1007/s00604-014-1387-2]
[129]
Baghayeri, M.; Zare, E.N.; Lakouraj, M.M. Novel superparamagnetic PFu@Fe3O4 conductive nanocomposite as a suitable host for hemoglobin immobilization. Sens. Actuators B Chem., 2014, 202, 1200-1208.
[http://dx.doi.org/10.1016/j.snb.2014.06.019]
[130]
Baghayeri, M.; Nazarzadeh Zare, E.; Hasanzadeh, R. Facile synthesis of PSMA-g-3ABA/MWCNTs nanocomposite as a substrate for hemoglobin immobilization: application to catalysis of H(2)O(2). Mater. Sci. Eng. C, 2014, 39, 213-220.
[http://dx.doi.org/10.1016/j.msec.2014.03.012] [PMID: 24863218]
[131]
Baghayeri, M.; Zare, E.N.; Namadchian, M. Direct electrochemistry and electrocatalysis of hemoglobin immobilized on biocompatible poly (styrene-alternative-maleic acid)/functionalized multi-wall carbon nanotubes blends. Sens. Actuators B Chem., 2013, 188, 227-234.
[http://dx.doi.org/10.1016/j.snb.2013.07.028]
[132]
Karimi-Maleh, H.; Sanati, A.L.; Gupta, V.K.; Yoosefian, M.; Asif, M.; Bahari, A. A voltammetric biosensor based on ionic liquid/NiO nanoparticle modified carbon paste electrode for the determination of nicotinamide adenine dinucleotide (NADH). Sens. Actuators B Chem., 2014, 204, 647-654.
[http://dx.doi.org/10.1016/j.snb.2014.08.037]
[133]
Asran, A.M.; Mohamed, M.A.; Ahmed, N.; Banks, C.E.; Allam, N.K. An innovative electrochemical platform for the sensitive determination of the hepatitis B inhibitor Entecavir with ionic liquid as a mediator. J. Mol. Liq., 2020, 302112498
[http://dx.doi.org/10.1016/j.molliq.2020.112498]
[134]
Arvand, M.; Niazi, A.; Mazhabi, R.M.; Biparva, P. Direct electrochemistry of adenine on multiwalled carbon nanotube-ionic liquid composite film modified carbon paste electrode and its determination in DNA. J. Mol. Liq., 2012, 173, 1-7.
[http://dx.doi.org/10.1016/j.molliq.2012.06.004]
[135]
Niu, X.; Yang, W.; Ren, J.; Guo, H.; Long, S.; Chen, J.; Gao, J. Electrochemical behaviors and simultaneous determination of guanine and adenine based on graphene-ionic liquid-chitosan composite film modified glassy carbon electrode. Electrochim. Acta, 2012, 80, 346-353.
[http://dx.doi.org/10.1016/j.electacta.2012.07.041]
[136]
Jalalvand, A.R.; Zangeneh, M.M.; Jalili, F.; Soleimani, S.; Díaz-Cruz, J.M. An elegant technology for ultrasensitive impedimetric and voltammetric determination of cholestanol based on a novel molecularly imprinted electrochemical sensor. Chem. Phys. Lipids, 2020, 229104895
[http://dx.doi.org/10.1016/j.chemphyslip.2020.104895] [PMID: 32165169]
[137]
Zhu, X.; Zeng, Y.; Zhang, Z.; Yang, Y.; Zhai, Y.; Wang, H.; Liu, L.; Hu, J.; Li, L. A new composite of graphene and molecularly imprinted polymer based on ionic liquids as functional monomer and cross-linker for electrochemical sensing 6-benzylaminopurine. Biosens. Bioelectron., 2018, 108, 38-45.
[http://dx.doi.org/10.1016/j.bios.2018.02.032] [PMID: 29499557]
[138]
Karimi-Maleh, H.; Karimi, F.; Malekmohammadi, S.; Zakariae, N.; Esmaeili, R.; Rostamnia, S.; Yola, M.L.; Atar, N.; Movaghgharnezhad, S.; Rajendran, S.; Razmjou, A.; Orooji, Y.; Agarwal, S.; Gupta, V.K. An amplified voltammetric sensor based on platinum nanoparticle/polyoxometalate/two-dimensional hexagonal boron nitride nanosheets composite and ionic liquid for determination of N-hydroxysuccinimide in water samples. J. Mol. Liq., 2020, 310113185
[http://dx.doi.org/10.1016/j.molliq.2020.113185]
[139]
Manusha, P.; Senthilkumar, S. Design and synthesis of phenothiazine based imidazolium ionic liquid for electrochemical nonenzymatic detection of sulfite in food samples. J. Mol. Liq., 2020, 301112412
[http://dx.doi.org/10.1016/j.molliq.2019.112412]
[140]
Karimi-Maleh, H.; Fakude, C.T.; Mabuba, N.; Peleyeju, G.M.; Arotiba, O.A. The determination of 2-phenylphenol in the presence of 4-chlorophenol using nano-Fe3O4/ionic liquid paste electrode as an electrochemical sensor. J. Colloid Interface Sci., 2019, 554, 603-610.
[http://dx.doi.org/10.1016/j.jcis.2019.07.047] [PMID: 31330427]
[141]
Gomes, F.O.; Maia, L.B.; Delerue-Matos, C.; Moura, I.; Moura, J.J.G.; Morais, S. Third-generation electrochemical biosensor based on nitric oxide reductase immobilized in a multiwalled carbon nanotubes/1-n-butyl-3-methylimidazolium tetrafluoroborate nanocomposite for nitric oxide detection. Sens. Actuators B Chem., 2019, 285, 445-452.
[http://dx.doi.org/10.1016/j.snb.2019.01.074]
[142]
Kunpatee, K.; Chamsai, P.; Mehmeti, E.; Stankovic, D.M.; Ortner, A.; Kalcher, K.; Samphao, A. A highly sensitive fenobucarb electrochemical sensor based on graphene nanoribbons-ionic liquid-cobalt phthalocyanine composites modified on screen-printed carbon electrode coupled with a flow injection analysis. J. Electroanal. Chem. (Lausanne Switz.), 2019, 855113630
[http://dx.doi.org/10.1016/j.jelechem.2019.113630]
[143]
Nascimento, D.S.; Insausti, M.; Band, B.S.F.; Lemos, S.G. Simultaneous determination of Cu, Pb, Cd, Ni, Co and Zn in bioethanol fuel by adsorptive stripping voltammetry and multivariate linear regression. Fuel, 2014, 137, 172-178.
[http://dx.doi.org/10.1016/j.fuel.2014.07.100]
[144]
Baghayeri, M.; Ghanei-Motlagh, M.; Tayebee, R.; Fayazi, M.; Narenji, F. Application of graphene/zinc-based metal-organic framework nanocomposite for electrochemical sensing of As(III) in water resources. Anal. Chim. Acta, 2020, 1099, 60-67.
[http://dx.doi.org/10.1016/j.aca.2019.11.045] [PMID: 31986278]
[145]
Baghayeri, M.; Alinezhad, H.; Fayazi, M.; Tarahomi, M.; Ghanei-Motlagh, R.; Maleki, B. A novel electrochemical sensor based on a glassy carbon electrode modified with dendrimer functionalized magnetic graphene oxide for simultaneous determination of trace Pb(II) and Cd(II). Electrochim. Acta, 2019, 312, 80-88.
[http://dx.doi.org/10.1016/j.electacta.2019.04.180]
[146]
Maleki, B.; Baghayeri, M.; Ghanei-Motlagh, M.; Zonoz, F.M.; Amiri, A.; Hajizadeh, F.; Hosseinifar, A.; Esmaeilnezhad, E. Polyamidoamine dendrimer functionalized iron oxide nanoparticles for simultaneous electrochemical detection of Pb2+ and Cd2+ ions in environmental waters. Measurement, 2019, 140, 81-88.
[http://dx.doi.org/10.1016/j.measurement.2019.03.052]
[147]
Baghayeri, M.; Amiri, A.; Maleki, B.; Alizadeh, Z.; Reiser, O. A simple approach for simultaneous detection of cadmium(II) and lead(II) based on glutathione coated magnetic nanoparticles as a highly selective electrochemical probe. Sens. Actuators B Chem., 2018, 273, 1442-1450.
[http://dx.doi.org/10.1016/j.snb.2018.07.063]
[148]
Ghanei-Motlagh, M.; Baghayeri, M. Determination of trace Tl(I) by differential pulse anodic stripping voltammetry using a novel modified carbon paste electrode. J. Electrochem. Soc., 2020, 167(6)066508
[http://dx.doi.org/10.1149/1945-7111/ab823c]
[149]
Chaiyo, S.; Mehmeti, E.; Žagar, K.; Siangproh, W.; Chailapakul, O.; Kalcher, K. Electrochemical sensors for the simultaneous determination of zinc, cadmium and lead using a Nafion/ionic liquid/graphene composite modified screen-printed carbon electrode. Anal. Chim. Acta, 2016, 918, 26-34.
[http://dx.doi.org/10.1016/j.aca.2016.03.026] [PMID: 27046207]
[150]
Lu, Z.; Lin, X.; Zhang, J.; Dai, W.; Liu, B.; Mo, G.; Ye, J.; Ye, J. Ionic liquid/poly-L-cysteine composite deposited on flexible and hierarchical porous laser-engraved graphene electrode for high-performance electrochemical analysis of lead ion. Electrochim. Acta, 2019, 295, 514-523.
[http://dx.doi.org/10.1016/j.electacta.2018.10.176]
[151]
Oularbi, L.; Turmine, M.; Salih, F.E. El Rhazi, M. - Ionic liquid/carbon nanofibers/bismuth particles novel hybrid nanocomposite for voltammetric sensing of heavy metals. J. Environ. Chem. Eng., 2020, 8(3)103774
[http://dx.doi.org/10.1016/j.jece.2020.103774]
[152]
Nodehi, M.; Baghayeri, M.; Ansari, R.; Veisi, H. Electrochemical quantification of 17α-Ethinylestradiol in biological samples using a Au/Fe3O4@TA/MWNT/GCE sensor. Mater. Chem. Phys., 2020, 244122687
[http://dx.doi.org/10.1016/j.matchemphys.2020.122687]
[153]
Baghayeri, M.; Ansari, R.; Nodehi, M.; Veisi, H. Designing and fabrication of a novel gold nanocomposite structure: application in electrochemical sensing of bisphenol A. Int. J. Environ. Anal. Chem., 2018, 989, 874-888.
[http://dx.doi.org/10.1080/03067319.2018.1512595]
[154]
Baghayeri, M.; Ansari, R.; Nodehi, M.; Razavipanah, I.; Veisi, H. Label-free electrochemical bisphenol A aptasensor based on designing and fabrication of a magnetic gold nanocomposite. Electroanalysis, 2018, 30, 2160-2166.
[http://dx.doi.org/10.1002/elan.201800158]
[155]
Baghayeri, M.; Ansari, R.; Nodehi, M.; Razavipanah, I.; Veisi, H. Voltammetric aptasensor for bisphenol A based on the use of a MWCNT/Fe3O4@gold nanocomposite. Mikrochim. Acta, 2018, 185(7), 320-328.
[http://dx.doi.org/10.1007/s00604-018-2838-y] [PMID: 29881880]
[156]
Gurban, A.M.; Rotariu, L.; Baibarac, M.; Baltog, I.; Bala, C. Sensitive detection of endocrine disrupters using ionic liquid--single walled carbon nanotubes modified screen-printed based biosensors. Talanta, 2011, 85(4), 2007-2013.
[http://dx.doi.org/10.1016/j.talanta.2011.07.045] [PMID: 21872052]
[157]
Wang, Q.; Zhang, D.; Yang, L.; Zhang, L. Constructed ILs @ hollow porous spherical Ni-loaded CdFe 2 O 4 modified electrode for highly sensitive simultaneous electrochemical analysis of bisphenols. Sens. Actuators B Chem., 2017, 246, 800-808.
[http://dx.doi.org/10.1016/j.snb.2017.02.153]
[158]
Wang, Y.; Li, C.; Wu, T.; Ye, X. Polymerized ionic liquid functionalized graphene oxide nanosheets as a sensitive platform for bisphenol A sensing. AC SC. Carbon, 2017, 129, 21-28.
[http://dx.doi.org/10.1016/j.carbon.2017.11.090]
[159]
Tian, Y.; Li, A.J.; Wang, A.Y.; Ding, A.C.; Sun, A.Y.; Sun, W.A.; Lin, Y.; Luo, C. Gold nanoparticle-dotted, ionic liquid-functionalised, carbon hybrid material for ultra-sensitive detection of bisphenol A. Environ. Chem., 2017, 14, 385-393.
[http://dx.doi.org/10.1071/EN17081]
[160]
Chen, X.; Ren, T.; Ma, M.; Wang, Z.; Zhan, G.; Li, C. Electrochim. Acta Voltammetric sensing of bisphenol A based on a single-walled carbon nanotubes/poly {3-butyl-1- [ 3- (N -pyrrolyl) propyl ] imidazolium ionic liquid } composite film modified electrode. Electrochim. Acta, 2013, 111, 49-56.
[http://dx.doi.org/10.1016/j.electacta.2013.07.211]
[161]
Wang, J.Y.; Su, Y.L.; Wu, B.H.; Cheng, S.H. Reusable electrochemical sensor for bisphenol A based on ionic liquid functionalized conducting polymer platform. Talanta, 2016, 147, 103-110.
[http://dx.doi.org/10.1016/j.talanta.2015.09.035] [PMID: 26592583]
[162]
Wang, Z.; Wang, P.; Tu, X.; Wu, Y.; Zhan, G.; Li, C. A novel electrochemical sensor for estradiol based on nanoporous polymeric film bearing poly{1-butyl-3-[3-(N-pyrrole)propyl]imidazole dodecyl sulfonate Moiety. Sens. Actuators B Chem., 2014, 193, 190-197.
[http://dx.doi.org/10.1016/j.snb.2013.11.053]
[163]
Jing, P.; Zhang, X.; Wu, Z.; Bao, L.; Xu, Y.; Liang, C.; Cao, W. Electrochemical sensing of bisphenol A by graphene-1-butyl-3-methylimidazolium hexafluorophosphate modified electrode. Talanta, 2015, 141, 41-46.
[http://dx.doi.org/10.1016/j.talanta.2015.03.042] [PMID: 25966378]
[164]
Ma, M.; Tu, X.; Zhan, G.; Li, C. Electrochemical sensor for bisphenol A based on a nanoporous polymerized ionic liquid interface. Mikrochim. Acta, 2014, 181, 565-572.
[http://dx.doi.org/10.1007/s00604-013-1151-z]
[165]
Liu, Z.; Zein, S.; Abedin, E.; Endres, F. Dissolution of zinc oxide in a protic ionic liquid with the 1-methylimidazolium cation and electrodeposition of zinc from ZnO/ionic liquid and ZnO/ionic liquid – water mixtures. Electrochem. Commun., 2015, 58, 46-50.
[http://dx.doi.org/10.1016/j.elecom.2015.06.004]
[166]
Ismail, A.S. Nano-sized aluminum coatings from aryl-substituted imidazolium cation based ionic liquid. Egypt. J. Pet., 2015, 25, 525-530.
[167]
Allahyarzadeh, M.H.; Roozbehani, B.; Ashra, A.; Shadizadeh, S.R. Electrodeposition of high Mo content amorphous/nanocrystalline Ni – Mo alloys using 1-methyl-imidazolium chloride ionic liquid as an additive. Surf. Coat. Tech., 2011, 206, 137-142.
[http://dx.doi.org/10.1016/j.surfcoat.2011.07.004]
[168]
Keist, J.S.; Hammons, J.A.; Wright, P.K.; Evans, J.W.; Orme, C.A. Coupling in situ atomic force microscopy (AFM) and ultra-small-angle X-ray scattering (USAXS) to study the evolution of zinc morphology during electrodeposition within an imidazolium based ionic liquid electrolyte. Electrochim. Acta, 2020, 342136073
[http://dx.doi.org/10.1016/j.electacta.2020.136073]
[169]
Zhou, Y.; Yang, Y.; Zhou, N.; Li, R.; Zhou, Y.; Yan, W. Four-armed branching and thermally integrated imidazolium-based polymerized ionic liquid as an all-solid-state polymer electrolyte for lithium metal battery. Electrochim. Acta, 2019, 324134827
[http://dx.doi.org/10.1016/j.electacta.2019.134827]
[170]
Vazquez-santos, M.B.; Amarilla, J.M.; Tartaj, P.; Herrad, B.; Río, C.; Morales, E. Asymmetrical imidazolium-trialkylammonium room temperature dicationic ionic liquid electrolytes for Li-ion batteries. Electrochim. Acta, 2018, 280, 171-180.
[http://dx.doi.org/10.1016/j.electacta.2018.05.103]
[171]
Ferrari, S.; Quartarone, E.; Tomasi, C.; Ravelli, D.; Protti, S.; Fagnoni, M.; Mustarelli, P. Alkoxy substituted imidazolium-based ionic liquids as electrolytes for lithium batteries. J. Power Sources, 2013, 235, 142-147.
[http://dx.doi.org/10.1016/j.jpowsour.2013.01.149]
[172]
Kubisa, P.; Biedro, T. Lithium electrolytes based on modified imidazolium ionic liquids. Int. J. Hydrogen Energy, 2013, 9, 2-11.
[173]
Karimi-Maleh, H.; Cellat, K.; Arıkan, K.; Savk, A.; Karimi, F.; Şen, F. Palladium–nickel nanoparticles decorated on functionalized-MWCNT for high precision non-enzymatic glucose sensing. Mater. Chem. Phys., 2020, 250123042
[http://dx.doi.org/10.1016/j.matchemphys.2020.123042]
[174]
Mohanraj, J.; Durgalakshmi, D.; Rakkesh, R.A.; Balakumar, S.; Rajendran, S.; Karimi-Maleh, H. Facile synthesis of paper based graphene electrodes for point of care devices: A double stranded DNA (dsDNA) biosensor. J. Colloid Interface Sci., 2020, 566, 463-472.
[http://dx.doi.org/10.1016/j.jcis.2020.01.089] [PMID: 32032811]
[175]
Karimi-Maleh, H.; Karimi, F.; Alizadeh, M.; Sanati, A.L. Electrochemical sensors, a bright future in the fabrication of portable kits in analytical systems. Chem. Rec., 2020, 20(7), 682-692.
[http://dx.doi.org/10.1002/tcr.201900092] [PMID: 31845511]
[176]
Khodadadi, A.; Faghih-Mirzaei, E.; Karimi-Maleh, H.; Abbaspourrad, A.; Agarwal, S.; Gupta, V.K. A new epirubicin biosensor based on amplifying DNA interactions with polypyrrole and nitrogen-doped reduced graphene: experimental and docking theoretical investigations. Sens. Actuators B Chem., 2019, 284, 568-574.
[http://dx.doi.org/10.1016/j.snb.2018.12.164]
[177]
Karimi-Maleh, H.; Bananezhad, A.; Ganjali, M.R.; Norouzi, P.; Sadrnia, A. Surface amplification of pencil graphite electrode with polypyrrole and reduced graphene oxide for fabrication of a guanine/adenine DNA based electrochemical biosensors for determination of didanosine anticancer drug. Appl. Surf. Sci., 2018, 441, 55-60.
[http://dx.doi.org/10.1016/j.apsusc.2018.01.237]
[178]
Eren, T.; Atar, N.; Yola, M.L.; Karimi-Maleh, H. A sensitive molecularly imprinted polymer based quartz crystal microbalance nanosensor for selective determination of lovastatin in red yeast rice. Food Chem., 2015, 185, 430-436.
[http://dx.doi.org/10.1016/j.foodchem.2015.03.153] [PMID: 25952889]
[179]
Faridbod, F.; Sanati, A.L. Graphene quantum dots in electrochemical sensors/biosensors. Curr. Anal. Chem., 2019, 15(2), 103-123.
[http://dx.doi.org/10.2174/1573411014666180319145506]
[180]
Renedo, O.D.; Alonso-Lomillo, M.A.; Martínez, M.J. Recent developments in the field of screen-printed electrodes and their related applications. Talanta, 2007, 73(2), 202-219.
[http://dx.doi.org/10.1016/j.talanta.2007.03.050] [PMID: 19073018]
[181]
Alavi-Tabari, S.A.; Khalilzadeh, M.A.; Karimi-Maleh, H. Simultaneous determination of doxorubicin and dasatinib as two breast anticancer drugs uses an amplified sensor with ionic liquid and ZnO nanoparticle. J. Electroanal. Chem. (Lausanne Switz.), 2018, 811, 84-88.
[http://dx.doi.org/10.1016/j.jelechem.2018.01.034]
[182]
Karimi‐Maleh, H.; Tahernejad‐Javazmi, F.; Daryanavard, M.; Hadadzadeh, H.; Ensafi, A.A.; Abbasghorbani, M. Electrocatalytic and simultaneous determination of ascorbic acid, nicotinamide adenine dinucleotide and folic acid at ruthenium(II) complex‐ZnO/CNTs nanocomposite modified carbon paste electrode. Electroanalysis, 2014, 26(5), 962-970.
[http://dx.doi.org/10.1002/elan.201400013]
[183]
Arshadi, M.; Ghiaci, M.; Ensafi, A.A.; Karimi-Maleh, H.; Suib, S.L. Oxidation of ethylbenzene using some recyclable cobalt nanocatalysts: the role of linker and electrochemical study. J. Mol. Catal. Chem., 2011, 338(1-2), 71-83.
[http://dx.doi.org/10.1016/j.molcata.2011.01.027]
[184]
Ensafi, A.A.; Taei, M.; Khayamian, T.; Karimi-Maleh, H.; Hasanpour, F. Voltammetric measurement of trace amount of glutathione using multiwall carbon nanotubes as a sensor and chlorpromazine as a mediator. J. Solid State Electrochem., 2010, 14(8), 1415-1423.
[http://dx.doi.org/10.1007/s10008-009-0978-z]
[185]
Karimi-Maleh, H.; Hatami, M.; Moradi, R.; Khalilzadeh, M.A.; Amiri, S.; Sadeghifar, H. Synergic effect of Pt-Co nanoparticles and a dopamine derivative in a nanostructured electrochemical sensor for simultaneous determination of N-acetylcysteine, paracetamol and folic acid. Mikrochim. Acta, 2016, 183(11), 2957-2964.
[http://dx.doi.org/10.1007/s00604-016-1946-9]
[186]
Sadeghi, R.; Karimi-Maleh, H.; Bahari, A.; Taghavi, M. A novel biosensor based on ZnO nanoparticle/1, 3-dipropylimidazolium bromide ionic liquid-modified carbon paste electrode for square-wave voltammetric determination of epinephrine. Phys. Chem. Liquids, 2013, 51(6), 704-714.
[http://dx.doi.org/10.1080/00319104.2013.782547]
[187]
Karimi-Maleh, H.; Keyvanfard, M.; Alizad, K.; Fouladgar, M.; Beitollahi, H.; Mokhtari, A.; Gholami-Orimi, F. Voltammetric determination of N-actylcysteine using modified multiwall carbon nanotubes paste electrode. Int. J. Electrochem. Sci., 2011, 6(12), 6141-6150.
[188]
Fouladgar, M.; Karimi-Maleh, H. Ionic liquid/multiwall carbon nanotubes paste electrode for square wave voltammetric determination of methyldopa. Ionics, 2013, 19(8), 1163-1170.
[http://dx.doi.org/10.1007/s11581-012-0832-7]
[189]
Ensafi, A.A.; Karimi-Maleh, H. Voltammetric determination of isoproterenol using multiwall carbon nanotubes-ionic liquid paste electrode. Drug Test. Anal., 2011, 3(5), 325-330.
[http://dx.doi.org/10.1002/dta.232] [PMID: 21309002]
[190]
Ensafi, A.A.; Khoddami, E.; Rezaei, B.; Karimi-Maleh, H. p-Aminophenol-multiwall carbon nanotubes-TiO2 electrode as a sensor for simultaneous determination of penicillamine and uric acid. Colloids Surf. B Biointerfaces, 2010, 81(1), 42-49.
[http://dx.doi.org/10.1016/j.colsurfb.2010.06.020] [PMID: 20655185]
[191]
Arabali, V.; Malekmohammadi, S.; Karimi, F. Surface amplification of pencil graphite electrode using CuO nanoparticle/polypyrrole nanocomposite; A powerful electrochemical strategy for determination of tramadol. Microchem. J., 2020.105179
[http://dx.doi.org/10.1016/j.microc.2020.105179]
[192]
Karimi-Maleh, H.; Ensafi, A.A.; Ensafi, H.R. Ferrocenedicarboxylic acid modified carbon paste electrode: a sensor for electrocatalytic determination of hydrochlorothiazide. J. Braz. Chem. Soc., 2009, 20(5), 880-887.
[http://dx.doi.org/10.1590/S0103-50532009000500012]
[193]
Ensafi, A.A.; Dadkhah-Tehrani, S.; Karimi-Maleh, H. A voltammetric sensor for the simultaneous determination of L-cysteine and tryptophan using a p-aminophenol-multiwall carbon nanotube paste electrode. Anal. Sci., 2011, 27(4), 409-409.
[http://dx.doi.org/10.2116/analsci.27.409] [PMID: 21478617]
[194]
Ensafi, A.A.; Karimi‐Maleh, H.; Mallakpour, S. Simultaneous Determination of ascorbic acid, acetaminophen, and tryptophan by square wave voltammetry using N ‐(3,4‐Dihydroxyphenethyl)‐3,5‐ Dinitrobenzamide‐Modified carbon nanotubes paste electrode. Electroanalysis, 2012, 24(3), 666-675.
[http://dx.doi.org/10.1002/elan.201100465]
[195]
Afzali, D.; Karimi-Maleh, H.; Khalilzadeh, M.A. Sensitive and selective determination of phenylhydrazine in the presence of hydrazine at a ferrocene-modified carbon nanotube paste electrode. Environ. Chem. Lett., 2011, 9(3), 375-381.
[http://dx.doi.org/10.1007/s10311-010-0289-8]
[196]
Ensafi, A.A.; Karimi-Maleh, H. Ferrocenedicarboxylic acid modified multiwall carbon nanotubes paste electrode for voltammetric determination of sulfite. Int. J. Electrochem. Sci., 2010, 5(3), 392-406.
[197]
Ensafi, A.A.; Karimi‐Maleh, H. A Voltammetric sensor based on modified multiwall carbon nanotubes for cysteamine determination in the presence of tryptophan using p ‐aminophenol as a mediator. Electroanalysis, 2010, 22(21), 2558-2568.
[http://dx.doi.org/10.1002/elan.201000270]
[198]
Ensafi, A.A.; Maleh, H.K. A multiwall carbon nanotubes paste electrode as a sensor and ferrocenemonocarboxylic acid as a mediator for electrocatalytic determination of isoproterenol. Int. J. Electrochem. Sci., 2010, 5, 1484-1495.
[199]
Raoof, J.B.; Ojani, R.; Karimi-Maleh, H. Electrocatalytic oxidation of glutathione at carbon paste electrode modified with 2, 7-bis (ferrocenyl ethyl) fluoren-9-one: application as a voltammetric sensor. J. Appl. Electrochem., 2009, 39(8), 1169-1175.
[http://dx.doi.org/10.1007/s10800-009-9781-x]
[200]
Mirmomtaz, E.; Ensafi, A.A.; Karimi‐Maleh, H. Electroanalysis, 2008, 20, 1973-1979.
[http://dx.doi.org/10.1002/elan.200804273]
[201]
Ensafi, A.A.; Karimi-Maleh, H.; Mallakpour, S. A new strategy for the selective determination of glutathione in the presence of nicotinamide adenine dinucleotide (NADH) using a novel modified carbon nanotube paste electrode. Colloids Surf. B Biointerfaces, 2013, 104, 186-193.
[http://dx.doi.org/10.1016/j.colsurfb.2012.12.011] [PMID: 23314609]
[202]
Ensafi, A.A.; Karimi‐Maleh, H.; Mallakpour, S.N. ‐(3,4‐Dihydroxyphenethyl)‐3,5‐dinitrobenzamide‐Modified Multiwall Carbon Nanotubes Paste Electrode as a Novel Sensor for Simultaneous Determination of Penicillamine, Uric acid, and Tryptophan. Electroanalysis, 2011, 23(6), 1478-1487.
[http://dx.doi.org/10.1002/elan.201000741]
[203]
Khalilzadeh, M.A.; Karimi-Maleh, H.; Amiri, A.; Gholami, F. Determination of captopril in patient human urine using ferrocenemonocarboxylic acid modified carbon nanotubes paste electrode. Chin. Chem. Lett., 2010, 21(12), 1467-1470.
[http://dx.doi.org/10.1016/j.cclet.2010.06.020]
[204]
Karimi-Maleh, H.; Tahernejad-Javazmi, F.; Gupta, V.K.; Ahmar, H.; Asadi, M.H. A novel biosensor for liquid phase determination of glutathione and amoxicillin in biological and pharmaceutical samples using a ZnO/CNTs nanocomposite/catechol derivative modified electrode. J. Mol. Liq., 2014, 196, 258-263.
[http://dx.doi.org/10.1016/j.molliq.2014.03.049]
[205]
Raoof, J.B.; Ojani, R.; Karimi-Maleh, H.; Hajmohamadi, M.R.; Biparva, P. Multi-wall carbon nanotubes as a sensor and ferrocene dicarboxylic acid as a mediator for voltammetric determination of glutathione in hemolysed erythrocyte. Anal. Methods, 2011, 3(11), 2637-2643.
[http://dx.doi.org/10.1039/c1ay05031a]
[206]
Karimi-Maleh, H.; Arotiba, O.A. Simultaneous determination of cholesterol, ascorbic acid and uric acid as three essential biological compounds at a carbon paste electrode modified with copper oxide decorated reduced graphene oxide nanocomposite and ionic liquid. J. Colloid Interface Sci., 2020, 560, 208-212.
[http://dx.doi.org/10.1016/j.jcis.2019.10.007] [PMID: 31670018]
[207]
Shamsadin-Azad, Z.; Taher, M.A.; Cheraghi, S.; Karimi-Maleh, H. A nanostructure voltammetric platform amplified with ionic liquid for determination of tert-butylhydroxyanisole in the presence kojic acid. J. Food Meas. Charact., 2019, 13, 1781-1787.
[http://dx.doi.org/10.1007/s11694-019-00096-6]
[208]
Tahernejad-Javazmi, F.; Shabani-Nooshabadi, M.; Karimi-Maleh, H. 3D reduced graphene oxide/FeNi3-ionic liquid nanocomposite modified sensor; an electrical synergic effect for development of tert-butylhydroquinone and folic acid sensor. Compos., Part B Eng., 2019, 172, 666-670.
[http://dx.doi.org/10.1016/j.compositesb.2019.05.065]
[209]
Bijad, M.; Karimi-Maleh, H.; Khalilzadeh, M.A. Application of ZnO/CNTs nanocomposite ionic liquid paste electrode as a sensitive voltammetric sensor for determination of ascorbic acid in food samples. Food Anal. Methods, 2013, 6, 1639-1647.
[http://dx.doi.org/10.1007/s12161-013-9585-9]
[210]
Jamali, T.; Karimi-Maleh, H.; Khalilzadeh, M.A. A novel nanosensor based on Pt:Co nanoalloy ionic liquid carbon paste electrode for voltammetric determination of vitamin B9 in food samples. Lebensm. Wiss. Technol., 2014, 57, 679-685.
[http://dx.doi.org/10.1016/j.lwt.2014.01.023]
[211]
Baghizadeh, A.; Karimi-Maleh, H.; Khoshnama, Z.; Hassankhani, A.; Abbasghorbani, M. A voltammetric sensor for simultaneous determination of vitamin C and vitamin B6 in food samples using ZrO2 nanoparticle/ionic liquids carbon paste electrode. Food Anal. Methods, 2015, 8, 549-557.
[http://dx.doi.org/10.1007/s12161-014-9926-3]
[212]
‏Bavandpour R.; Karimi-Maleh H.; Asif M.; Gupta, V.K.; Atar N.; Abbasghorbani, M. Liquid phase determination of adrenaline uses a voltammetric sensor employing CuFe2O4 nanoparticles and room temperature ionic liquids. J. Mol. Liq., 2016, 213, 369-373.
[http://dx.doi.org/10.1016/j.molliq.2015.07.054]
[213]
Bijad, M.; Karimi-Maleh, H.; Farsi, M.; Shahidi, S.A. An electrochemical-amplified-platform based on the nanostructure voltammetric sensor for the determination of carmoisine in the presence of tartrazine in dried fruit and soft drink samples. J. Food Meas. Charact., 2018, 12, 634-640.
[http://dx.doi.org/10.1007/s11694-017-9676-1]
[214]
Miraki, M.; Karimi-Maleh, H.; Taher, M.A.; Cheraghi, S.; Karimi, F.; Agarwal, S.; Gupta, V.K. Voltammetric amplified platform based on ionic liquid/NiO nanocomposite for determination of benserazide and levodopa. J. Mol. Liq., 2019, 278, 672-676.
[http://dx.doi.org/10.1016/j.molliq.2019.01.081]
[215]
Ensafi, A.A.; Bahrami, H.; Rezaei, B.; Karimi-Maleh, H. Application of ionic liquid-TiO2 nanoparticle modified carbon paste electrode for the voltammetric determination of benserazide in biological samples. Mater. Sci. Eng. C, 2013, 33(2), 831-835.
[http://dx.doi.org/10.1016/j.msec.2012.11.008] [PMID: 25427494]
[216]
Hojjati-Najafabadi, A.; Rahmanpour, M.S.; Karimi, F.; Zabihi-Feyzaba, H.; Malekmohammad, S.; Agarwal, S.; Gupta, V.K.; Khalilzadeh, M.A. Int. J. Electrochem. Sci., 2020, 15, 6969-6980.
[http://dx.doi.org/10.20964/2020.07.85]
[217]
Banaei, A.; Shourian, M.; Dashtestani, F.; Eskandari, K. Sensitive Detection of Human Hemoglobin by MWCNTs-ionic Liquid: Anthraquinone Modified Electrode. Nanosci. Nanotechnol. Asia, 2019, 9, 479-485.
[http://dx.doi.org/10.2174/2210681208666180626161341]
[218]
Sun, W.; Yang, M.X.; Jiang, Q.; Jiao, K. Direct electrocatalytic reduction of p-nitrophenol at room temperature ionic liquid modified electrode. Chin. Chem. Lett., 2008, 19, 1156-1158.
[http://dx.doi.org/10.1016/j.cclet.2008.07.011]
[219]
Chandrashekar, B.N.; Swamy, B.E.K.; Ashoka, N.B.; Pandurangachar, M. Simultaneous electrochemical determination of epinephrine and uric acid at 1-butyl-4-methyl-pyridinium tetrafluroborate ionic liquid modified carbon paste electrode: A voltammetric study. J. Mol. Liq., 2012, 165, 168-172.
[http://dx.doi.org/10.1016/j.molliq.2011.11.005]
[220]
Najafi, M.; Khalilzadeh, M.A.; Karimi-Maleh, H. A new strategy for determination of bisphenol A in the presence of Sudan I using a ZnO/CNTs/ionic liquid paste electrode in food samples. Food Chem., 2014, 158, 125-131.
[http://dx.doi.org/10.1016/j.foodchem.2014.02.082] [PMID: 24731323]
[221]
Kamran, S.; Amiri Shiri, N. A Comparative Study for Adsorption of Alizarin Red S from Aqueous Samples by Magnetic Nanoparticles of Fe3O4, CoFe2O4 and Ionic Liquid-Modified Fe3O4. Chem. Methodol, 2018, 2, 23-38.
[222]
Elyasi, M.; Khalilzadeh, M.A.; Karimi-Maleh, H. High sensitive voltammetric sensor based on Pt/CNTs nanocomposite modified ionic liquid carbon paste electrode for determination of Sudan I in food samples. Food Chem., 2013, 141(4), 4311-4317.
[http://dx.doi.org/10.1016/j.foodchem.2013.07.020] [PMID: 23993620]
[223]
Fouladgar, M. A Novel Electrochemical CuO-Nanostructure Platform for Simultaneous Determination of 6-thioguanine and 5-fluorouracil Anticancer Drugs. Acta Chim. Slov., 2020, 67, 701-709.
[http://dx.doi.org/10.17344/acsi.2019.4986]
[224]
Fouladgar, M. CuO-CNT nanocomposite/ionic liquid modified sensor as new breast anticancer approach for determination of doxorubicin and 5-fluorouracil drugs. J. Electrochem. Soc., 2018, 165(13), B559.
[http://dx.doi.org/10.1149/2.1001811jes]
[225]
Negahban, S.; Fouladgar, M.; Amiri, G. Improve the performance of carbon paste electrodes for determination of dobutamine using MnZnFe2O4 nanoparticles and ionic liquid. J. Taiwan Inst. Chem. Eng., 2017, 78, 51-55.
[http://dx.doi.org/10.1016/j.jtice.2017.05.032]
[226]
Fouladgar, M. Nanostructured sensor for simultaneous determination of trace amounts of bisphenol A and vitamin B6 in food samples. Food Anal. Methods, 2017, 10(5), 1507-1514.
[http://dx.doi.org/10.1007/s12161-016-0683-3]
[227]
Sanati, A.L.; Faridbod, F. Electrochemical determination of methyldopa by graphene quantum dot/1-butyl-3-methylimidazolium hexafluoro phosphate nanocomposite electrode. Int. J. Electrochem. Sci., 2017, 12(9), 7997-8005.
[http://dx.doi.org/10.20964/2017.09.71]
[228]
Sanati, A.L.; Faridbod, F.; Ganjali, M.R. Synergic effect of graphene quantum dots and room temperature ionic liquid for the fabrication of highly sensitive voltammetric sensor for levodopa determination in the presence of serotonin. J. Mol. Liq., 2017, 241, 316-320.
[http://dx.doi.org/10.1016/j.molliq.2017.04.123]
[229]
Afshar, S.; Zamani, H.A.; Karimi-Maleh, H. NiO/SWCNTs coupled with an ionic liquid composite for amplified carbon paste electrode; A feasible approach for improving sensing ability of adrenalone and folic acid in dosage form. J. Pharm. Biomed. Anal., 2020, 188113393
[http://dx.doi.org/10.1016/j.jpba.2020.113393] [PMID: 32504973]
[230]
Tavana, T.; Rezvani, A.R.; Karimi‐Maleh, H. Pt‐doped NiO Nanoparticle‐Ionic Liquid Modified Electrochemical Sensor: a Powerful Approach for Determination of Epinine in the Presence of Phenylephrine as Two Blood Pressure Raising Drugs. Electroanalysis, 2020.
[http://dx.doi.org/10.1002/elan.202060006]
[231]
Zabihpour, T.; Shahidi, S.A.; Karimi-Maleh, H.; Ghorbani-HasanSaraei, A. An ultrasensitive electroanalytical sensor based on MgO/SWCNTs- 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide paste electrode for the determination of ferulic acid in the presence sulfite in food samples. Microchem. J., 2020, 154104572
[http://dx.doi.org/10.1016/j.microc.2019.104572]
[232]
Zabihpour, T.; Shahidi, S.A.; Karimi, M.H. Ghorbani-H. Saraei, A. MnFe2O4/1-Butyl-3-methylimidazolium hexafluorophosphate modified carbon paste electrode: an amplified food sensor for determination of gallic acid in the presence of ferulic acid as two phenolic antioxidants. Eurasian Chem. Commun., 2020, 2(3), 362-373.
[http://dx.doi.org/10.33945/SAMI/ECC.2020.3.7]
[233]
Motahharinia, M.; Zamani, H.A.; Karimi, M.H. A sensitive electroanalytical sensor amplified with Pd-ZnO nanoparticle for determination of Sunset Yellow in real samples. Eurasian Chemical Communications, 2020, 2, 760-770.
[http://dx.doi.org/10.33945/SAMI/ECC.2020.7.3]
[234]
Moshirian-Farahi, S.S.; Zamani, H.A.; Abedi, M. Nano-molar level determination of isoprenaline in pharmaceutical and clinical samples; A nanostructure electroanalytical strategy. Eurasian Chem. Commun., 2020, 2, 702-711.
[http://dx.doi.org/10.33945/SAMI/ECC.2020.6.7]
[235]
Mulaba-Bafubiandi, A.F.; Karimi-Maleh, H.; Karimi, F.; Rezapour, M. A voltammetric carbon paste sensor modified with NiO nanoparticle and ionic liquid for fast analysis of p-nitrophenol in water samples. J. Mol. Liq., 2019, 285, 430-435.
[http://dx.doi.org/10.1016/j.molliq.2019.04.084]
[236]
Karimi-Maleh, H.; Rostami, S.; Gupta, V.K.; Fouladgar, M. Evaluation of ZnO nanoparticle ionic liquid composite as a voltammetric sensing of isoprenaline in the presence of aspirin for liquid phase determination. J. Mol. Liq., 2015, 201, 102-107.
[http://dx.doi.org/10.1016/j.molliq.2014.10.042]
[237]
Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H. Highly sensitive square wave voltammetric sensor employing CdO/SWCNTs and room temperature ionic liquid for analysis of vanillin and folic acid in food samples. J. Food Compos. Anal., 2017, 62, 254-259.
[http://dx.doi.org/10.1016/j.jfca.2017.06.006]
[238]
Salmanpour, S.; Khalilzadeh, M.A.; Karimi-Maleh, H.; Zareyeea, D. An Electrochemical Sensitive Sensor for Determining Sulfamethoxazole Using a Modified Electrode Based on Biosynthesized NiO Nanoparticles Paste Electrode. Int. J. Electrochem. Sci., 2019, 14, 9552-9561.
[http://dx.doi.org/10.20964/2019.10.03]
[239]
Zabihpour, T.; Shahidi, S.A.; Karimi-Maleh, H.; Ghorbani-HasanSaraei, A. Voltammetric food analytical sensor for determining vanillin based on amplified NiFe2O4 nanoparticle/ionic liquid sensor. Voltammetric food analytical sensor for determining vanillin based on amplified NiFe2O4 nanoparticle/ionic liquid sensor. J. Food Meas. Charact., 2020, 14, 1039-1045.
[http://dx.doi.org/10.1007/s11694-019-00353-8]
[240]
Cheraghi, S.; Taher, M.A.; Karimi‐Maleh, H. A novel strategy for determination of paracetamol in the presence of morphine using a carbon paste electrode modified with CdO nanoparticles and ionic liquids. Electroanalysis, 2016, 28(2), 366-371.
[http://dx.doi.org/10.1002/elan.201500357]
[241]
Armand, M.; Endres, F.; MacFarlane, D.R.; Ohno, H.; Scrosati, B. Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater., 2009, 8(8), 621-629.
[http://dx.doi.org/10.1038/nmat2448] [PMID: 19629083]
[242]
Orooji, Y. Haddad, Irani-Nezhad, M.; Hassandoost, R.; Khataee, A.; Rahim, P.S.; Woo, J.S. Cerium doped magnetite nanoparticles for highly sensitive detection of metronidazole via chemiluminescence assay. Spectrochim. Acta A, 2020, 234118272
[http://dx.doi.org/10.1016/j.saa.2020.118272]
[243]
Sisi, A.J.; Fathinia, M.; Khataee, A.; Orooji, Y. Systematic activation of potassium peroxydisulfate with ZIF-8 via sono-assisted catalytic process: Mechanism and ecotoxicological analysis. J. Mol. Liq., 2020, 308113018
[http://dx.doi.org/10.1016/j.molliq.2020.113018]
[244]
Orooji, Y.; Liang, F.; Razmjou, A.; Liu, G.; Jin, W. Preparation of anti-adhesion and bacterial destructive polymeric ultrafiltration membranes using modified mesoporous carbon. Separ. Purif. Tech., 2018, 205, 273-283.
[http://dx.doi.org/10.1016/j.seppur.2018.05.006]
[245]
Ghasemi, M.; Khataee, A.; Gholami, P.; Soltani, R.D.C.; Hassani, A.; Orooji, Y. In-situ electro-generation and activation of hydrogen peroxide using a CuFeNLDH-CNTs modified graphite cathode for degradation of cefazolin. J. Environ. Manage., 2020, 267110629
[http://dx.doi.org/10.1016/j.jenvman.2020.110629] [PMID: 32349954]
[246]
Mehdizadeh, P.; Orooji, Y.; Amiri, O.; Salavati-Niasari, M.; Moayedi, H. J. Clean. Prod., 2020, 252119765
[http://dx.doi.org/10.1016/j.jclepro.2019.119765]
[247]
Orooji, Y.; Ghasali, E.; Moradi, M.; Derakhshandeh, M.R.; Alizadeh, M.; Shahedi Asl, M.; Ebadzadeh, T. Preparation of mullite-TiB2-CNTs hybrid composite through spark plasma sintering. Ceram. Int., 2019, 45(13), 16288-16296.
[http://dx.doi.org/10.1016/j.ceramint.2019.05.154]
[248]
Orooji, Y.; Derakhshandeh, M.R.; Ghasali, E.; Alizadeh, M.; Asl, M.S.; Ebadzadeh, T. Effects of ZrB2 reinforcement on microstructure and mechanical properties of a spark plasma sintered mullite-CNT composite. Ceram. Int., 2019, 45(13), 16015-16021.
[http://dx.doi.org/10.1016/j.ceramint.2019.05.113]
[249]
Karimi-Maleh, H.; Shafieizadeh, M.; Taher, M.A.; Opoku, F.; Kiarii, E.M.; Govender, P.P.; Ranjbari, S.; Rezapour, M.; Orooji, Y. The role of magnetite/graphene oxide nano-composite as a high-efficiency adsorbent for removal of phenazopyridine residues from water samples, an experimental/theoretical investigation. J. Mol. Liq., 2020, 298112040
[http://dx.doi.org/10.1016/j.molliq.2019.112040]
[250]
Orooji, Y.; Alizadeh, A.; Ghasali, E.; Derakhshandeh, M.R.; Alizadeh, M.; Asl, M.S.; Ebadzadeh, T. Co-reinforcing of mullite-TiN-CNT composites with ZrB2 and TiB2 compounds. Ceram. Int., 2019, 45, 20844-20854.
[http://dx.doi.org/10.1016/j.ceramint.2019.07.072]
[251]
Hassandoost, R.; Pouran, S.R.; Khataee, A.; Orooji, Y.; Joo, S.W. Hierarchically structured ternary heterojunctions based on Ce3+/Ce4+ modified Fe3O4 nanoparticles anchored onto graphene oxide sheets as magnetic visible-light-active photocatalysts for decontamination of oxytetracycline. J. Hazard. Mater., 2019, 376, 200-211.
[http://dx.doi.org/10.1016/j.jhazmat.2019.05.035] [PMID: 31128399]
[252]
Karimi-Maleh, H.; Kumar, B.G.; Rajendran, S.; Qin, J.; Vadivel, S.S.; Durgalakshmi, S.; Gracia, F.; Soto-Moscoso, M.; Orooji, Y.; Karimi, F. Tuning of metal oxides photocatalytic performance using Ag nanoparticles integration. J. Mol. Liq., 2020, 341113588
[http://dx.doi.org/10.1016/j.molliq.2020.113588]
[253]
Liu, N.; Zhao, G.; Liu, G. Sensitive stripping voltammetric determination of pb (ii) in soil using a bi/single-walled carbon nanotubes-nafion/ionic liquid nanocomposite modified screen-printed electrode. Int. J. Electrochem. Sci., 2020, 15, 7868-7882.
[http://dx.doi.org/10.20964/2020.08.99]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy