Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Determination of Salicylic Acid Using a Highly Sensitive and New Electroanalytical Sensor

Author(s): Maliheh Montazarolmahdi , Mahboubeh Masrournia* and Azizollah Nezhadali

Volume 18, Issue 1, 2022

Published on: 11 January, 2021

Page: [133 - 140] Pages: 8

DOI: 10.2174/1573411017666210111095822

Price: $65

Abstract

Background:In this research work, a drug sensor (salicylic acid, in this case) was designed . The senor was made by modification of paste electrode (MPE) with CuO-SWCNTs and 1- hexyl-3-methylimidazolium chloride (HMICl). The MPE/CuO-SWCNTs/HMICl showed catalytic activity for the oxidation signal of salicylic acid in phosphate buffer solution

Methods:Electrochemical methods were used as a powerful strategy for the determination of salicylic acid in pharmaceutical samples. Aiming at this goal, the carbon paste electrode was amplified with conductive materials and used as a working electrode.

Results:The MPE/CuO-SWCNTs/HMICl was used for the determination of salicylic acid in the concentration range of 1.0 nM – 230 μM using the differential pulse voltammetric (DPV) method. At pH=7.0, as optimum condition, the MPE/CuO-SWCNTs/HMICl displayed a high-quality ability for the determination of salicylic acid in urine, pharmaceutical serum, and water samples.

Conclusion: The MPE/CuO-SWCNTs/HMICl was successfully used as a new and highperformance working electrode for the determination of salicylic acid at a nanomolar level and in real samples.

Keywords: Salicylic acid, CuO-SWCNTs, electrochemical sensor, ionic liquid, electroanalytical sensor, pharmaceutical samples.

Graphical Abstract

[1]
Hayat, Q.; Hayat, S.; Irfan, H.; Ahmad, A. Effect of exogenous salicylic acid under changing environment: A review. Environ. Exp. Bot., 2010, 68, 14-25.
[http://dx.doi.org/10.1016/j.envexpbot.2009.08.005]
[2]
Krantev, A.; Yordanova, R.; Janda, T.; Szalai, G.; Popova, L. Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J. Plant Physiol., 2008, 165(9), 920-931.
[http://dx.doi.org/10.1016/j.jplph.2006.11.014] [PMID: 17913285]
[3]
Davies, M.; Marks, R. Studies on the effect of salicylic acid on normal skin. Br. J. Dermatol., 1976, 95(2), 187-192.
[http://dx.doi.org/10.1111/j.1365-2133.1976.tb00825.x] [PMID: 952756]
[4]
Pirola, R.; Bareggi, S.R.; De Benedittis, G. Determination of acetylsalicylic acid and salicylic acid in skin and plasma by high-performance liquid chromatography. J. Chromatogr. B Biomed. Sci. Appl., 1998, 705(2), 309-315.
[http://dx.doi.org/10.1016/S0378-4347(97)00539-2] [PMID: 9521569]
[5]
Benfeldt, E.; Serup, J.; Menné, T. Effect of barrier perturbation on cutaneous salicylic acid penetration in human skin: in vivo pharmacokinetics using microdialysis and non-invasive quantification of barrier function. Br. J. Dermatol., 1999, 140(4), 739-748.
[http://dx.doi.org/10.1046/j.1365-2133.1999.02859.x] [PMID: 10233334]
[6]
Cooper, E.R. Increased skin permeability for lipophilic molecules. J. Pharm. Sci., 1984, 73(8), 1153-1156.
[http://dx.doi.org/10.1002/jps.2600730831] [PMID: 6491922]
[7]
Grimes, P.E. The Safety and Efficacy of Salicylic Acid Chemical Peels in Darker Racial‐ethnic Groups. The safety and efficacy of salicylic acid chemical peels in darker racial-ethnic groups. Dermatol. Surg., 1999, 25(1), 18-22.
[http://dx.doi.org/10.1046/j.1524-4725.1999.08145.x] [PMID: 9935087]
[8]
Torriero, A.A.J.; Luco, J.M.; Sereno, L.; Raba, J. Voltammetric determination of salicylic acid in pharmaceuticals formulations of acetylsalicylic acid. Talanta, 2004, 62(2), 247-254.
[http://dx.doi.org/10.1016/j.talanta.2003.07.005] [PMID: 18969288]
[9]
Shou, M.; Galinada, W.A.; Wei, Y.C.; Tang, Q.; Markovich, R.J.; Rustum, A.M. Development and validation of a stability-indicating HPLC method for simultaneous determination of salicylic acid, betamethasone dipropionate and their related compounds in diprosalic lotion. J. Pharm. Biomed. Anal., 2009, 50(3), 356-361.
[http://dx.doi.org/10.1016/j.jpba.2009.05.015] [PMID: 19545962]
[10]
Parham, H.; Rahbar, N. Solid phase extraction-spectrophotometric determination of salicylic acid using magnetic iron oxide nanoparticles as extractor. J. Pharm. Biomed. Anal., 2009, 50(1), 58-63.
[http://dx.doi.org/10.1016/j.jpba.2009.03.037] [PMID: 19406599]
[11]
Kitamura, K.; Majima, R. Determination of salicylic acid in aspirin powder by second derivative ultraviolet spectrometry. Anal. Chem., 1983, 55(1), 54-56.
[http://dx.doi.org/10.1021/ac00252a017] [PMID: 6829904]
[12]
Idil, N.; Bakhshpour, M.; Perçin, I.; Denizli, A. Molecularly Imprinted Nanosensors for Microbial Contaminants. In:Nanosensor Technologies for Environmental Monitoring; Nanotechnology in the Life Sciences, 2020, pp. 353-383.
[http://dx.doi.org/10.1007/978-3-030-45116-5_12]
[13]
Chen, A.; Chatterjee, S. Nanomaterials based electrochemical sensors for biomedical applications. Chem. Soc. Rev., 2013, 42(12), 5425-5438.
[http://dx.doi.org/10.1039/c3cs35518g] [PMID: 23508125]
[14]
Karimi-Maleh, H.; Tahernejad-Javazmi, F.; Ensafi, A.A.; Moradi, R.; Mallakpour, S.; Beitollahi, H. A high sensitive biosensor based on FePt/CNTs nanocomposite/N-(4-hydroxyphenyl)-3,5-dinitrobenzamide modified carbon paste electrode for simultaneous determination of glutathione and piroxicam. Biosens. Bioelectron., 2014, 60, 1-7.
[http://dx.doi.org/10.1016/j.bios.2014.03.055] [PMID: 24755294]
[15]
Ghanei-Motlagh, M.; Taher, M.A.; Fayazi, M.; Baghayeri, M.; Hosseinifar, A. Non-Enzymatic Amperometric Sensing of Hydrogen Peroxide Based on Vanadium Pentoxide Nanostructures. J. Electrochem. Soc., 2019, 166, B367-B372.
[http://dx.doi.org/10.1149/2.0521906jes]
[16]
Alavi-Tabari, S.A.R.; Khalilzadeh, M.A.; Karimi-Maleh, H. Simultaneous determination of doxorubicin and dasatinib as two breast anticancer drugs uses an amplified sensor with ionic liquid and ZnO nanoparticle. J. Electroanal. Chem. (Lausanne Switz.), 2018, 811, 84-88.
[http://dx.doi.org/10.1016/j.jelechem.2018.01.034]
[17]
Baghayeri, M.; Alinezhad, H.; Tarahomi, M.; Fayazi, M.; Ghanei-Motlagh, M.; Maleki, B. A non-enzymatic hydrogen peroxide sensor based on dendrimer functionalized magnetic graphene oxide decorated with palladium nanoparticles. Appl. Surf. Sci., 2019, 478, 87-93.
[http://dx.doi.org/10.1016/j.apsusc.2019.01.201]
[18]
Karimi-Maleh, H.; Karimi, F.; Alizadeh, M.; Sanati, A.L. Electrochemical Sensors, a Bright Future in the Fabrication of Portable Kits in Analytical Systems. Chem. Rec., 2020, 20(7), 682-692.
[http://dx.doi.org/10.1002/tcr.201900092] [PMID: 31845511]
[19]
Santos, A.M.; Wong, A.; Fatibello-Filho, O. Simultaneous determination of salbutamol and propranolol in biological fluid samples using an electrochemical sensor based on functionalized-graphene, ionic liquid and silver nanoparticles. J. Electroanal. Chem. (Lausanne Switz.), 2018, 824, 1-8.
[http://dx.doi.org/10.1016/j.jelechem.2018.07.018]
[20]
Karimi-Maleh, H.; Karimi, F.; Orooji, Y.; Mansouri, G.; Razmjou, A.; Aygun, A.; Sen, F. A new nickel-based co-crystal complex electrocatalyst amplified by NiO dope Pt nanostructure hybrid; a highly sensitive approach for determination of cysteamine in the presence of serotonin. Sci. Rep., 2020, 10(1), 11699.
[http://dx.doi.org/10.1038/s41598-020-68663-2] [PMID: 32678156]
[21]
Lu, L.; Zhu, X.; Qiu, X.; He, H.; Xu, J.; Wang, X. Graphene oxide/multiwalled carbon nanotubes composites as an enhanced sensing platform for voltammetric determination of salicylic acid. Int. J. Electrochem. Sci., 2014, 9, 8057-8066.
[22]
Veisi, H.; Baghayeri, M.; Kazemi, S. Biosynthesis of silver nanoparticles using Oak leaf extract and their application for electrochemical sensing of hydrogen peroxide. Appl. Organomet. Chem., 2018, 32.
[http://dx.doi.org/10.1002/aoc.4537]
[23]
Rawlinson, S.; McLister, A.; Kanyong, P.; Davis, J. Rapid determination of salicylic acid at screen printed electrodes. Microchem. J., 2018, 137, 71-77.
[http://dx.doi.org/10.1016/j.microc.2017.09.019]
[24]
Supalkova, V.; Petrek, J.; Havel, L.; Krizkova, S.; Petrlova, J.; Adam, V.; Potesil, D.; Babula, P.; Beklova, M.; Horna, A.; Kizek, R. Electrochemical Sensors for Detection of Acetylsalicylic Acid. Sensors (Basel), 2006, 6(11), 1483-1497.
[http://dx.doi.org/10.3390/s6111483]
[25]
Çalışır, M.; Bakhshpour, M.; Yavuz, H.; Denizli, A. HbA1c detection via high-sensitive boronate based surface plasmon resonance sensor. Sens. Actuators B Chem., 2020, 306127561
[http://dx.doi.org/10.1016/j.snb.2019.127561]
[26]
Turkoglu, E.A.; Bakhshpour, M.; Denizli, A. Molecularly imprinted biomimetic surface plasmon resonance sensor for hormone detection. Biointerface Res. Appl. Chem., 2019, 9, 4090-4095.
[http://dx.doi.org/10.33263/BRIAC94.090095]
[27]
Liu, K.G.; Rouhani, F.; Moghanni-Bavil-Olyaei, H.; Wei, X.W.; Gao, X.M.; Li, J.Z.; Yan, X.W.; Hu, M.L.; Morsali, A. A conductive 1D high-nucleus silver polymer as a brilliant non-hybrid supercapacitor electrode. J. Mater. Chem. A Mater. Energy Sustain., 2020, 8, 12975-12983.
[http://dx.doi.org/10.1039/D0TA04199H]
[28]
Liu, K.G.; Rouhani, F.; Shan, Q.D.; Wang, R.; Li, J.; Hu, M.L.; Cheng, X.; Morsali, A. Ultrasonic-assisted fabrication of thin-film electrochemical detector of H2O2 based on ferrocene-functionalized silver cluster. Ultrason. Sonochem., 2019, 56, 305-312.
[http://dx.doi.org/10.1016/j.ultsonch.2019.04.009] [PMID: 31101267]
[29]
Hu, M.L.; Razavi, S.A.A.; Piroozzadeh, M.; Morsali, A. Sensing organic analytes by metal–organic frameworks: a new way of considering the topic. Inorg. Chem. Front., 2020, 7, 1598-1632.
[http://dx.doi.org/10.1039/C9QI01617A]
[30]
Karimi-Maleh, H.; Shojaei, A.F.; Tabatabaeian, K.; Karimi, F.; Shakeri, S.; Moradi, R. Simultaneous determination of 6-mercaptopruine, 6-thioguanine and dasatinib as three important anticancer drugs using nanostructure voltammetric sensor employing Pt/MWCNTs and 1-butyl-3-methylimidazolium hexafluoro phosphate. Biosens. Bioelectron., 2016, 86, 879-884.
[http://dx.doi.org/10.1016/j.bios.2016.07.086] [PMID: 27494812]
[31]
Karimi-Maleh, H.; Karimi, F.; Malekmohammadi, S.; Zakariae, N.; Esmaeili, R.; Rostamnia, S.; Yola, M.L.; Atar, N.; Movagharnezhad, S.; Rajendran, S.; Razmjou, A.; Orooji, V.; Agarwal, S.; Gupta, V.K. An amplified voltammetric sensor based on platinum nanoparticle/polyoxometalate/two-dimensional hexagonal boron nitride nanosheets composite and ionic liquid for determination of N-hydroxysuccinimide in water samples. J. Mol. Liq., 2020, 310113185
[32]
Devaraj, M.; Saravanan, R.; Deivasigamani, R.; Gupta, V.K.; Gracia, F.; Jayadevan, S. Fabrication of novel shape Cu and Cu/Cu2O nanoparticles modified electrode for the determination of dopamine and paracetamol. J. Mol. Liq., 2016, 221, 930-941.
[http://dx.doi.org/10.1016/j.molliq.2016.06.028]
[33]
Karimi-Maleh, H.; Cellat, K.; Arıkan, K.; Savk, A.; Karimi, F.; Şen, F. Palladium–Nickel nanoparticles decorated on Functionalized-MWCNT for high precision non-enzymatic glucose sensing. Mater. Chem. Phys., 2020, 250123042
[http://dx.doi.org/10.1016/j.matchemphys.2020.123042]
[34]
Baghayeri, M.; Veisi, H.; Farhadi, S.; Beitollahi, H.; Maleki, B. Ag nanoparticles decorated Fe3O4/chitosan nanocomposite: synthesis, characterization and application toward electrochemical sensing of hydrogen peroxide. J. Iran. Chem. Soc., 2018, 15, 1015-1022.
[http://dx.doi.org/10.1007/s13738-018-1298-y]
[35]
Faridbod, F.; Sanati, A.L. Graphene quantum dots in electrochemical sensors/biosensors. Curr. Anal. Chem., 2019, 15(2), 103-123.
[http://dx.doi.org/10.2174/1573411014666180319145506]
[36]
Baghayeri, M.; Veisi, H.; Ghanei-Motlagh, M. Amperometric glucose biosensor based on immobilization of glucose oxidase on a magnetic glassy carbon electrode modified with a novel magnetic nanocomposite. Sens. Actuators B Chem., 2017, 249, 321-330.
[http://dx.doi.org/10.1016/j.snb.2017.04.100]
[37]
Karimi-Maleh, H.; Arotiba, O.A. Simultaneous determination of cholesterol, ascorbic acid and uric acid as three essential biological compounds at a carbon paste electrode modified with copper oxide decorated reduced graphene oxide nanocomposite and ionic liquid. J. Colloid Interface Sci., 2020, 560, 208-212.
[http://dx.doi.org/10.1016/j.jcis.2019.10.007] [PMID: 31670018]
[38]
Sanati, A.L.; Faridbod, F. Electrochemical determination of methyldopa by graphene quantum dot/1-butyl-3-methylimidazolium hexafluoro phosphate nanocomposite electrode. Int. J. Electrochem. Sci., 2017, 12(9), 7997-8005.
[http://dx.doi.org/10.20964/2017.09.71]
[39]
Karimi-Maleh, H.; Fakude, C.T.; Mabuba, N.; Peleyeju, G.M.; Arotiba, O.A. The determination of 2-phenylphenol in the presence of 4-chlorophenol using nano-Fe3O4/ionic liquid paste electrode as an electrochemical sensor. J. Colloid Interface Sci., 2019, 554, 603-610.
[http://dx.doi.org/10.1016/j.jcis.2019.07.047] [PMID: 31330427]
[40]
Arabali, V.; Malekmohammadi, S.; Karimi, F. Surface amplification of pencil graphite electrode using CuO nanoparticle/polypyrrole nanocomposite; A powerful electrochemical strategy for determination of tramadol. Microchem. J., 2020, 158105179
[http://dx.doi.org/10.1016/j.microc.2020.105179]
[41]
Ensafi, A.A.; Karimi-Maleh, H. Voltammetric determination of isoproterenol using multiwall carbon nanotubes-ionic liquid paste electrode. Drug Test. Anal., 2011, 3(5), 325-330.
[http://dx.doi.org/10.1002/dta.232] [PMID: 21309002]
[42]
Baghayeri, M.; Sedrpoushan, A.; Mohammadi, A.; Heidari, M. A non-enzymatic glucose sensor based on NiO nanoparticles/functionalized SBA 15/MWCNT-modified carbon paste electrode. Ionics, 2017, 23, 1553-1562.
[http://dx.doi.org/10.1007/s11581-016-1964-y]
[43]
Shamsadin-Azad, Z.; Taher, M.A.; Cheraghi, S.; Karimi-Maleh, H. A nanostructure voltammetric platform amplified with ionic liquid for determination of tert-butylhydroxyanisole in the presence kojic acid. J. Food Meas. Charact., 2019, 13, 1781-1787.
[http://dx.doi.org/10.1007/s11694-019-00096-6]
[44]
Tahernejad-Javazmi, F.; Shabani-Nooshabadi, M.; Karimi-Maleh, H. 3D reduced graphene oxide/FeNi3-ionic liquid nanocomposite modified sensor; an electrical synergic effect for development of tert-butylhydroquinone and folic acid sensor. Compos., Part B Eng., 2019, 172, 666-670.
[http://dx.doi.org/10.1016/j.compositesb.2019.05.065]
[45]
Fouladgar, M. CuO-CNT nanocomposite/ionic liquid modified sensor as new breast anticancer approach for determination of doxorubicin and 5-fluorouracil drugs. J. Electrochem. Soc., 2018, 165(13), B559.
[http://dx.doi.org/10.1149/2.1001811jes]
[46]
Orooji, Y. Haddad Irani-nezhad M., Hassandoost R., Khataee A., Rahim Pouran S., Woo Joo S. Cerium doped magnetite nanoparticles for highly sensitive detection of metronidazole via chemiluminescence assay. Spectrochim. Acta A, 2020, 234118272
[http://dx.doi.org/10.1016/j.saa.2020.118272]
[47]
Sisi, A.J.; Fathinia, M.; Khataee, A.; Orooji, Y. Systematic activation of potassium peroxydisulfate with ZIF-8 via sono-assisted catalytic process: Mechanism and ecotoxicological analysis. J. Mol. Liq., 2020, 308113018
[http://dx.doi.org/10.1016/j.molliq.2020.113018]
[48]
Orooji, Y.; Liang, F.; Razmjou, A.; Liu, G.; Jin, W. Preparation of anti-adhesion and bacterial destructive polymeric ultrafiltration membranes using modified mesoporous carbon. Separ. Purif. Tech., 2018, 205, 273-283.
[http://dx.doi.org/10.1016/j.seppur.2018.05.006]
[49]
Ghasemi, M.; Khataee, A.; Gholami, P.; Soltani, R.D.C.; Hassani, A.; Orooji, Y. In-situ electro-generation and activation of hydrogen peroxide using a CuFeNLDH-CNTs modified graphite cathode for degradation of cefazolin. J. Environ. Manage., 2020, 267110629
[http://dx.doi.org/10.1016/j.jenvman.2020.110629] [PMID: 32349954]
[50]
Mehdizadeh, P.; Orooji, Y.; Amiri, O.; Salavati-Niasari, M.; Moayedi, H. J. Clean. Prod., 2020, 252119765
[http://dx.doi.org/10.1016/j.jclepro.2019.119765]
[51]
Orooji, Y.; Ghasali, E.; Moradi, M.; Derakhshandeh, M.R.; Alizadeh, M.; Shahedi Asl, M.; Ebadzadeh, T. Preparation of mullite-TiB2-CNTs hybrid composite through spark plasma sintering. Ceram. Int., 2019, 45(13), 16288-16296.
[http://dx.doi.org/10.1016/j.ceramint.2019.05.154]
[52]
Orooji, Y.; Derakhshandeh, M.R.; Ghasali, E.; Alizadeh, M.; Asl, M.S.; Ebadzadeh, T. Effects of ZrB2 reinforcement on microstructure and mechanical properties of a spark plasma sintered mullite-CNT composite. Ceram. Int., 2019, 45(13), 16015-16021.
[http://dx.doi.org/10.1016/j.ceramint.2019.05.113]
[53]
Karimi-Maleh, H.; Shafieizadeh, M.; Taher, M.A.; Opoku, F.; Kiarii, E.M.; Govender, P.P.; Ranjbari, S.; Rezapour, M.; Orooji, Y. The role of magnetite/graphene oxide nano-composite as a high-efficiency adsorbent for removal of phenazopyridine residues from water samples, an experimental/theoretical investigation. J. Mol. Liq., 2020, 298112040
[http://dx.doi.org/10.1016/j.molliq.2019.112040]
[54]
Orooji, Y.; Alizadeh, A.; Ghasali, E.; Derakhshandeh, M.R.; Alizadeh, M.; Asl, M.S.; Ebadzadeh, T. Co-reinforcing of mullite-TiN-CNT composites with ZrB2 and TiB2 compounds. Ceram. Int., 2019, 45, 20844-20854.
[http://dx.doi.org/10.1016/j.ceramint.2019.07.072]
[55]
Hassandoost, R.; Pouran, S.R.; Khataee, A.; Orooji, Y.; Joo, S.W. Hierarchically structured ternary heterojunctions based on Ce3+/Ce4+ modified Fe3O4 nanoparticles anchored onto graphene oxide sheets as magnetic visible-light-active photocatalysts for decontamination of oxytetracycline. J. Hazard. Mater., 2019, 376, 200-211.
[http://dx.doi.org/10.1016/j.jhazmat.2019.05.035] [PMID: 31128399]
[56]
Karimi-Maleh, H.; Kumar, B.G.; Rajendran, S.; Qin, J.; Vadivel, S.S.; Durgalakshmi, S.; Gracia, F.; Soto-Moscoso, M.; Orooji, Y.; Karimi, F. Tuning of metal oxides photocatalytic performance using Ag nanoparticles integration. J. Mol. Liq., 2020, 314113588
[http://dx.doi.org/10.1016/j.molliq.2020.113588]
[57]
Malekmohammadi, S.; Hadadzadeh, H.; Rezakhani, S.; Amirghofran, Z. Design and synthesis of gatekeeper coated dendritic silica/titania mesoporous nanoparticles with sustained and controlled drug release properties for targeted synergetic chemo-sonodynamic therapy. ACS Biomater. Sci. Eng., 2019, 5, 4405-4415.
[http://dx.doi.org/10.1021/acsbiomaterials.9b00237]
[58]
Rayati, S.; Malekmohammadi, S. Catalytic activity of multi-wall carbon nanotube supported manganese (III) porphyrin: an efficient, selective and reusable catalyst for oxidation of alkenes and alkanes with urea–hydrogen peroxide. J. Exp. Nanosci., 2016, 11(11), 872-883.
[http://dx.doi.org/10.1080/17458080.2016.1179802]
[59]
Mohanraj, J.; Durgalakshmi, D.; Rakkesh, R.A.; Balakumar, S.; Rajendran, S.; Karimi-Maleh, H. Facile synthesis of paper based graphene electrodes for point of care devices: A double stranded DNA (dsDNA) biosensor. J. Colloid Interface Sci., 2020, 566, 463-472.
[http://dx.doi.org/10.1016/j.jcis.2020.01.089] [PMID: 32032811]
[60]
Malekmohammadi, S.; Hadadzadeh, H.; Farrokhpour, H.; Amirghofran, Z. Immobilization of gold nanoparticles on folate-conjugated dendritic mesoporous silica-coated reduced graphene oxide nanosheets: a new nanoplatform for curcumin pH-controlled and targeted delivery. Soft Matter, 2018, 14(12), 2400-2410.
[http://dx.doi.org/10.1039/C7SM02248D] [PMID: 29512668]
[61]
Veisi, H.; Hosseini Eshbala, F.; Hemmati, S.; Baghayeri, M. Selective hydrogen peroxide oxidation of sulfides to sulfones with carboxylated multi-walled carbon nano tubes (MWCNTs-COOH) as heterogeneous and recyclable nanocatalysts under organic solvent-free conditions. RSC Advances, 2015, 5, 10152-10158.
[http://dx.doi.org/10.1039/C4RA14964E]
[62]
Khodadadi, A.; Faghih-Mirzaei, E.; Karimi-Maleh, H.; Abbaspourrad, A.; Agarwal, S.; Gupta, V.K. A new epirubicin biosensor based on amplifying DNA interactions with polypyrrole and nitrogen-doped reduced graphene: experimental and docking theoretical investigations. Sens. Actuators B Chem., 2019, 284, 568-574.
[http://dx.doi.org/10.1016/j.snb.2018.12.164]
[63]
Karimi-Maleh, H.; Sheikhshoaie, M.; Sheikhshoaie, I.; Ranjbar, M.; Alizadeh, J.; Maxakato, N.W.; Abbaspourrad, A. A novel electrochemical epinine sensor using amplified CuO nanoparticles and an-hexyl-3-methylimidazolium hexafluorophosphate electrode. New J. Chem., 2019, 43, 2362-2367.
[http://dx.doi.org/10.1039/C8NJ05581E]
[64]
Ciucu, A.A. Chemically modified electrodes in biosensing. J. Biosens. Bioelectron., 2014, 5, 1-10.
[65]
Miraki, M.; Karimi-Maleh, H.; Taher, M.A.; Cheraghi, S.; Karimi, F.; Agarwal, S.; Gupta, V.K. Voltammetric amplified platform based on ionic liquid/NiO nanocomposite for determination of benserazide and levodopa. J. Mol. Liq., 2019, 278, 672-676.
[http://dx.doi.org/10.1016/j.molliq.2019.01.081]
[66]
Alem, M.; Teimouri, A.; Salavati, H.; Kazemi, S. Central composite design optimization of methylene blue scavenger using modified graphene oxide based polymer. Chem. Methodol, 2017, 1, 49-67.
[http://dx.doi.org/10.22631/chemm.2017.49743]
[67]
Bijad, M.; Karimi-Maleh, H.; Farsi, M.; Shahidi, S.A. An electrochemical-amplified-platform based on the nanostructure voltammetric sensor for the determination of carmoisine in the presence of tartrazine in dried fruit and soft drink samples. J. Food Meas. Charact., 2018, 12, 634-640.
[http://dx.doi.org/10.1007/s11694-017-9676-1]
[68]
Tahernejad-Javazmi, F.; Shabani-Nooshabadi, M.; Karimi-Maleh, H. Analysis of glutathione in the presence of acetaminophen and tyrosine via an amplified electrode with MgO/SWCNTs as a sensor in the hemolyzed erythrocyte. Talanta, 2018, 176, 208-213.
[http://dx.doi.org/10.1016/j.talanta.2017.08.027] [PMID: 28917742]
[69]
Eren, T.; Atar, N.; Yola, M.L.; Karimi-Maleh, H. A sensitive molecularly imprinted polymer based quartz crystal microbalance nanosensor for selective determination of lovastatin in red yeast rice. Food Chem., 2015, 185, 430-436.
[http://dx.doi.org/10.1016/j.foodchem.2015.03.153] [PMID: 25952889]
[70]
Baghayeri, M.; Nazarzadeh Zare, E.; Mansour Lakouraj, M. A simple hydrogen peroxide biosensor based on a novel electro-magnetic poly(p-phenylenediamine)@Fe3O4 nanocomposite. Biosens. Bioelectron., 2014, 55, 259-265.
[http://dx.doi.org/10.1016/j.bios.2013.12.033] [PMID: 24389389]
[71]
Negahban, S.; Fouladgar, M.; Amiri, G. Improve the performance of carbon paste electrodes for determination of dobutamine using MnZnFe2O4 nanoparticles and ionic liquid. Journal of the Taiwan Institute of Chemical Engineers, 2017, 78, 51-55.
[http://dx.doi.org/10.1016/j.jtice.2017.05.032]
[72]
Fouladgar, M. Nanostructured Sensor for Simultaneous Determination of Trace Amounts of Bisphenol A and Vitamin B6 in Food Samples. Food Anal. Methods, 2017, 10(5), 1507-1514.
[http://dx.doi.org/10.1007/s12161-016-0683-3]
[73]
Andriyko, O.Y.; Reischl, W.E.; Nauer, G. Trialkyl-substituted imidazolium-based ionic liquids for electrochemical applications: basic physicochemical properties. J. Chem. Eng. Data, 2009, 54(3), 855-860.
[http://dx.doi.org/10.1021/je800636k]
[74]
Jamali, T.; Karimi-Maleh, H.; Khalilzadeh, M.A. A novel nanosensor based on Pt:Co nanoalloy ionic liquid carbon paste electrode for voltammetric determination of vitamin B9 in food samples. Lebensm. Wiss. Technol., 2014, 57, 679-685.
[http://dx.doi.org/10.1016/j.lwt.2014.01.023]
[75]
Baghizadeh, A.; Karimi-Maleh, H.; Khoshnama, Z.; Hassankhani, A.; Abbasghorbani, M. A voltammetric sensor for simultaneous determination of vitamin C and vitamin B6 in food samples using ZrO2 nanoparticle/ionic liquids carbon paste electrode. Food Anal. Methods, 2015, 8, 549-557.
[http://dx.doi.org/10.1007/s12161-014-9926-3]
[76]
Kamran, S.; Amiri Shiri, N. A Comparative Study for Adsorption of Alizarin Red S from Aqueous Samples by Magnetic Nanoparticles of Fe3O4, CoFe2O4 and Ionic Liquid-Modified Fe3O4. Chem. Methodol, 2018, 2, 23-38.
[77]
Sun, W.; Yang, M.X.; Jiang, Q.; Jiao, K. Direct electrocatalytic reduction of p-nitrophenol at room temperature ionic liquid modified electrode. Chin. Chem. Lett., 2008, 19, 1156-1158.
[http://dx.doi.org/10.1016/j.cclet.2008.07.011]
[78]
Bijad, M.; Karimi-Maleh, H.; Khalilzadeh, M.A. Application of ZnO/CNTs nanocomposite ionic liquid paste electrode as a sensitive voltammetric sensor for determination of ascorbic acid in food samples. Food Anal. Methods, 2013, 6, 1639-1647.
[http://dx.doi.org/10.1007/s12161-013-9585-9]
[79]
Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H. Highly sensitive square wave voltammetric sensor employing CdO/SWCNTs and room temperature ionic liquid for analysis of vanillin and folic acid in food samples. J. Food Compos. Anal., 2017, 62, 254-259.
[http://dx.doi.org/10.1016/j.jfca.2017.06.006]
[80]
Chandrashekar, B.N.; Swamy, B.E.K.; Ashoka, N.B.; Pandurangachar, M. Simultaneous electrochemical determination of epinephrine and uric acid at 1-butyl-4-methyl-pyridinium tetrafluroborate ionic liquid modified carbon paste electrode: A voltammetric study. J. Mol. Liq., 2012, 165, 168-172.
[http://dx.doi.org/10.1016/j.molliq.2011.11.005]
[81]
Karimi-Maleh, H.; Amini, F.; Akbari, A.; Shojaei, M. Amplified electrochemical sensor employing CuO/SWCNTs and 1-butyl-3-methylimidazolium hexafluorophosphate for selective analysis of sulfisoxazole in the presence of folic acid. J. Colloid Interface Sci., 2017, 495, 61-67.
[http://dx.doi.org/10.1016/j.jcis.2017.01.119] [PMID: 28189110]
[82]
Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications, 2nd ed; John Wiley & Sons, 2001.
[83]
Zhihua, W.; Xiaole, L.; Bowan, W.; Fangping, W.; Xiaoquan, L. Voltammetric determination of salicylic acid by molecularly imprinted film modified electrodes. Int. J. Polym. Anal., 2012, 17, 122-132.
[http://dx.doi.org/10.1080/1023666X.2012.640429]
[84]
Alizadeh, T.; Nayeri, S. Electrocatalytic oxidation of salicylic acid at a carbon paste electrode impregnated with cerium-doped zirconium oxide nanoparticles as a new sensing approach for salicylic acid determination. J. Solid State Electrochem., 2018, 22, 2039-2048.
[http://dx.doi.org/10.1007/s10008-018-3907-1]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy